Comptes Rendus
Review article
Laboratory modeling of MHD accretion disks
Comptes Rendus. Physique, Online first (2024), pp. 1-28.

This review article summarizes two decades of laboratory research aimed at understanding the dynamics of accretion disks, with particular emphasis on magnetohydrodynamic experiments involving liquid metals and plasmas. First, the Taylor–Couette experiments demonstrated the generation of magnetorotational instability (MRI) in liquid metals, and highlighted how this instability is critically influenced by boundary conditions and the geometry of the applied magnetic field. These experiments also highlight the nonlinear transition to turbulence in accretion disks, and their link with other MHD instabilities in centrifugally-stable flows. A complementary approach, involving laboratory experiments with volumetric fluid driving rather than rotating boundaries, enables a quantitative study of angular momentum transport by Keplerian turbulence. Collectively, these various laboratory studies offer new constraints on the theoretical models designed to explain the dynamics of accretion disks. This is particularly true with regard to the role of Keplerian turbulence in protoplanetary disks, where recent observations from the ALMA telescope have considerably revised previously expected values of the magnitude of the turbulent fluctuations. Finally, the paper discusses outstanding questions and future prospects in laboratory modeling of accretion disks.

Cet article de revue résume deux décennies de recherche en laboratoire visant à comprendre la dynamique des disques astrophysiques, en mettant particulièrement l’accent sur les expériences magnétohydrodynamiques impliquant des métaux liquides et des plasmas. Tout d’abord, les expériences de Taylor–Couette ont démontré la génération de l’instabilité magnétorotationnelle (MRI) dans les métaux liquides, et ont mis en évidence la façon dont cette instabilité est influencée de manière critique par les conditions aux limites et la géométrie du champ magnétique appliqué. Ces expériences permettent également de mieux comprendre la transition non linéaire vers la turbulence dans les disques d’accrétion et leur lien avec d’autres instabilités dans les écoulements centrifuges stables. Une approche complémentaire, impliquant des expériences de laboratoire avec un entraînement volumique du fluide plutôt qu’avec un dispositif en rotation, permet une étude quantitative du transport du moment cinétique par la turbulence Képlèrienne. Collectivement, ces diverses études de laboratoire offrent de nouvelles contraintes sur les modèles théoriques visant à expliquer la dynamique des disques d’accrétion. Ceci est particulièrement vrai en ce qui concerne le rôle de la turbulence Képlèrienne dans les disques proto-planétaires, dont les récentes observations du télescope ALMA ont considérablement révisé les valeurs précédemment attendues pour l’amplitude des fluctuations turbulentes. Enfin, l’article aborde les questions en suspens et les perspectives futures dans la modélisation en laboratoire des disques d’accrétion.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crphys.204
Keywords: Accretion disks, magnetohydrodynamics (MHD), instabilities, turbulence, rotating flow, MRI
Mots-clés : Disques d’accrétion, magnétohydrodynamique (MHD), instabilités, turbulence, écoulements, MRI

Christophe Gissinger 1

1 LPENS, Ecole Normale Superieure, Paris, France. IUF
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_S3_A8_0,
     author = {Christophe Gissinger},
     title = {Laboratory modeling of {MHD} accretion disks},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.204},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Christophe Gissinger
TI  - Laboratory modeling of MHD accretion disks
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.204
LA  - en
ID  - CRPHYS_2024__25_S3_A8_0
ER  - 
%0 Journal Article
%A Christophe Gissinger
%T Laboratory modeling of MHD accretion disks
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.204
%G en
%F CRPHYS_2024__25_S3_A8_0
Christophe Gissinger. Laboratory modeling of MHD accretion disks. Comptes Rendus. Physique, Online first (2024), pp. 1-28. doi : 10.5802/crphys.204.

[1] B. Zhao; K. Tomida; P. Hennebelle et al. Formation and evolution of disks around young stellar objects, Space Sci. Rev., Volume 216 (2020), 43 | DOI

[2] J. E. Pringle Accretion discs in astrophysics, Annu. Rev. Astron. Astrophys., Volume 19 (1981), pp. 137-162 | DOI

[3] J. Frank; A. R. King; D. Raine Accretion power in astrophysics, Cambridge University Press, 2002 | DOI

[4] A. C. Fabian Observational evidence of active galactic nuclei feedback, Annu. Rev. Astron. Astrophys., Volume 50 (2012) no. 1, pp. 455-489 | DOI

[5] B. Warner Cataclysmic variable stars, 28, Cambridge University Press, 2003

[6] F. H. Shu The physics of astrophysics. Volume 1: Radiation, University Science Books: Mill Valley, CA (USA), 1991

[7] A. N. Youdin; J. Goodman Streaming instabilities in protoplanetary disks, Astrophys. J., Volume 620 (2005) no. 1, pp. 459-469 | DOI

[8] K. Wu Accretion onto magnetic white dwarfs, Space Sci. Rev., Volume 93 (2000) no. 3, pp. 611-649 | DOI

[9] C. F. Gammie Layered accretion in T Tauri disks, Astrophys. J., Volume 457 (1996), pp. 355-362 | DOI

[10] S. M. Andrews; J. Huang; L. M. Pérez et al. The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview, Astrophys. J. Lett., Volume 869 (2018) no. 2, p. L41 | DOI

[11] Lord Rayleigh On the dynamics of revolving fluids, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 93 (1917) no. 648, pp. 148-154

[12] N. I. Shakura; R. A. Sunyaev Black holes in binary systems. Observational appearance, Astron. Astrophys., Volume 24 (1973), pp. 337-355 | DOI

[13] J. E. Hart; G. A. Glatzmaier; J. Toomre Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity, J. Fluid Mech., Volume 173 (1986), pp. 519-544 | DOI

[14] M. Vernet; M. Pereira; S. Fauve; C. Gissinger Turbulence in electromagnetically-driven Keplerian flows, J. Fluid Mech., Volume 924 (2021), A29 | DOI

[15] M. Vernet; S. Fauve; C. Gissinger Angular momentum transport by Keplerian turbulence in liquid metals, Phys. Rev. Lett., Volume 129 (2022) no. 7, 074501 | DOI

[16] K. M. Flaherty; A. M. Hughes; K. A. Rosenfeld et al. Weak turbulence in the HD 163296 Protoplanetary disk revealed byALMA CO Observations, Astrophys. J., Volume 813 (2015), 99 | DOI

[17] D. N. C. Lin; J. E. Pringle The formation of the exponential disk in spiral galaxies, Astrophys. J. Lett., Volume 320 (1987), p. L87-L91 | DOI

[18] H. H. Klahr; P. Bodenheimer Turbulence in accretion disks: vorticity generation and angular momentum transport via the global baroclinic instability, Astrophys. J., Volume 582 (2003) no. 2, pp. 869-892 | DOI

[19] V. Urpin; A. Brandenburg Magnetic and vertical shear instabilities in accretion discs, Mon. Not. Roy. Astron. Soc., Volume 294 (1998) no. 3, pp. 399-406 | DOI

[20] G. Lesur; P. Y. Longaretti On the relevance of subcritical hydrodynamic turbulence to accretion disk transport, Astron. Astrophys., Volume 444 (2005) no. 1, pp. 25-44 | DOI

[21] M. S. Paoletti; D. P. M. van Gils; B. Dubrulle; C. Sun; D. Lohse; D. P. Lathrop Angular momentum transport and turbulence in laboratory models of Keplerian flows, Astron. Astrophys., Volume 547 (2012), A64 | DOI

[22] B. Eckhardt; S. Grossmann; D. Lohse Torque scaling in turbulent Taylor-–Couette flow between independently rotating cylinders, J. Fluid Mech., Volume 581 (2007), pp. 221-250 | DOI

[23] S. G. Huisman; D. P. M. van Gils; S. Grossmann; C. Sun; D. Lohse Ultimate Turbulent Taylor–Couette Flow, Phys. Rev. Lett., Volume 108 (2012), 024501 | DOI

[24] J. M. Lopez; M. Avila Boundary-layer turbulence in experiments on quasi-Keplerian flows, J. Fluid Mech., Volume 817 (2017), pp. 21-34 | DOI

[25] H. Ji; M. Burin; E. Schartman; J. Goodman Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks, Nature, Volume 444 (2006) no. 7117, pp. 343-346 | DOI

[26] E. Schartman; H. Ji; M. J. Burin; J. Goodman Stability of quasi-Keplerian shear flow in a laboratory experiment, Astron. Astrophys., Volume 543 (2012), A94 | DOI

[27] H. K. Moffatt Magnetic Field generation in electrically conducting fluids, Cambridge University Press, Cambridge, London, New York, Melbourne, 1978

[28] R. J. Donnelly; M. Ozima Hydromagnetic stability of flow between rotating cylinders, Phys. Rev. Lett., Volume 4 (1960) no. 10, pp. 497-498 | DOI

[29] S. Chandrasekhar Hydrodynamic and hydromagnetic stability, Courier Corporation, 2013

[30] S. A. Balbus; J. F. Hawley A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution, Astrophys. J., Volume 376 (1991), pp. 214-233 | DOI

[31] E. P. Velikhov Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field, Sov. Phys. JETP, Volume 36 (1959) no. 9, pp. 995-998

[32] S. Chandrasekhar The stability of non-dissipative Couette flow in hydromagnetics, Proc. Natl. Acad. Sci. USA, Volume 46 (1960) no. 2, pp. 253-257 | DOI

[33] D. M. H. Hung; E. G. Blackman; K. J. Caspary; E. P. Gilson; H. Ji Experimental confirmation of the standard magnetorotational instability mechanism with a spring-mass analogue, Commun. Phys., Volume 2 (2019) no. 1, 7 | DOI

[34] S. Fromang; R. P. Nelson Global MHD simulations of stratified and turbulent protoplanetary discs-I. Model properties, Astron. Astrophys., Volume 457 (2006) no. 1, pp. 343-358 | DOI

[35] H. Ji; J. Goodman; A. Kageyama Magnetorotational instability in a rotating liquid metal annulus, Mon. Not. Roy. Astron. Soc., Volume 325 (2001) no. 2, p. L1-L5 | DOI

[36] J. Goodman; H. Ji Magnetorotational instability of dissipative Couette flow, J. Fluid Mech., Volume 462 (2002), pp. 365-382 | DOI

[37] M. D. Nornberg; H. Ji; E. Schartman; A. H. Roach; J. Goodman Observation of magnetocoriolis waves in a liquid metal Taylor–Couette experiment, Phys. Rev. Lett., Volume 104 (2010) no. 7, 074501 | DOI

[38] O. N. Kirillov; F. Stefani On the relation of standard and helical magnetorotational instability, Astrophys. J., Volume 712 (2010) no. 1, pp. 52-68 | DOI

[39] R. Hollerbach; G. Rüdiger New type of magnetorotational instability in cylindrical Taylor–Couette flow, Phys. Rev. Lett., Volume 95 (2005) no. 12, 124501 | DOI

[40] F. Stefani; G. Gerbeth; T. Gundrum; R. Hollerbach; J. Priede; G. Rüdiger; J. Szklarski Helical magnetorotational instability in a Taylor–Couette flow with strongly reduced Ekman pumping, Phys. Rev. E, Volume 80 (2009) no. 6, 066303 | DOI

[41] F. Stefani; T. Gundrum; G. Gerbeth et al. Experimental Evidence for Magnetorotational Instability in a Taylor–Couette Flow under the Influence of a Helical Magnetic Field, Phys. Rev. Lett., Volume 97 (2006), 184502 | DOI

[42] J. Priede; I. Grants; G. Gerbeth Inductionless magnetorotational instability in a Taylor–Couette flow with a helical magnetic field, Phys. Rev. E, Volume 75 (2007) no. 4, 047303 | DOI

[43] M. Seilmayer; V. Galindo; G. Gerbeth et al. Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field, Phys. Rev. Lett., Volume 113 (2014) no. 2, 024505 | DOI

[44] W. Liu; J. Goodman; I. Herron; H. Ji Helical magnetorotational instability in magnetized Taylor–Couette flow, Phys. Rev. E, Volume 74 (2006) no. 5, 056302 | DOI

[45] G. Rüdiger; R. Hollerbach Comment on “Helical magnetorotational instability in magnetized Taylor–Couette flow”, Phys. Rev. E, Volume 76 (2007) no. 6, 068301 | DOI

[46] S. A. Balbus; P. Henri On the magnetic Prandtl number behavior of accretion disks, Astrophys. J., Volume 674 (2008) no. 1, pp. 408-414 | DOI

[47] A. H. Roach; E. J. Spence; C. Gissinger; E. M. Edlund; P. Sloboda; J. Goodman; H. Ji Observation of a Free-Shercliff-Layer Instability in Cylindrical Geometry, Phys. Rev. Lett., Volume 108 (2012), p. 154502 | DOI

[48] C. Gissinger; H. Ji; J. Goodman The role of boundaries in the Magnetorotational instability, Phys. Fluids, Volume 24 (2012), 074109 | DOI

[49] D. R. Sisan; N. Mujica; W. A. Tillotson; W. D. Yi-Min Huang; A. B. Hassam; T. M. Antonsen; D. P. Lathrop Experimental Observation and Characterization of the Magnetorotational Instability, Phys. Rev. Lett., Volume 93 (2004), 114502 | DOI

[50] C. Gissinger; H. Ji; J. Goodman Instabilities in magnetized spherical Couette flow, Phys. Rev. E, Volume 84 (2011) no. 2, 026308 | DOI

[51] B. Gallet; C. R. Doering; E. A. Spiegel Destabilizing Taylor–Couette flow with suction, Phys. Fluids, Volume 22 (2010) no. 3, 034105 | DOI

[52] E. Knobloch; K. Julien Saturation of the magnetorotational instability, Phys. Fluids, Volume 17 (2005) no. 9, 094106 | DOI

[53] Y. Wang; E. P. Gilson; F. Ebrahimi; J. Goodman; H. Ji Observation of axisymmetric standard magnetorotational instability in the laboratory, Phys. Rev. Lett., Volume 129 (2022) no. 11, 115001 | DOI

[54] X. Wei; H. Ji; J. Goodman; F. Ebrahimi; E. Gilson; F. Jenko; K. Lackner Numerical simulations of the Princeton magnetorotational instability experiment with conducting axial boundaries, Phys. Rev. E, Volume 94 (2016) no. 6, 063107 | DOI

[55] Y. Wang; E. P. Gilson; F. Ebrahimi et al. Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability, Nat. Commun., Volume 13 (2022) no. 1, 4679 | DOI

[56] C. Collins; N. Katz; J. Wallace; J. Jara-Almonte; I. Reese; E. Zweibel; C. B. Forest Stirring unmagnetized plasma, Phys. Rev. Lett., Volume 108 (2012) no. 11, 115001 | DOI

[57] K. Flanagan; J. Milhone; J. Egedal et al. Weakly magnetized, Hall dominated plasma Couette flow, Phys. Rev. Lett., Volume 125 (2020) no. 13, 135001 | DOI

[58] M. W. Kunz; G. Lesur Magnetic self-organization in Hall-dominated magnetorotational turbulence, Mon. Not. R. Astron. Soc., Volume 434 (2013) no. 3, pp. 2295-2312 | DOI

[59] T. D. Phan; J. P. Eastwood; M. A. Shay et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath, Nature, Volume 557 (2018) no. 7704, pp. 202-206 | DOI

[60] A. Cumming; P. Arras; E. Zweibel Magnetic field evolution in neutron star crusts due to the Hall effect and ohmic decay, Astrophys. J., Volume 609 (2004) no. 2, pp. 999-1017 | DOI

[61] V. Valenzuela-Villaseca; L. G. Suttle; F. Suzuki-Vidal et al. Characterization of quasi-Keplerian, differentially rotating, free-boundary laboratory plasmas, Phys. Rev. Lett., Volume 130 (2023) no. 19, 195101 | DOI

[62] V. Bouillaut; S. Lepot; S. Aumaître; B. Gallet Transition to the ultimate regime in a radiatively driven convection experiment, J. Fluid Mech., Volume 861 (2019), p. R5 | DOI

[63] B. Dubrulle; O. Dauchot; F. Daviaud Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data, Phys. Fluids, Volume 17 (2005), 095103 | DOI

[64] F. Hersant; B. Dubrulle; J.-M. Huré Turbulence in circumstellar disks, Astron. Astrophys., Volume 429 (2005), pp. 531-542 | DOI

[65] A. Mishra; G. Mamatsashvili; F. Stefani Nonlinear evolution of magnetorotational instability in a magnetized Taylor–Couette flow: Scaling properties and relation to upcoming DRESDYN-MRI experiment, Phys. Rev. Fluids, Volume 8 (2023) no. 8, 083902 | DOI

[66] F. Stefani; A. Gailitis; G. Gerbeth et al. The DRESDYN project: liquid metal experiments on dynamo action and magnetorotational instability, Geophys. Astrophys. Fluid Dyn., Volume 113 (2019) no. 1-2, pp. 51-70 | DOI

[67] E. P. Velikhov; A. A. Ivanov; S. V. Zakharov; V. S. Zakharov; A. O. Livadny; K. S. Serebrennikov Equilibrium of current driven rotating liquid metal, Phys. Lett. A, Volume 358 (2006), 216221 | DOI

[68] I.V. Khal’zov; A. I. Smolyakov On the calculation of steady-state magnetohydrodynamic flows of liquid metals in circular ducts of a rectangular cross section, Tech. Phys., Volume 51 (2006), pp. 26-33 | DOI

[69] I.V. Khal’zov; A.I. Smolyakov; V.I. Ilgisonis Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments, J. Fluid Mech., Volume 644 (2010), pp. 257-280 | DOI

[70] F. Günzkofer; P. Manz Outwards transport of angular momentum in a shallow water accretion disk experiment, Phys. Rev. Fluids, Volume 6 (2021) no. 5, 054401 | DOI

[71] T. Foglizzo; F. Masset; J. Guilet; G. Durand Shallow Water Analogue of the Standing Accretion Shock Instability: Experimental Demonstration and a Two-Dimensional Model, Phys. Rev. Lett., Volume 108 (2012) no. 5, 051103 | DOI

Cited by Sources:

Comments - Policy