Physicists face major challenges in modelling multi-scale phenomena that are observed in geophysical flows (e.g. in the Earth’s oceans and atmosphere, or liquid planetary cores). In particular, complexities arise because geophysical fluids are rotating and subject to density variations, but also because the fluid boundaries have complex geometries (e.g. the ocean floor) with wavelengths ranging from metres to thousands of kilometres. Dynamical models of planetary fluid layers are thus often constrained by observations, whose interpretation necessitates a comprehensive understanding of the underlying physics. To this end, geophysical studies often combine cutting-edge experiments across a wide range of parameters, together with theory and numerical simulations, to derive predictive scaling laws applicable for planetary settings. In this review, we discuss experimental efforts that have contributed to our understanding of geophysical flows with topography. More specifically, we focus on (i) the flow response to mechanical (orbital) forcings in the presence of a large-scale (ellipsoidal) topography, (ii) some effects of small-scale topography onto bulk flows and boundary-layer dynamics, and (iii) the interaction between convection and roughness. The geophysical context is briefly introduced for each case, and some experimental perspectives are drawn.
Les écoulements géophysiques, par exemple dans les océans ou les noyaux planétaires liquides, présentent souvent une turbulence caractérisée par une multitude d’échelles de temps et d’espace. Celles-ci résultent notamment des effets de rotation globale et de stratification en densité, mais aussi des effets de paroi qui sont souvent irréguliers (e.g. la bathymétrie du plancher océanique). Ainsi, peu d’études ont considéré la modélisation des écoulements géophysiques avec rotation, stratification en densité et effets topographiques. En pratique, la meilleure approche consiste souvent à combiner des expériences de laboratoire sur une large gamme de paramètres, ainsi que des travaux théoriques et/ou numériques, pour ensuite extrapoler les résultats aux conditions géophysiques. Dans cet article de revue, nous discutons les travaux principalement expérimentaux qui ont permis de mieux comprendre la dynamique des écoulements géophysiques avec des effets topographiques de paroi. Premièrement, nous détaillons les écoulements engendrés par les forçages orbitaux (e.g. la marée ou la précession) pour un fluide contenu dans un ellipsoïde. Ensuite, nous illustrons les effets d’une topographie de petite échelle sur certains écoulements en volume et de couche limite. Enfin, nous discutons l’influence d’une paroi non lisse sur les écoulements engendrés par la convection.
Revised:
Accepted:
Online First:
Mots-clés : Topographie, Rotation, Stratification, Écoulements géophysiques, Noyaux planétaires, Océans de subsurface
Jérémie Vidal 1; Jérôme Noir 2; David Cébron 1; Fabian Burmann 2; Rémy Monville 1; Vadim Giraud 2; Yoann Charles 2, 3
@article{CRPHYS_2024__25_S3_A21_0, author = {J\'er\'emie Vidal and J\'er\^ome Noir and David C\'ebron and Fabian Burmann and R\'emy Monville and Vadim Giraud and Yoann Charles}, title = {Geophysical flows over topography, a playground for laboratory experiments}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.219}, language = {en}, note = {Online first}, }
TY - JOUR AU - Jérémie Vidal AU - Jérôme Noir AU - David Cébron AU - Fabian Burmann AU - Rémy Monville AU - Vadim Giraud AU - Yoann Charles TI - Geophysical flows over topography, a playground for laboratory experiments JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.219 LA - en ID - CRPHYS_2024__25_S3_A21_0 ER -
%0 Journal Article %A Jérémie Vidal %A Jérôme Noir %A David Cébron %A Fabian Burmann %A Rémy Monville %A Vadim Giraud %A Yoann Charles %T Geophysical flows over topography, a playground for laboratory experiments %J Comptes Rendus. Physique %D 2024 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.219 %G en %F CRPHYS_2024__25_S3_A21_0
Jérémie Vidal; Jérôme Noir; David Cébron; Fabian Burmann; Rémy Monville; Vadim Giraud; Yoann Charles. Geophysical flows over topography, a playground for laboratory experiments. Comptes Rendus. Physique, Online first (2024), pp. 1-52. doi : 10.5802/crphys.219.
[1] Sustaining Earth’s magnetic dynamo, Nat. Rev. Earth Environ., Volume 3 (2022) no. 4, pp. 255-269 | DOI
[2] et al. Lunar magnetism, Rev. Mineral. Geochem., Volume 89 (2023) no. 1, pp. 207-241 | DOI
[3] On the phenomena of precession and nutation, assuming the fluidity of the interior of the Earth, Philos. Trans. R. Soc. Lond. A, Volume 129 (1839), pp. 381-423 | DOI
[4] The theory of nutation and the variation of latitude, Mon. Not. R. Astron. Soc., Volume 117 (1957) no. 2, pp. 142-161 | DOI
[5] Large longitude libration of Mercury reveals a molten core, Science, Volume 316 (2007) no. 5825, pp. 710-714 | DOI
[6] The free librations of a dissipative Moon, Philos. Trans. R. Soc. A, Volume 303 (1981) no. 1477, pp. 327-338 | DOI
[7] The physical oceanography of ice-covered moons, Annu. Rev. Mar. Sci., Volume 16 (2024), pp. 25-53 | DOI
[8] The resonant tidal evolution of the Earth-Moon distance, Astron. Astrophys., Volume 665 (2022), L1 | DOI
[9] Dynamic regimes in planetary cores: – diagrams, C. R. Géosci., Volume 356 (2024) no. G1, pp. 1-30 | DOI
[10] A note on the spectra and decay of rotating homogeneous turbulence, Phys. Fluids, Volume 6 (1994) no. 10, pp. 3221-3223 | DOI
[11] Isotropization at small scales of rotating helically driven turbulence, J. Fluid Mech., Volume 699 (2012), pp. 263-279 | DOI
[12] Scale by scale anisotropy in freely decaying rotating turbulence, Phys. Fluids, Volume 26 (2014) no. 2, 025104 | DOI
[13] 8.05 - Thermal and compositional convection in the outer core, Treatise on Geophysics (G. Schubert, ed.), Elsevier, Oxford, 2015, pp. 115-159 | DOI
[14] Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core, Geophys. J. Int., Volume 158 (2004) no. 1, pp. 131-141 | DOI
[15] Geographic and seasonal distributions of Brunt-Väisälä frequency and Rossby radii in the North Pacific and North Atlantic, J. Phys. Oceanogr., Volume 14 (1984) no. 2, pp. 294-317 | DOI
[16] Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core, Nature, Volume 507 (2014) no. 7493, pp. 484-487 | DOI
[17] Dynamo-based limit to the extent of a stable layer atop Earth’s core, Geophys. J. Int., Volume 222 (2020) no. 2, pp. 1433-1448 | DOI
[18] Chemical stratification at the top of Earth’s core: constraints from observations of nutations, Earth Planet. Sci. Lett., Volume 296 (2010) no. 3-4, pp. 367-372 | DOI
[19] How much energy propagates vertically in the equatorial oceans?, J. Phys. Oceanogr., Volume 15 (1985) no. 7, pp. 997-1007 | DOI
[20] Descriptive Physical Oceanography: An Introduction, Academic Press, London, 2011
[21] Ultra-high-degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Mars and Moon, Surv. Geophys., Volume 36 (2015) no. 6, pp. 803-830 | DOI
[22] Toward consistent seismological models of the core–mantle boundary landscape, Mantle Convection and Surface Expressions, American Geophysical Union, Hoboken, 2021, pp. 229-255 (ISBN 9781119528609, Chapter 9) | DOI
[23] Power laws of topography and gravity spectra of the solar system bodies, J. Geophys. Res. Planets, Volume 123 (2018) no. 8, pp. 2038-2064 | DOI
[24] Analytical computation of total topographic torque at the core–mantle boundary and its impact on tidally driven length-of-day variations, Geophys. J. Int., Volume 234 (2023) no. 1, pp. 585-596 | DOI
[25] The analogy between rotating and stratified fluids, Annu. Rev. Fluid Mech., Volume 2 (1970) no. 1, pp. 37-66 | DOI
[26] The Theory of Rotating Fluids, Cambridge University Press, Cambridge, 1968
[27] A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid, J. Fluid Mech., Volume 28 (1967) no. 1, pp. 1-16 | DOI
[28] Mixing by oceanic Lee waves, Annu. Rev. Fluid Mech., Volume 53 (2021), pp. 173-201 | DOI
[29] Atmospheric Lee waves, Annu. Rev. Fluid Mech., Volume 28 (1996) no. 1, pp. 429-476 | DOI
[30] Internal tide dissipation at topography: triadic resonant instability equatorward and evanescent waves poleward of the critical latitude, J. Geophys. Res. Oceans, Volume 123 (2018) no. 9, pp. 6136-6155 | DOI
[31] Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results, Appl. Mech. Rev., Volume 67 (2015) no. 3, 030802 | DOI
[32] Turbulence of internal gravity waves in the laboratory, C. R. Phys., Volume 25 (2024) no. S3, pp. 1-20 | DOI
[33] Geophysical stratified turbulence and mixing in the laboratory, C. R. Phys., Volume 25 (2024) no. S3, pp. 1-30 | DOI
[34] Ellipsoidal Figures of Equilibrium, Dover Publications, New York, 1987
[35] The strength of gravitational core-mantle coupling, Geophys. Res. Lett., Volume 41 (2014) no. 11, pp. 3786-3792 | DOI
[36] Structure, materials and processes in the Earth’s core and mantle, Surv. Geophys., Volume 43 (2022) no. 1, pp. 263-302 | DOI
[37] On a small-scale roughness of the core–mantle boundary, Earth Planet. Sci. Lett., Volume 191 (2001) no. 1-2, pp. 49-60 | DOI
[38] Dissipation at the core-mantle boundary on a small-scale topography, J. Geophys. Res. Solid Earth, Volume 111 (2006) no. B4, pp. 1-10 | DOI
[39] Size and shape of Saturn’s moon Titan, Science, Volume 324 (2009) no. 5929, pp. 921-923 | DOI
[40] Gravity field, shape, and moment of inertia of Titan, Science, Volume 327 (2010) no. 5971, pp. 1367-1369 | DOI
[41] Shell thickness variations and the long-wavelength topography of Titan, Icarus, Volume 208 (2010) no. 2, pp. 896-904 | DOI
[42] ETOPO1, Global 1 arc-minute global relief model: procedures, data sources and analysis, 2009 (NOAA Tech. Memo. NESDIS NGDC-24, 19)
[43] Flows driven by libration, precession, and tides, Annu. Rev. Fluid Mech., Volume 47 (2015), pp. 163-193 | DOI
[44] Turbulent convective length scale in planetary cores, Nature, Volume 570 (2019) no. 7761, pp. 368-371 | DOI
[45] Comparison of quasi-geostrophic, hybrid and 3-D models of planetary core convection, Geophys. J. Int., Volume 231 (2022) no. 1, pp. 129-158 | DOI
[46] Turbulent geodynamo simulations: a leap towards Earth’s core, Geophys. J. Int., Volume 211 (2017) no. 1, pp. 1-29 | DOI
[47] Generation and maintenance of bulk turbulence by libration-driven elliptical instability, Phys. Fluids, Volume 27 (2015) no. 6, 066601 | DOI
[48] Tidally forced turbulence in planetary interiors, Geophys. J. Int., Volume 208 (2017) no. 3, pp. 1690-1703 | DOI
[49] Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton University Press, Princeton, 2017
[50] Friction law and turbulent properties in a laboratory Ekman boundary layer, Phys. Fluids, Volume 25 (2013) no. 4, 046602 | DOI
[51] Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence, J. Fluid Mech., Volume 879 (2019), pp. 296-326 | DOI
[52] Experimental evidence of inertial waves in a precessing spheroidal cavity, Geophys. Res. Lett., Volume 28 (2001) no. 19, pp. 3785-3788 | DOI
[53] Low-cost solutions for velocimetry in rotating and opaque fluid experiments using ultrasonic time of flight, Exp. Tech., Volume 46 (2022) no. 3, pp. 429-439 | DOI
[54] Rayleigh–Taylor instability in impact cratering experiments, J. Fluid Mech., Volume 937 (2022), A20 | DOI
[55] Visualization and measurement of internal waves by synthetic schlieren. Part 1. Vertically oscillating cylinder, J. Fluid Mech., Volume 390 (1999), pp. 93-126 | DOI
[56] Whole-field density measurements by synthetic schlieren, Exp. Fluids, Volume 28 (2000) no. 4, pp. 322-335 | DOI
[57] Precession of the Earth as the cause of geomagnetism: experiments lend support to the proposal that precessional torques drive the Earth’s dynamo, Science, Volume 160 (1968) no. 3825, pp. 259-264 | DOI
[58] Magnetic field induced by elliptical instability in a rotating spheroid, Geophys. Astrophys. Fluid Dyn., Volume 100 (2006) no. 4-5, pp. 299-317 | DOI
[59] On the effects of an imposed magnetic field on the elliptical instability in rotating spheroids, Phys. Fluids, Volume 21 (2009) no. 4, 046602 | DOI
[60] Fluid dynamics experiments for planetary interiors, Surv. Geophys., Volume 43 (2022) no. 1, pp. 229-261 | DOI
[61] Experimental study of the flows in a non-axisymmetric ellipsoid under precession, J. Fluid Mech., Volume 932 (2022), A24 | DOI
[62] Axisymmetric inertial oscillations of a fluid in a rotating spherical container, J. Fluid Mech., Volume 37 (1969) no. 2, pp. 307-323 | DOI
[63] The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration, J. Fluid Mech., Volume 720 (2013), pp. 212-235 | DOI
[64] Mean zonal flows induced by weak mechanical forcings in rotating spheroids, J. Fluid Mech., Volume 916 (2021), A39 | DOI
[65] Resonant and non-resonant flows in longitudinally and latitudinally librating spheres, Phys. Fluids, Volume 35 (2023) no. 7, 076612 | DOI
[66] Spontaneous generation of inertial waves from boundary turbulence in a librating sphere, J. Fluid Mech., Volume 728 (2013), R5 | DOI
[67] Experimental determination of zonal winds driven by tides, Phys. Rev. Lett., Volume 104 (2010) no. 21, 214501 | DOI
[68] Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession, Cambridge University Press, Cambridge, 2017 | DOI
[69] Triadic resonances driven by thermal convection in a rotating sphere, J. Fluid Mech., Volume 909 (2021), R3 | DOI
[70] Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity, J. Fluid Mech., Volume 662 (2010), pp. 260-268 | DOI
[71] The spectrum of the Poincaré operator in an ellipsoid, J. Spectr. Theory (2024), pp. 1-22 (to appear) arXiv:2305.01369 | DOI
[72] Inertial modes in a rotating triaxial ellipsoid, Proc. R. Soc. A, Volume 470 (2014) no. 2168, 20140093 | DOI
[73] Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid, Phys. Rev. E, Volume 95 (2017) no. 5, 053116 | DOI
[74] Latitudinal libration driven flows in triaxial ellipsoids, J. Fluid Mech., Volume 771 (2015), pp. 193-228 | DOI
[75] Flows driven by librations in latitude in triaxial ellipsoids, Phd thesis, ETH Zurich (2018)
[76] Steady fluid flow in a precessing spheroidal shell, J. Fluid Mech., Volume 33 (1968) no. 4, pp. 739-751 | DOI
[77] Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode, J. Fluid Mech., Volume 909 (2021), A17 | DOI
[78] Ecoulements d’un fluide dans une cavité en précession: approches numérique et expérimentale, PhD thesis, Université Joseph-Fourier Grenoble I (2000)
[79] Turbulence driven by precession in spherical and slightly elongated spheroidal cavities, Phys. Fluids, Volume 26 (2014) no. 5, 055107 | DOI
[80] Experimental study of global-scale turbulence in a librating ellipsoid, Phys. Fluids, Volume 26 (2014) no. 12, 126601 | DOI
[81] Steady flow in a rapidly rotating spheroid with weak precession: I, Fluid Dyn. Res., Volume 52 (2020) no. 1, 015513 | DOI
[82] On flows having constant vorticity, Phys. D, Volume 240 (2011) no. 20, pp. 1615-1628 | DOI
[83] Precession-driven flows in non-axisymmetric ellipsoids, J. Fluid Mech., Volume 737 (2013), pp. 412-439 | DOI
[84] Enumeration, orthogonality and completeness of the incompressible Coriolis modes in a tri-axial ellipsoid, Geophys. Astrophys. Fluid Dyn., Volume 111 (2017) no. 5, pp. 333-354 | DOI
[85] Precession-driven flows in stress-free ellipsoids, J. Fluid Mech., Volume 954 (2023), A5 | DOI
[86] Earth”s rotation: observations and relation to deep interior, Surv. Geophys., Volume 43 (2022) no. 1, pp. 149-175 | DOI
[87] Bistable flows in precessing spheroids, Fluid Dyn. Res., Volume 47 (2015) no. 2, 025504 | DOI
[88] Steady flow in a rapidly rotating sphere with weak precession, J. Fluid Mech., Volume 680 (2011), pp. 150-193 | DOI
[89] Viscous flow in a deformable rotating container, J. Fluid Mech., Volume 45 (1971) no. 1, pp. 189-201 | DOI
[90] Experimental study of libration-driven zonal flows in non-axisymmetric containers, Phys. Earth Planet. Int., Volume 204 (2012), pp. 1-10 | DOI
[91] Zonal wind driven by inertial modes, Phys. Rev. lett., Volume 99 (2007) no. 19, 194501 | DOI
[92] Reflection of oscillating internal shear layers: nonlinear corrections, J. Fluid Mech., Volume 899 (2020), A21 | DOI
[93] Libration-driven inertial waves and mean zonal flows in spherical shells, Geophys. Astrophys. Fluid Dyn., Volume 115 (2021) no. 3, pp. 258-279 | DOI
[94] Elliptical instability, Annu. Rev. Fluid Mech., Volume 34 (2002) no. 1, pp. 83-113 | DOI
[95] Tidal instability in stellar and planetary binary systems, Phys. Earth Planet. Int., Volume 178 (2010) no. 1-2, pp. 48-55 | DOI
[96] Elliptical instability in a rotating spheroid, J. Fluid Mech., Volume 505 (2004), pp. 1-22 | DOI
[97] The instability of precessing flow, Geophys. Astrophys. Fluid Dyn., Volume 72 (1993) no. 1-4, pp. 107-144 | DOI
[98] Precessing non-axisymmetric ellipsoids: bi-stability and fluid instabilities, J. Fluid Mech., Volume 997 (2024), A52 | DOI
[99] Shear-driven parametric instability in a precessing sphere, Phys. Fluids, Volume 27 (2015) no. 4, 046601 | DOI
[100] Precessing spherical shells: flows, dissipation, dynamo and the lunar core, Geophys. J. Int., Volume 219 (2019) no. Supplement 1, p. S34-S57 | DOI
[101] Experiments on precessing flows in the Earth’s liquid core, Geophys. J. Int., Volume 121 (1995) no. 1, pp. 136-142 | DOI
[102] Conical shear-driven parametric instability of steady flow in precessing spheroids, Phys. Rev. Fluids, Volume 5 (2020) no. 6, 063901 | DOI
[103] Tide-driven shear instability in planetary liquid cores, Geophys. Res. Lett., Volume 41 (2014) no. 17, pp. 6078-6083 | DOI
[104] Fluid instabilities in precessing spheroidal cavities, J. Fluid Mech., Volume 447 (2001), pp. 111-128 | DOI
[105] An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans, Phys. Earth Planet. Int., Volume 173 (2009) no. 1-2, pp. 141-152 | DOI
[106] Secondary instabilities in rapidly rotating fluids: inertial wave breakdown, J. Fluid Mech., Volume 382 (1999), pp. 283-306 | DOI
[107] Inertial wave turbulence driven by elliptical instability, Phys. Rev. Lett., Volume 119 (2017) no. 3, 034502 | DOI
[108] Sustaining mechanism of small-scale turbulent eddies in a precessing sphere, Phys. Rev. Fluids, Volume 2 (2017) no. 11, 114603 | DOI
[109] Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid, Phys. Rev. Fluids, Volume 3 (2018) no. 4, 044603 | DOI
[110] Geoinspired soft mixers, J. Fluid Mech., Volume 903 (2020), A15 | DOI
[111] et al. Precessing cylinder as high-shear-rate mixer: application to emulsification, Phys. Fluids, Volume 35 (2023) no. 3, 035139 | DOI
[112] Experimental observation of steady inertial wave turbulence in deep rotating flows, Nat. Phys., Volume 10 (2014) no. 7, pp. 510-514 | DOI
[113] Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment, Phys. Rev. E, Volume 91 (2015) no. 4, 043016 | DOI
[114] Experimental quantification of nonlinear time scales in inertial wave rotating turbulence, Phys. Rev. Fluids, Volume 2 (2017) no. 12, 122601 | DOI
[115] Measurements of inertial wave packets propagating within steady rotating turbulence, Europhys. Lett., Volume 125 (2019) no. 2, 24003 | DOI
[116] Quantitative experimental observation of weak inertial-wave turbulence, Phys. Rev. Lett., Volume 125 (2020) no. 25, 254502 | DOI
[117] Turbulence and columnar vortex formation through inertial-wave focusing, Phys. Rev. E, Volume 87 (2013) no. 4, 041001 | DOI
[118] Direct and inverse energy cascades in a forced rotating turbulence experiment, Phys. Fluids, Volume 26 (2014) no. 12, 125112 | DOI
[119] Direct measurement of energy transfer in strongly driven rotating turbulence, Phys. Rev. Lett., Volume 132 (2024) no. 22, 224001 | DOI
[120] A phenomenological treatment of rotating turbulence, Phys. Fluids, Volume 7 (1995) no. 8, pp. 2092-2094 | DOI
[121] Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture, J. Fluid Mech., Volume 677 (2011), pp. 134-153 | DOI
[122] A phenomenological theory of rotating turbulence, Phys. Fluids, Volume 27 (2015) no. 2, 025107 | DOI
[123] Weak inertial-wave turbulence theory, Phys. Rev. E, Volume 68 (2003) no. 1, 015301 | DOI
[124] Advances in wave turbulence: rapidly rotating flows, New J. Phys., Volume 6 (2004) no. 1, 73 | DOI
[125] Wave turbulence in rapidly rotating flows, J. Fluid Mech., Volume 562 (2006), pp. 83-121 | DOI
[126] Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence, Phys. Fluids, Volume 11 (1999) no. 6, pp. 1608-1622 | DOI
[127] Structure and decay of rotating homogeneous turbulence, J. Fluid Mech., Volume 637 (2009), pp. 425-442 | DOI
[128] A multiple time scale approach for anisotropic inertial wave turbulence, J. Fluid Mech., Volume 974 (2023), A24 | DOI
[129] Physics of Wave Turbulence, Cambridge University Press, Cambridge, 2022 | DOI
[130] Complete Hamiltonian formalism for inertial waves in rotating fluids, J. Fluid Mech., Volume 831 (2017), pp. 128-150 | DOI
[131] The spatio-temporal spectrum of turbulent flows, Eur. Phys. J. E, Volume 38 (2015), pp. 1-10 | DOI
[132] Evidence of the Zakharov–Kolmogorov spectrum in numerical simulations of inertial wave turbulence, Europhys. Lett., Volume 132 (2020) no. 6, 64002 | DOI
[133] Energy-flux vector in anisotropic turbulence: application to rotating turbulence, J. Fluid Mech., Volume 908 (2021), A17 | DOI
[134] Anomalous self-similarity in a turbulent rapidly rotating fluid, Phys. Rev. Lett., Volume 88 (2002) no. 11, 114501 | DOI
[135] Inertial waves in rotating grid turbulence, Phys. Fluids, Volume 19 (2007) no. 7, 071701 | DOI
[136] Excitation of inertial modes in a closed grid turbulence experiment under rotation, Phys. Fluids, Volume 23 (2011) no. 1, 015102 | DOI
[137] Inertial waves and modes excited by the libration of a rotating cube, Phys. Fluids, Volume 24 (2012) no. 7, 076602 | DOI
[138] Discreteness and resolution effects in rapidly rotating turbulence, Phys. Rev. E, Volume 78 (2008) no. 5, 056309 | DOI
[139] Wave turbulence in a rotating channel, J. Fluid Mech., Volume 741 (2014), pp. 316-349 | DOI
[140] On the non-linear interaction of inertial modes, J. Fluid Mech., Volume 36 (1969) no. 2, pp. 257-264 | DOI
[141] On the evolution of eddies in a rapidly rotating system, J. Fluid Mech., Volume 557 (2006), pp. 135-144 | DOI
[142] Structure formation in homogeneous freely decaying rotating turbulence, J. Fluid Mech., Volume 598 (2008), pp. 81-105 | DOI
[143] Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows, J. Fluid Mech., Volume 783 (2015), pp. 412-447 | DOI
[144] Resonant interactions between waves. The case of discrete oscillations, J. Fluid Mech., Volume 20 (1964) no. 3, pp. 457-479 | DOI
[145] On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number, J. Fluid Mech., Volume 535 (2005), pp. 111-142 | DOI
[146] Quantifying resonant and near-resonant interactions in rotating turbulence, J. Fluid Mech., Volume 809 (2016), pp. 821-842 | DOI
[147] Near-resonant instability of geostrophic modes: beyond Greenspan’s theorem, J. Fluid Mech., Volume 900 (2020), R2 | DOI
[148] Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability, Phys. Rev. Lett., Volume 124 (2020) no. 12, 124501 | DOI
[149] Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers, Phys. Fluids, Volume 21 (2009) no. 1, 015108 | DOI
[150] Non-local energy transfers in rotating turbulence at intermediate Rossby number, J. Fluid Mech., Volume 690 (2012), pp. 129-147 | DOI
[151] Energy transfer in turbulence under rotation, Phys. Rev. Fluids, Volume 3 (2018) no. 3, 034802 | DOI
[152] Supply mechanisms of the geostrophic mode in rotating turbulence: interactions with self, waves and eddies, J. Fluid Mech., Volume 971 (2023), A10
[153] Critical transition in fast-rotating turbulence within highly elongated domains, J. Fluid Mech., Volume 899 (2020), A33 | DOI
[154] Libration-driven flows in ellipsoidal shells, J. Geophys. Res. Planets, Volume 122 (2017) no. 9, pp. 1926-1950 | DOI
[155] Can libration maintain Enceladus’s ocean?, Earth Planet. Sci. Lett., Volume 500 (2018), pp. 41-46 | DOI
[156] Turbulent kinematic dynamos in ellipsoids driven by mechanical forcing, Geophys. Res. Lett., Volume 45 (2018) no. 4, pp. 1741-1750 | DOI
[157] Magnetic fields driven by tidal mixing in radiative stars, Mon. Not. R. Astron. Soc., Volume 475 (2018) no. 4, pp. 4579-4594 | DOI
[158] Scaling laws for planetary dynamos, Geophys. J. Int., Volume 195 (2013) no. 1, pp. 67-74 | DOI
[159] Non-linear evolution of the tidal elliptical instability in gaseous planets and stars, Mon. Not. R. Astron. Soc., Volume 435 (2013) no. 4, pp. 3614-3626 | DOI
[160] Fossil field decay due to nonlinear tides in massive binaries, Astron. Astrophys., Volume 629 (2019), A142 | DOI
[161] On turbulence driven by axial precession and tidal evolution of the spin–orbit angle of close-in giant planets, Mon. Not. R. Astron. Soc., Volume 460 (2016) no. 3, pp. 2339-2350 | DOI
[162] Elliptical instability of the flow in a rotating shell, Phys. Earth Planet. Int., Volume 151 (2005) no. 3-4, pp. 194-205 | DOI
[163] Wave attractors in rotating fluids: a paradigm for ill-posed Cauchy problems, Phys. Rev. Lett., Volume 85 (2000) no. 20, pp. 4277-4280 | DOI
[164] Properties and pathways of Mediterranean water eddies in the Atlantic, Prog. Oceanogr., Volume 137 (2015), pp. 149-172 | DOI
[165] Jupiter’s Great Red Spot and other vortices, Annu. Rev. Astron. Astrophys., Volume 31 (1993) no. 1, pp. 523-569 | DOI
[166] Diffusive instabilities of baroclinic lenticular vortices, Phys. Fluids, Volume 33 (2021) no. 10, 104108 | DOI
[167] Inertia-gravity waves in geophysical vortices, Proc. R. Soc. A, Volume 480 (2024) no. 2285, 20230789 | DOI
[168] Numerical study of the McIntyre instability around Gaussian floating vortices in thermal wind balance, Phys. Rev. Fluids, Volume 6 (2021) no. 9, 093801 | DOI
[169] The universal aspect ratio of vortices in rotating stratified flows: experiments and observations, J. Fluid Mech., Volume 706 (2012), pp. 34-45 | DOI
[170] A laboratory study of floating lenticular anticyclones, Eur. J. Mech. B Fluids, Volume 61 (2017), pp. 1-8 | DOI
[171] Remote determination of the shape of Jupiter’s vortices from laboratory experiments, Nat. Phys., Volume 16 (2020) no. 6, pp. 695-700 | DOI
[172] Acoustic spectra of a gas-filled rotating spheroid, Eur. J. Mech. B Fluids, Volume 84 (2020), pp. 302-310 | DOI
[173] Experiments on the motion of solid bodies in rotating fluids, Proc. R. Soc. Lond. A, Volume 104 (1923) no. 725, pp. 213-218 | DOI
[174] An experimental study of Taylor columns, Icarus, Volume 5 (1966) no. 1-6, pp. 279-290 | DOI
[175] On slow transverse flow past obstacles in a rapidly rotating fluid, J. Fluid Mech., Volume 32 (1968) no. 2, pp. 251-272 | DOI
[176] Rotating flow past disks and cylindrical depressions, J. Fluid Mech., Volume 141 (1984), pp. 67-95 | DOI
[177] Observations of inertial waves in a homogeneous rotating fluid, J. Fluid Mech., Volume 125 (1982), pp. 319-345 | DOI
[178] The effects of obstacle shape and viscosity in deep rotating flow over finite-height topography, J. Fluid Mech., Volume 120 (1982), pp. 359-383 | DOI
[179] Wake of inertial waves of a horizontal cylinder in horizontal translation, Phys. Rev. Fluids, Volume 3 (2018) no. 3, 034801 | DOI
[180] Transitions between blocked and zonal flows in a rotating annulus with topography, Science, Volume 278 (1997) no. 5343, pp. 1598-1601 | DOI
[181] Effects of bottom topography on the spin-up in a cylinder, Phys. Fluids, Volume 30 (2018) no. 10, 106601 | DOI
[182] A generalized theory of flow forcing by rough topography, J. Fluid Mech., Volume 961 (2023), A24 | DOI
[183] The sandpaper theory of flow–topography interaction for homogeneous shallow-water systems, J. Fluid Mech., Volume 977 (2023), A9 | DOI
[184] Understanding the effects of the core on the nutation of the Earth, Geod. Geodyn., Volume 8 (2017) no. 6, pp. 389-395 | DOI
[185] Similarity statistics from a direct numerical simulation of the neutrally stratified planetary boundary layer, J. Atmos. Sci., Volume 56 (1999) no. 6, pp. 891-900 | DOI
[186] On the instability of Ekman boundary flow, J. Atmos. Sci.., Volume 23 (1966) no. 5, pp. 481-494 | DOI
[187] Characteristics of Ekman boundary layer instabilities, J. Fluid Mech., Volume 44 (1970) no. 1, pp. 79-95 | DOI
[188] Experimental study of the Ekman layer instability in steady or oscillating flows, Cont. Shelf Res., Volume 19 (1999) no. 15-16, pp. 1851-1867 | DOI
[189] Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part I. Overview, Bound.-Layer Meteorol., Volume 104 (2002), pp. 333-358 | DOI
[190] Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part II. Modelling observed conditions, Bound.-Layer Meteorol., Volume 104 (2002) no. 3, pp. 359-369 | DOI
[191] On the “resistance law” of a turbulent Ekman layer, J. Atmos. Sci., Volume 24 (1967) no. 5, pp. 467-471 | DOI
[192] Asymptotic similarity in neutral barotropic planetary boundary layers, J. Atmos. Sci., Volume 25 (1968) no. 6, pp. 1015-1020 | DOI
[193] Theoretical and numerical study of a three-dimensional turbulent boundary layer, J. Fluid Mech., Volume 205 (1989), pp. 319-340 | DOI
[194] Turbulent Flows, Cambridge University Press, New York, 2000
[195] Global intermittency and collapsing turbulence in the stratified planetary boundary layer, Bound.-Layer Meteorol., Volume 153 (2014) no. 1, pp. 89-116 | DOI
[196] A critical discussion of turbulent flows in channels and circular tubes, Proceedings of the Fifth International Congress for Applied Mechanics, Cambridge, 1938, pp. 386-392
[197] Retraction: “Direct numerical simulation of the Ekman layer: A step in Reynolds number, and cautious support for a log law with a shifted origin” [Phys. Fluids 20, 101507 (2008)], Phys. Fluids, Volume 21 (2009) no. 10, 109901 | DOI
[198] Direct numerical simulation of the Ekman layer: a step in Reynolds number, and cautious support for a log law with a shifted origin, Phys. Fluids, Volume 20 (2008) no. 10, 101507 | DOI
[199] Is there a universal log law for turbulent wall-bounded flows?, Philos. Trans. R. Soc. Lond. A, Volume 365 (2007) no. 1852, pp. 789-806 | DOI
[200] A laboratory study of the turbulent Ekman layer, Geophys. Astrophys. Fluid Dyn., Volume 3 (1972) no. 2, pp. 125-160 | DOI
[201] A study of turbulence structure and large-scale motion in the Ekman layer through direct numerical simulations, J. Turbul., Volume 5 (2004) no. 1, 013 | DOI
[202] The characteristics of a laboratory produced turbulent Ekman layer, Bound.-Layer Meteorol., Volume 8 (1975), pp. 201-219 | DOI
[203] Rough-wall turbulent boundary layers, Appl. Mech. Rev., Volume 44 (1991) no. 1, pp. 1-25 | DOI
[204] A review on turbulent flow over rough surfaces: fundamentals and theories, Int. J. Thermofluids, Volume 10 (2021), 100077 | DOI
[205] A turbulence closure study of the flow and thermal fields in the Ekman layer, Bound.-Layer Meteorol., Volume 175 (2020), pp. 25-55 | DOI
[206] Turbulent dissipation in the boundary layer of precession-driven flow in a sphere, AIP Adv., Volume 13 (2023) no. 7, 075025 | DOI
[207] A numerical study of the unstratified and stratified Ekman layer, J. Fluid Mech., Volume 755 (2014), pp. 672-704 | DOI
[208] A numerical study of the turbulent Ekman layer, J. Fluid Mech., Volume 213 (1990), pp. 313-348 | DOI
[209] Venus’ free obliquity, Icarus, Volume 117 (1995) no. 2, pp. 250-286 | DOI
[210] Lunar rotational dissipation in solid body and molten core, J. Geophys. Res. Planets, Volume 106 (2001) no. E11, pp. 27933-27968 | DOI
[211] A laboratory study of the turbulent Ekman layer, PhD thesis, University of Colorado, Boulder (1973)
[212] et al. Physical simulations of neutral boundary layer in rotating tank, Il Nuovo Cimento, Volume 28 (2005), pp. 1-17
[213] A Tsai’s model based S-PIV method for velocity measurements in a turbulent Ekman layer, Flow Meas. Instrum., Volume 26 (2012), pp. 102-110 | DOI
[214] Die Windverteilung über dem Erdboden, errechnet aus den Gesetzen der Rohrströmung, Z. Geophys., Volume 1 (1924), pp. 47-55
[215] On the momentum exchange between the atmosphere and earth over the northern hemisphere, Mon. Weather Rev., Volume 96 (1968) no. 6, pp. 337-341 | DOI
[216] A new approach to oscillatory rough turbulent boundary layers, Ocean Eng., Volume 7 (1980) no. 1, pp. 109-152 | DOI
[217] Turbulent oscillatory flow over rough beds, J. Fluid Mech., Volume 182 (1987), pp. 369-409 | DOI
[218] Boundary layer transition over a concave surface caused by centrifugal instabilities, Comput. Fluids, Volume 171 (2018), pp. 135-153 | DOI
[219] Conditions for turbulent Ekman layers in precessionally driven flow, Geophys. J. Int., Volume 226 (2021) no. 1, pp. 56-65 | DOI
[220] The differential precession of Earth’s fluid and solid cores, Phys. Earth Planet. Int., Volume 339 (2023), 107022 | DOI
[221] Stratification effects in a bottom Ekman layer, J. Phys. Oceanogr., Volume 38 (2008) no. 11, pp. 2535-2555 | DOI
[222] Law of the wall for turbulent flows in pressure gradients, AIAA J., Volume 33 (1995) no. 4, pp. 624-632 | DOI
[223] The law of the wall in turbulent flow, Proc. R. Soc. Lond. A, Volume 451 (1995) no. 1941, pp. 165-188 | DOI
[224] The role of double-diffusive convection in basal melting of Antarctic ice shelves, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 6, e2007541118 | DOI
[225] Stably stratified atmospheric boundary layers, Annu. Rev. Fluid Mech., Volume 46 (2014), pp. 23-45 | DOI
[226] The atmospheric boundary layer, Annu. Rev. Fluid Mech., Volume 2 (1970) no. 1, pp. 225-250 | DOI
[227] Turbulence in an atmosphere with a non-uniform temperature, Bound.-Layer Meteorol., Volume 2 (1971) no. 1, pp. 7-29 | DOI
[228] A modified law-of-the-wall applied to oceanic bottom boundary layers, J. Geophys. Res. Oceans, Volume 110 (2005) no. C10, pp. 1-9 | DOI
[229] Internal gravity waves generated by a turbulent bottom Ekman layer, J. Fluid Mech., Volume 590 (2007), pp. 331-354 | DOI
[230] The deepening of a mixed layer in a stratified fluid, J. Fluid Mech., Volume 71 (1975) no. 2, pp. 385-405 | DOI
[231] On mixing across an interface in a stably stratified fluid, J. Fluid Mech., Volume 166 (1986), pp. 227-244 | DOI
[232] Internal wave energy radiated from a turbulent mixed layer, Phys. Fluids, Volume 26 (2014) no. 9, 096604 | DOI
[233] Seismic sounding of convection in the Sun, Annu. Rev. Fluid Mech., Volume 48 (2016), pp. 191-217 | DOI
[234] Latitudinal regionalization of rotating spherical shell convection, J. Fluid Mech., Volume 954 (2023), R1 | DOI
[235] N u R a scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence, J. Fluid Mech., Volume 869 (2019), R4 | DOI
[236] On the Boussinesq approximation for a compressible fluid, Astrophys. J., Volume 131 (1960), pp. 442-447 | DOI
[237] The validity of the Boussinesq approximation for liquids and gases, Int. J. Heat Mass Transf., Volume 19 (1976) no. 5, pp. 545-551 | DOI
[238] Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection, Phys. Rev. Fluids, Volume 5 (2020) no. 11, 113501 | DOI
[239] The ultimate state of convection: a unifying picture of very high Rayleigh numbers experiments, New J. Phys., Volume 22 (2020) no. 7, 073056
[240] 9.04 - Magma oceans and primordial mantle differentiation, Treatise on Geophysics (G. Schubert, ed.), Elsevier, Oxford, 2015, pp. 81-104 | DOI
[241] Internal dynamics of magma ocean and its linkage to atmospheres, Acta Geochim., Volume 41 (2022) no. 4, pp. 568-591 | DOI
[242] Colloquium: Unusual dynamics of convection in the Sun, Rev. Mod. Phys., Volume 92 (2020) no. 4, 041001 | DOI
[243] Turbulent rotating Rayleigh–Bénard convection, Annu. Rev. Fluid Mech., Volume 55 (2023), pp. 603-638 | DOI
[244] Ultimate Rayleigh–Bénard turbulence, Rev. Mod. Phys., Volume 96 (2024) no. 3, 035001 | DOI
[245] 8.13 - Experiments on core dynamics, Treatise on Geophysics (G. Schubert, ed.), Elsevier, Oxford, 2015, pp. 317-339 | DOI
[246] Seven decades of exploring planetary interiors with rotating convection experiments, C. R. Phys., Volume 25 (2024) no. S3, pp. 1-48
[247] The heat transport and spectrum of thermal turbulence, Proc. R. Soc. Lond. A, Volume 225 (1954) no. 1161, pp. 196-212 | DOI
[248] A generalization of the mixing-length theory of turbulent convection, Astrophys. J., Volume 138 (1963), pp. 216-225 | DOI
[249] Turbulent thermal convection at arbitrary Prandtl number, Phys. Fluids, Volume 5 (1962) no. 11, pp. 1374-1389 | DOI
[250] Transitional boundary layers in low-Prandtl-number convection, Phys. Rev. Fluids, Volume 1 (2016) no. 8, 084402 | DOI
[251] Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 109 (2012) no. 11, 114501 | DOI
[252] Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8, J. Fluid Mech., Volume 758 (2014), pp. 436-467 | DOI
[253] Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 115 (2015) no. 15, 154501 | DOI
[254] Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 120 (2018) no. 14, 144502 | DOI
[255] Turbulent boundary layers in thermal convection at moderately high Rayleigh numbers, Phys. Fluids, Volume 36 (2024) no. 2, 025140 | DOI
[256] Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows, Phys. Rev. Fluids, Volume 2 (2017) no. 12, 123501 | DOI
[257] The effect of Prandtl number on turbulent sheared thermal convection, J. Fluid Mech., Volume 910 (2021), A37 | DOI
[258] Boundary layer structure in a rough Rayleigh–Bénard cell filled with air, J. Fluid Mech., Volume 786 (2016), pp. 275-293 | DOI
[259] Velocity fluctuations and boundary layer structure in a rough Rayleigh–Bénard cell filled with water, Phys. Rev. Fluids, Volume 2 (2017) no. 4, 044605 | DOI
[260] Roughness as a route to the ultimate regime of thermal convection, Phys. Rev. Lett., Volume 118 (2017) no. 7, 074503 | DOI
[261] Turbulent convection over rough surfaces, Phys. Rev. Lett., Volume 76 (1996) no. 6, p. 908 | DOI
[262] Enhanced heat transport in turbulent convection over a rough surface, Phys. Rev. Lett., Volume 81 (1998) no. 5, pp. 987-990 | DOI
[263] Random roughness of boundary increases the turbulent convection scaling exponent, Phys. Rev. Lett., Volume 82 (1999) no. 20, pp. 3998-4001 | DOI
[264] Turbulent thermal convection in a cell with ordered rough boundaries, J. Fluid Mech., Volume 407 (2000), pp. 57-84 | DOI
[265] Comparison between rough and smooth plates within the same Rayleigh–Bénard cell, Phys. Fluids, Volume 23 (2011) no. 1, 015105 | DOI
[266] Thermal boundary layer near roughnesses in turbulent Rayleigh–Bénard convection: flow structure and multistability, Phys. Fluids, Volume 26 (2014) no. 1, 015112 | DOI
[267] Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection, J. Fluid Mech., Volume 740 (2014), pp. 28-46 | DOI
[268] Turbulent thermal convection over rough plates with varying roughness geometries, J. Fluid Mech., Volume 825 (2017), pp. 573-599 | DOI
[269] Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries, J. Fluid Mech., Volume 837 (2018), pp. 443-460 | DOI
[270] Thermal boundary layers in turbulent Rayleigh–Bénard convection with rough and smooth plates: A one-to-one comparison, Phys. Rev. Fluids, Volume 9 (2024) no. 2, 023501 | DOI
[271] Observation of the 1/2 power law in Rayleigh–Bénard convection, Phys. Rev. E, Volume 63 (2001) no. 4, 045303 | DOI
[272] Wall roughness induces asymptotic ultimate turbulence, Nat. Phys., Volume 14 (2018) no. 4, pp. 417-423 | DOI
[273] Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection, Phys. Rev. Lett., Volume 119 (2017) no. 15, 154501 | DOI
[274] Robust wall states in rapidly rotating Rayleigh–Bénard convection, J. Fluid Mech., Volume 895 (2020), R1 | DOI
[275] Heat transfer in rotating Rayleigh–Bénard convection with rough plates, J. Fluid Mech., Volume 830 (2017), R3 | DOI
[276] Regimes in rotating Rayleigh–Bénard convection over rough boundaries, J. Fluid Mech., Volume 982 (2024), A15 | DOI
[277] et al. Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 124 (2020) no. 8, 084505 | DOI
[278] Robust wall modes and their interplay with bulk turbulence in confined rotating Rayleigh–Bénard convection, Phys. Rev. Fluids, Volume 8 (2023) no. 7, 073501
[279] Non-Hermitian Chern number in rotating Rayleigh–Bénard convection, J. Fluid Mech., Volume 999 (2024), A65 | DOI
[280] Suppression of wall modes in rapidly rotating Rayleigh–Bénard convection by narrow horizontal fins, Phys. Rev. Lett., Volume 130 (2023) no. 17, 174002 | DOI
[281] The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils, Appl. Therm. Eng., Volume 35 (2012), pp. 196-201 | DOI
[282] Elusive transition to the ultimate regime of turbulent Rayleigh–Bénard convection, Phys. Rev. E, Volume 99 (2019) no. 1, 011101 | DOI
[283] et al. Experimental study of convection in the compressible regime, Phys. Rev. Fluids, Volume 4 (2019) no. 3, 033502 | DOI
[284] Compressible convection in super-Earths, Phys. Earth Planet. Int., Volume 341 (2023), 107062 | DOI
[285] Variational bounds on energy dissipation in incompressible flows. III. Convection, Phys. Rev. E, Volume 53 (1996) no. 6, pp. 5957-5981 | DOI
[286] Upper bound of heat flux in an anelastic model for Rayleigh–Bénard convection, J. Fluid Mech., Volume 999 (2024), A94 | DOI
[287] The influence of surface topography on rotating convection, J. Fluid Mech., Volume 313 (1996), pp. 147-180 | DOI
[288] Stationary and time dependent convection in the rotating cylindrical annulus with modulated height, Phys. Fluids, Volume 10 (1998) no. 7, pp. 1611-1620 | DOI
[289] Localised rotating convection induced by topography, Phys. D, Volume 97 (1996) no. 1-3, pp. 29-44 | DOI
[290] Centrifugally driven convection in the rotating cylindrical annulus with modulated boundaries, Nonlinear Process. Geophys., Volume 10 (2003) no. 3, pp. 275-280 | DOI
[291] The effects of boundary topography on convection in Earth’s core, Geophys. J. Int., Volume 189 (2012) no. 2, pp. 799-814 | DOI
[292] Topographic Effects in Stratified Flows, Cambridge University Press, Cambridge, 2022
[293] Laboratory studies of orographic effects in rotating and stratified flows, Annu. Rev. Fluid Mech., Volume 32 (2000) no. 1, pp. 165-202 | DOI
[294] On stratified flow over a topographic ridge in a rotating annulus, Geophys. Astrophys. Fluid Dyn., Volume 118 (2024) no. 1, pp. 25-70 | DOI
[295] Density stratified environments: the double-tank method, Exp. Fluids, Volume 46 (2009), pp. 453-466 | DOI
[296] The effect of rotation on conical wave beams in a stratified fluid, Exp. Fluids, Volume 39 (2005), pp. 32-37 | DOI
[297] Evanescent inertial waves, J. Fluid Mech., Volume 918 (2021), R2 | DOI
[298] Internal waves in a contained rotating stratified fluid, J. Fluid Mech., Volume 114 (1982), pp. 123-156 | DOI
[299] On gravito-inertial surface waves, preprint, 2024 (p. 1–14) | arXiv
[300] Internal waves in a rotating stratified fluid in an arbitrary gravitational field, Geophys. Astrophys. Fluid Dyn., Volume 19 (1982) no. 3-4, pp. 267-291 | DOI
[301] Gravito-inertial waves in a rotating stratified sphere or spherical shell, J. Fluid Mech., Volume 398 (1999), pp. 271-297 | DOI
[302] Bi-stability in turbulent, rotating spherical Couette flow, Phys. Fluids, Volume 23 (2011) no. 6, 065104 | DOI
[303] A turbulent, high magnetic Reynolds number experimental model of Earth’s core, J. Geophys. Res. Solid Earth, Volume 119 (2014) no. 6, pp. 4538-4557 | DOI
[304] The DRESDYN project: liquid metal experiments on dynamo action and magnetorotational instability, Geophys. Astrophys. Fluid Dyn., Volume 113 (2019) no. 1–2, pp. 51-70 | DOI
[305] Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance, J. Fluid Mech., Volume 910 (2021), A18 | DOI
[306] Earth rotation prevents exact solid-body rotation of fluids in the laboratory, Europhys. Lett., Volume 98 (2012) no. 5, 59002 | DOI
[307] Precessional states in a laboratory model of the Earth’s core, J. Geophys. Res. Solid Earth, Volume 117 (2012), B04103 | DOI
[308] et al. A numerical dynamo benchmark, Phys. Earth Planet. Int., Volume 128 (2001) no. 1-4, pp. 25-34 | DOI
[309] et al. Full sphere hydrodynamic and dynamo benchmarks, Geophys. J. Int., Volume 197 (2014) no. 1, pp. 119-134 | DOI
Cited by Sources:
Comments - Policy