Comptes Rendus
Review article
Geophysical flows over topography, a playground for laboratory experiments
Comptes Rendus. Physique, Online first (2024), pp. 1-52.

Physicists face major challenges in modelling multi-scale phenomena that are observed in geophysical flows (e.g. in the Earth’s oceans and atmosphere, or liquid planetary cores). In particular, complexities arise because geophysical fluids are rotating and subject to density variations, but also because the fluid boundaries have complex geometries (e.g. the ocean floor) with wavelengths ranging from metres to thousands of kilometres. Dynamical models of planetary fluid layers are thus often constrained by observations, whose interpretation necessitates a comprehensive understanding of the underlying physics. To this end, geophysical studies often combine cutting-edge experiments across a wide range of parameters, together with theory and numerical simulations, to derive predictive scaling laws applicable for planetary settings. In this review, we discuss experimental efforts that have contributed to our understanding of geophysical flows with topography. More specifically, we focus on (i) the flow response to mechanical (orbital) forcings in the presence of a large-scale (ellipsoidal) topography, (ii) some effects of small-scale topography onto bulk flows and boundary-layer dynamics, and (iii) the interaction between convection and roughness. The geophysical context is briefly introduced for each case, and some experimental perspectives are drawn.

Les écoulements géophysiques, par exemple dans les océans ou les noyaux planétaires liquides, présentent souvent une turbulence caractérisée par une multitude d’échelles de temps et d’espace. Celles-ci résultent notamment des effets de rotation globale et de stratification en densité, mais aussi des effets de paroi qui sont souvent irréguliers (e.g. la bathymétrie du plancher océanique). Ainsi, peu d’études ont considéré la modélisation des écoulements géophysiques avec rotation, stratification en densité et effets topographiques. En pratique, la meilleure approche consiste souvent à combiner des expériences de laboratoire sur une large gamme de paramètres, ainsi que des travaux théoriques et/ou numériques, pour ensuite extrapoler les résultats aux conditions géophysiques. Dans cet article de revue, nous discutons les travaux principalement expérimentaux qui ont permis de mieux comprendre la dynamique des écoulements géophysiques avec des effets topographiques de paroi. Premièrement, nous détaillons les écoulements engendrés par les forçages orbitaux (e.g. la marée ou la précession) pour un fluide contenu dans un ellipsoïde. Ensuite, nous illustrons les effets d’une topographie de petite échelle sur certains écoulements en volume et de couche limite. Enfin, nous discutons l’influence d’une paroi non lisse sur les écoulements engendrés par la convection.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crphys.219
Keywords: Topography, Rotation, Stratification, Geophysical flows, Planetary cores, Subsurface oceans
Mots-clés : Topographie, Rotation, Stratification, Écoulements géophysiques, Noyaux planétaires, Océans de subsurface

Jérémie Vidal 1; Jérôme Noir 2; David Cébron 1; Fabian Burmann 2; Rémy Monville 1; Vadim Giraud 2; Yoann Charles 2, 3

1 Université Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
2 Institut für Geophysik, ETH Zürich, Sonneggstrasse 5, Zürich 8092, Switzerland
3 Development of Advanced Engineering Solutions (DAES), Avenue des Grandes-Communes 8, Petit-Lancy 1213, Switzerland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_S3_A21_0,
     author = {J\'er\'emie Vidal and J\'er\^ome Noir and David C\'ebron and Fabian Burmann and R\'emy Monville and Vadim Giraud and Yoann Charles},
     title = {Geophysical flows over topography, a playground for laboratory experiments},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.219},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Jérémie Vidal
AU  - Jérôme Noir
AU  - David Cébron
AU  - Fabian Burmann
AU  - Rémy Monville
AU  - Vadim Giraud
AU  - Yoann Charles
TI  - Geophysical flows over topography, a playground for laboratory experiments
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.219
LA  - en
ID  - CRPHYS_2024__25_S3_A21_0
ER  - 
%0 Journal Article
%A Jérémie Vidal
%A Jérôme Noir
%A David Cébron
%A Fabian Burmann
%A Rémy Monville
%A Vadim Giraud
%A Yoann Charles
%T Geophysical flows over topography, a playground for laboratory experiments
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.219
%G en
%F CRPHYS_2024__25_S3_A21_0
Jérémie Vidal; Jérôme Noir; David Cébron; Fabian Burmann; Rémy Monville; Vadim Giraud; Yoann Charles. Geophysical flows over topography, a playground for laboratory experiments. Comptes Rendus. Physique, Online first (2024), pp. 1-52. doi : 10.5802/crphys.219.

[1] M. Landeau; A. Fournier; H.-C. Nataf; D. Cébron; N. Schaeffer Sustaining Earth’s magnetic dynamo, Nat. Rev. Earth Environ., Volume 3 (2022) no. 4, pp. 255-269 | DOI

[2] M. A. Wieczorek; B. P. Weiss; D. Breuer et al. Lunar magnetism, Rev. Mineral. Geochem., Volume 89 (2023) no. 1, pp. 207-241 | DOI

[3] W. Hopkins On the phenomena of precession and nutation, assuming the fluidity of the interior of the Earth, Philos. Trans. R. Soc. Lond. A, Volume 129 (1839), pp. 381-423 | DOI

[4] H. Jeffreys; R. O. Vicente The theory of nutation and the variation of latitude, Mon. Not. R. Astron. Soc., Volume 117 (1957) no. 2, pp. 142-161 | DOI

[5] J.-L. Margot; S. J. Peale; R. F. Jurgens; M. A. Slade; I. V. Holin Large longitude libration of Mercury reveals a molten core, Science, Volume 316 (2007) no. 5825, pp. 710-714 | DOI

[6] C. F. Yoder The free librations of a dissipative Moon, Philos. Trans. R. Soc. A, Volume 303 (1981) no. 1477, pp. 327-338 | DOI

[7] K. M. Soderlund; M. Rovira-Navarro; M. Le Bars; B. E. Schmidt; T. Gerkema The physical oceanography of ice-covered moons, Annu. Rev. Mar. Sci., Volume 16 (2024), pp. 25-53 | DOI

[8] M. Farhat; P. Auclair-Desrotour; G. Boué; J. Laskar The resonant tidal evolution of the Earth-Moon distance, Astron. Astrophys., Volume 665 (2022), L1 | DOI

[9] H.-C. Nataf; N. Schaeffer Dynamic regimes in planetary cores: τ diagrams, C. R. Géosci., Volume 356 (2024) no. G1, pp. 1-30 | DOI

[10] O. Zeman A note on the spectra and decay of rotating homogeneous turbulence, Phys. Fluids, Volume 6 (1994) no. 10, pp. 3221-3223 | DOI

[11] P. D. Mininni; D. Rosenberg; A. Pouquet Isotropization at small scales of rotating helically driven turbulence, J. Fluid Mech., Volume 699 (2012), pp. 263-279 | DOI

[12] A. Delache; C. Cambon; F. Godeferd Scale by scale anisotropy in freely decaying rotating turbulence, Phys. Fluids, Volume 26 (2014) no. 2, 025104 | DOI

[13] C. A. Jones 8.05 - Thermal and compositional convection in the outer core, Treatise on Geophysics (G. Schubert, ed.), Elsevier, Oxford, 2015, pp. 115-159 | DOI

[14] E. Chaljub; B. Valette Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core, Geophys. J. Int., Volume 158 (2004) no. 1, pp. 131-141 | DOI

[15] W. J. Emery; W. G. Lee; L. Magaard Geographic and seasonal distributions of Brunt-Väisälä frequency and Rossby radii in the North Pacific and North Atlantic, J. Phys. Oceanogr., Volume 14 (1984) no. 2, pp. 294-317 | DOI

[16] B. Buffett Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core, Nature, Volume 507 (2014) no. 7493, pp. 484-487 | DOI

[17] T. Gastine; J. Aubert; A. Fournier Dynamo-based limit to the extent of a stable layer atop Earth’s core, Geophys. J. Int., Volume 222 (2020) no. 2, pp. 1433-1448 | DOI

[18] B. A. Buffett Chemical stratification at the top of Earth’s core: constraints from observations of nutations, Earth Planet. Sci. Lett., Volume 296 (2010) no. 3-4, pp. 367-372 | DOI

[19] P. R. Gent; J. R. Luyten How much energy propagates vertically in the equatorial oceans?, J. Phys. Oceanogr., Volume 15 (1985) no. 7, pp. 997-1007 | DOI

[20] L. D. Talley; G. L. Pickard; W. J. Emery; J. H. Swift Descriptive Physical Oceanography: An Introduction, Academic Press, London, 2011

[21] M. Rexer; C. Hirt Ultra-high-degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Mars and Moon, Surv. Geophys., Volume 36 (2015) no. 6, pp. 803-830 | DOI

[22] P. Koelemeijer Toward consistent seismological models of the core–mantle boundary landscape, Mantle Convection and Surface Expressions, American Geophysical Union, Hoboken, 2021, pp. 229-255 (ISBN 9781119528609, Chapter 9) | DOI

[23] A. I. Ermakov; R. S. Park; B. G. Bills Power laws of topography and gravity spectra of the solar system bodies, J. Geophys. Res. Planets, Volume 123 (2018) no. 8, pp. 2038-2064 | DOI

[24] M. Puica; V. Dehant; M. Folgueira; T. Van Hoolst; J. Rekier Analytical computation of total topographic torque at the core–mantle boundary and its impact on tidally driven length-of-day variations, Geophys. J. Int., Volume 234 (2023) no. 1, pp. 585-596 | DOI

[25] G. Veronis The analogy between rotating and stratified fluids, Annu. Rev. Fluid Mech., Volume 2 (1970) no. 1, pp. 37-66 | DOI

[26] H. P. Greenspan The Theory of Rotating Fluids, Cambridge University Press, Cambridge, 1968

[27] D. E. Mowbray; B. S. H. Rarity A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid, J. Fluid Mech., Volume 28 (1967) no. 1, pp. 1-16 | DOI

[28] Sonya Legg Mixing by oceanic Lee waves, Annu. Rev. Fluid Mech., Volume 53 (2021), pp. 173-201 | DOI

[29] M. G. Wurtele; R. D. Sharman; A. Datta Atmospheric Lee waves, Annu. Rev. Fluid Mech., Volume 28 (1996) no. 1, pp. 429-476 | DOI

[30] O. Richet; J.-M. Chomaz; C. Muller Internal tide dissipation at topography: triadic resonant instability equatorward and evanescent waves poleward of the critical latitude, J. Geophys. Res. Oceans, Volume 123 (2018) no. 9, pp. 6136-6155 | DOI

[31] F. S. Godeferd; F. Moisy Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results, Appl. Mech. Rev., Volume 67 (2015) no. 3, 030802 | DOI

[32] P.-P. Cortet; N. Lanchon Turbulence of internal gravity waves in the laboratory, C. R. Phys., Volume 25 (2024) no. S3, pp. 1-20 | DOI

[33] A. Lefauve Geophysical stratified turbulence and mixing in the laboratory, C. R. Phys., Volume 25 (2024) no. S3, pp. 1-30 | DOI

[34] S. Chandrasekhar Ellipsoidal Figures of Equilibrium, Dover Publications, New York, 1987

[35] C. J. Davies; D. R. Stegman; M. Dumberry The strength of gravitational core-mantle coupling, Geophys. Res. Lett., Volume 41 (2014) no. 11, pp. 3786-3792 | DOI

[36] V. Dehant; S. A. Campuzano; A. De Santis; W. van Westrenen Structure, materials and processes in the Earth’s core and mantle, Surv. Geophys., Volume 43 (2022) no. 1, pp. 263-302 | DOI

[37] C. Narteau; J.-L. Le Mouël; J.-P. Poirier; E. Sepúlveda; M. Shnirman On a small-scale roughness of the core–mantle boundary, Earth Planet. Sci. Lett., Volume 191 (2001) no. 1-2, pp. 49-60 | DOI

[38] J.-L. Le Mouël; C. Narteau; M. Greff-Lefftz; M. Holschneider Dissipation at the core-mantle boundary on a small-scale topography, J. Geophys. Res. Solid Earth, Volume 111 (2006) no. B4, pp. 1-10 | DOI

[39] H. A. Zebker; B. Stiles; S. Hensley; R. Lorenz; R. L. Kirk; J. Lunine Size and shape of Saturn’s moon Titan, Science, Volume 324 (2009) no. 5929, pp. 921-923 | DOI

[40] L. Iess; N. J. Rappaport; R. A. Jacobson; P. Racioppa; D. J. Stevenson; P. Tortora; J. W. Armstrong; S. W. Asmar Gravity field, shape, and moment of inertia of Titan, Science, Volume 327 (2010) no. 5971, pp. 1367-1369 | DOI

[41] F. Nimmo; B. G. Bills Shell thickness variations and the long-wavelength topography of Titan, Icarus, Volume 208 (2010) no. 2, pp. 896-904 | DOI

[42] C. Amante; B. W. Eakins ETOPO1, Global 1 arc-minute global relief model: procedures, data sources and analysis, 2009 (NOAA Tech. Memo. NESDIS NGDC-24, 19)

[43] M. Le Bars; D. Cébron; P. Le Gal Flows driven by libration, precession, and tides, Annu. Rev. Fluid Mech., Volume 47 (2015), pp. 163-193 | DOI

[44] C. Guervilly; P. Cardin; N. Schaeffer Turbulent convective length scale in planetary cores, Nature, Volume 570 (2019) no. 7761, pp. 368-371 | DOI

[45] O. Barrois; T. Gastine; C. C. Finlay Comparison of quasi-geostrophic, hybrid and 3-D models of planetary core convection, Geophys. J. Int., Volume 231 (2022) no. 1, pp. 129-158 | DOI

[46] N. Schaeffer; D. Jault; H.-C. Nataf; A. Fournier Turbulent geodynamo simulations: a leap towards Earth’s core, Geophys. J. Int., Volume 211 (2017) no. 1, pp. 1-29 | DOI

[47] B. Favier; A. M. Grannan; M. Le Bars; J. M. Aurnou Generation and maintenance of bulk turbulence by libration-driven elliptical instability, Phys. Fluids, Volume 27 (2015) no. 6, 066601 | DOI

[48] A. M. Grannan; B. Favier; M. Le Bars; J. M. Aurnou Tidally forced turbulence in planetary interiors, Geophys. J. Int., Volume 208 (2017) no. 3, pp. 1690-1703 | DOI

[49] K. S. Thorne; R. D. Blandford Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton University Press, Princeton, 2017

[50] D. Sous; J. Sommeria; D. Boyer Friction law and turbulent properties in a laboratory Ekman boundary layer, Phys. Fluids, Volume 25 (2013) no. 4, 046602 | DOI

[51] T. Le Reun; B. Favier; M. Le Bars Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence, J. Fluid Mech., Volume 879 (2019), pp. 296-326 | DOI

[52] J. Noir; D. Brito; K. Aldridge; P. Cardin Experimental evidence of inertial waves in a precessing spheroidal cavity, Geophys. Res. Lett., Volume 28 (2001) no. 19, pp. 3785-3788 | DOI

[53] F. Burmann; J. Noir; S. Beetschen; A. Jackson Low-cost solutions for velocimetry in rotating and opaque fluid experiments using ultrasonic time of flight, Exp. Tech., Volume 46 (2022) no. 3, pp. 429-439 | DOI

[54] V. Lherm; R. Deguen; T. Alboussière; M. Landeau Rayleigh–Taylor instability in impact cratering experiments, J. Fluid Mech., Volume 937 (2022), A20 | DOI

[55] B. R. Sutherland; S. B. Dalziel; G. O. Hughes; P. F. Linden Visualization and measurement of internal waves by synthetic schlieren. Part 1. Vertically oscillating cylinder, J. Fluid Mech., Volume 390 (1999), pp. 93-126 | DOI

[56] S. Dalziel; G. O. Hughes; B. R. Sutherland Whole-field density measurements by synthetic schlieren, Exp. Fluids, Volume 28 (2000) no. 4, pp. 322-335 | DOI

[57] W. V. R. Malkus Precession of the Earth as the cause of geomagnetism: experiments lend support to the proposal that precessional torques drive the Earth’s dynamo, Science, Volume 160 (1968) no. 3825, pp. 259-264 | DOI

[58] L. Lacaze; W. Herreman; M. Le Bars; S. Le Dizes; P. Le Gal Magnetic field induced by elliptical instability in a rotating spheroid, Geophys. Astrophys. Fluid Dyn., Volume 100 (2006) no. 4-5, pp. 299-317 | DOI

[59] W. Herreman; M. Le Bars; P. Le Gal On the effects of an imposed magnetic field on the elliptical instability in rotating spheroids, Phys. Fluids, Volume 21 (2009) no. 4, 046602 | DOI

[60] M. Le Bars; A. Barik; F. Burmann; D. P. Lathrop; J. Noir; N. Schaeffer; S. A. Triana Fluid dynamics experiments for planetary interiors, Surv. Geophys., Volume 43 (2022) no. 1, pp. 229-261 | DOI

[61] F. Burmann; J. Noir Experimental study of the flows in a non-axisymmetric ellipsoid under precession, J. Fluid Mech., Volume 932 (2022), A24 | DOI

[62] K. D. Aldridge; A. Toomre Axisymmetric inertial oscillations of a fluid in a rotating spherical container, J. Fluid Mech., Volume 37 (1969) no. 2, pp. 307-323 | DOI

[63] K. Zhang; K. H. Chan; X. Liao; J. M. Aurnou The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration, J. Fluid Mech., Volume 720 (2013), pp. 212-235 | DOI

[64] D. Cébron; J. Vidal; N. Schaeffer; A. Borderies; A. Sauret Mean zonal flows induced by weak mechanical forcings in rotating spheroids, J. Fluid Mech., Volume 916 (2021), A39 | DOI

[65] Y. Lin; R. Hollerbach; J. Noir; S. Vantieghem Resonant and non-resonant flows in longitudinally and latitudinally librating spheres, Phys. Fluids, Volume 35 (2023) no. 7, 076612 | DOI

[66] A. Sauret; D. Cébron; M. Le Bars Spontaneous generation of inertial waves from boundary turbulence in a librating sphere, J. Fluid Mech., Volume 728 (2013), R5 | DOI

[67] C. Morize; M. Le Bars; P. Le Gal; A. Tilgner Experimental determination of zonal winds driven by tides, Phys. Rev. Lett., Volume 104 (2010) no. 21, 214501 | DOI

[68] K. Zhang; X. Liao Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession, Cambridge University Press, Cambridge, 2017 | DOI

[69] Y. Lin Triadic resonances driven by thermal convection in a rotating sphere, J. Fluid Mech., Volume 909 (2021), R3 | DOI

[70] A. Sauret; D. Cébron; C. Morize; M. Le Bars Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity, J. Fluid Mech., Volume 662 (2010), pp. 260-268 | DOI

[71] Y. Colin de Verdière; J. Vidal The spectrum of the Poincaré operator in an ellipsoid, J. Spectr. Theory (2024), pp. 1-22 (to appear) arXiv:2305.01369 | DOI

[72] S. Vantieghem Inertial modes in a rotating triaxial ellipsoid, Proc. R. Soc. A, Volume 470 (2014) no. 2168, 20140093 | DOI

[73] G. Backus; M. Rieutord Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid, Phys. Rev. E, Volume 95 (2017) no. 5, 053116 | DOI

[74] S. Vantieghem; D. Cébron; J. Noir Latitudinal libration driven flows in triaxial ellipsoids, J. Fluid Mech., Volume 771 (2015), pp. 193-228 | DOI

[75] Y. Charles Flows driven by librations in latitude in triaxial ellipsoids, Phd thesis, ETH Zurich (2018)

[76] F. H. Busse Steady fluid flow in a precessing spheroidal shell, J. Fluid Mech., Volume 33 (1968) no. 4, pp. 739-751 | DOI

[77] C. Nobili; P. Meunier; B. Favier; M. Le Bars Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode, J. Fluid Mech., Volume 909 (2021), A17 | DOI

[78] J. Noir Ecoulements d’un fluide dans une cavité en précession: approches numérique et expérimentale, PhD thesis, Université Joseph-Fourier Grenoble I (2000)

[79] S. Goto; A. Matsunaga; M. Fujiwara; M. Nishioka; S. Kida; M. Yamato; S. Tsuda Turbulence driven by precession in spherical and slightly elongated spheroidal cavities, Phys. Fluids, Volume 26 (2014) no. 5, 055107 | DOI

[80] A. M. Grannan; M. Le Bars; D. Cébron; J. M. Aurnou Experimental study of global-scale turbulence in a librating ellipsoid, Phys. Fluids, Volume 26 (2014) no. 12, 126601 | DOI

[81] S. Kida Steady flow in a rapidly rotating spheroid with weak precession: I, Fluid Dyn. Res., Volume 52 (2020) no. 1, 015513 | DOI

[82] P. H. Roberts; C.-C. Wu On flows having constant vorticity, Phys. D, Volume 240 (2011) no. 20, pp. 1615-1628 | DOI

[83] J. Noir; D. Cébron Precession-driven flows in non-axisymmetric ellipsoids, J. Fluid Mech., Volume 737 (2013), pp. 412-439 | DOI

[84] D. Ivers Enumeration, orthogonality and completeness of the incompressible Coriolis modes in a tri-axial ellipsoid, Geophys. Astrophys. Fluid Dyn., Volume 111 (2017) no. 5, pp. 333-354 | DOI

[85] J. Vidal; D. Cébron Precession-driven flows in stress-free ellipsoids, J. Fluid Mech., Volume 954 (2023), A5 | DOI

[86] J. Rekier; B. F. Chao; J. Chen; V. Dehant; S. Rosat; P. Zhu Earth”s rotation: observations and relation to deep interior, Surv. Geophys., Volume 43 (2022) no. 1, pp. 149-175 | DOI

[87] D. Cébron Bistable flows in precessing spheroids, Fluid Dyn. Res., Volume 47 (2015) no. 2, 025504 | DOI

[88] S. Kida Steady flow in a rapidly rotating sphere with weak precession, J. Fluid Mech., Volume 680 (2011), pp. 150-193 | DOI

[89] S. T. Suess Viscous flow in a deformable rotating container, J. Fluid Mech., Volume 45 (1971) no. 1, pp. 189-201 | DOI

[90] J. Noir; D. Cébron; M. Le Bars; A. Sauret; J. M. Aurnou Experimental study of libration-driven zonal flows in non-axisymmetric containers, Phys. Earth Planet. Int., Volume 204 (2012), pp. 1-10 | DOI

[91] A. Tilgner Zonal wind driven by inertial modes, Phys. Rev. lett., Volume 99 (2007) no. 19, 194501 | DOI

[92] S. Le Dizès Reflection of oscillating internal shear layers: nonlinear corrections, J. Fluid Mech., Volume 899 (2020), A21 | DOI

[93] Y. Lin; J. Noir Libration-driven inertial waves and mean zonal flows in spherical shells, Geophys. Astrophys. Fluid Dyn., Volume 115 (2021) no. 3, pp. 258-279 | DOI

[94] R. R. Kerswell Elliptical instability, Annu. Rev. Fluid Mech., Volume 34 (2002) no. 1, pp. 83-113 | DOI

[95] M. Le Bars; L. Lacaze; S. Le Dizes; P. Le Gal; M. Rieutord Tidal instability in stellar and planetary binary systems, Phys. Earth Planet. Int., Volume 178 (2010) no. 1-2, pp. 48-55 | DOI

[96] L. Lacaze; P. Le Gal; S. Le Dizes Elliptical instability in a rotating spheroid, J. Fluid Mech., Volume 505 (2004), pp. 1-22 | DOI

[97] R. R. Kerswell The instability of precessing flow, Geophys. Astrophys. Fluid Dyn., Volume 72 (1993) no. 1-4, pp. 107-144 | DOI

[98] F. Burmann; L. Kira; J. Noir Precessing non-axisymmetric ellipsoids: bi-stability and fluid instabilities, J. Fluid Mech., Volume 997 (2024), A52 | DOI

[99] Y. Lin; P. Marti; J. Noir Shear-driven parametric instability in a precessing sphere, Phys. Fluids, Volume 27 (2015) no. 4, 046601 | DOI

[100] D. Cébron; R. Laguerre; J. Noir; N. Schaeffer Precessing spherical shells: flows, dissipation, dynamo and the lunar core, Geophys. J. Int., Volume 219 (2019) no. Supplement 1, p. S34-S57 | DOI

[101] J. Vanyo; P. Wilde; P. Cardin; P. Olson Experiments on precessing flows in the Earth’s liquid core, Geophys. J. Int., Volume 121 (1995) no. 1, pp. 136-142 | DOI

[102] Y. Horimoto; A. Katayama; S. Goto Conical shear-driven parametric instability of steady flow in precessing spheroids, Phys. Rev. Fluids, Volume 5 (2020) no. 6, 063901 | DOI

[103] A. Sauret; M. Le Bars; P. Le Gal Tide-driven shear instability in planetary liquid cores, Geophys. Res. Lett., Volume 41 (2014) no. 17, pp. 6078-6083 | DOI

[104] S. Lorenzani; A. Tilgner Fluid instabilities in precessing spheroidal cavities, J. Fluid Mech., Volume 447 (2001), pp. 111-128 | DOI

[105] J. Noir; F. Hemmerlin; J. Wicht; S. M. Baca; J. M. Aurnou An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans, Phys. Earth Planet. Int., Volume 173 (2009) no. 1-2, pp. 141-152 | DOI

[106] R. R. Kerswell Secondary instabilities in rapidly rotating fluids: inertial wave breakdown, J. Fluid Mech., Volume 382 (1999), pp. 283-306 | DOI

[107] T. Le Reun; B. Favier; A. J. Barker; M. Le Bars Inertial wave turbulence driven by elliptical instability, Phys. Rev. Lett., Volume 119 (2017) no. 3, 034502 | DOI

[108] Y. Horimoto; S. Goto Sustaining mechanism of small-scale turbulent eddies in a precessing sphere, Phys. Rev. Fluids, Volume 2 (2017) no. 11, 114603 | DOI

[109] Y. Horimoto; G. Simonet-Davin; A. Katayama; S. Goto Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid, Phys. Rev. Fluids, Volume 3 (2018) no. 4, 044603 | DOI

[110] P. Meunier Geoinspired soft mixers, J. Fluid Mech., Volume 903 (2020), A15 | DOI

[111] S. Goto; Y. Horimoto; T. Kaneko et al. Precessing cylinder as high-shear-rate mixer: application to emulsification, Phys. Fluids, Volume 35 (2023) no. 3, 035139 | DOI

[112] E. Yarom; E. Sharon Experimental observation of steady inertial wave turbulence in deep rotating flows, Nat. Phys., Volume 10 (2014) no. 7, pp. 510-514 | DOI

[113] A. Campagne; B. Gallet; F. Moisy; P.-P. Cortet Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment, Phys. Rev. E, Volume 91 (2015) no. 4, 043016 | DOI

[114] E. Yarom; A. Salhov; E. Sharon Experimental quantification of nonlinear time scales in inertial wave rotating turbulence, Phys. Rev. Fluids, Volume 2 (2017) no. 12, 122601 | DOI

[115] A. Salhov; E. Yarom; E. Sharon Measurements of inertial wave packets propagating within steady rotating turbulence, Europhys. Lett., Volume 125 (2019) no. 2, 24003 | DOI

[116] E. Monsalve; M. Brunet; B. Gallet; P.-P. Cortet Quantitative experimental observation of weak inertial-wave turbulence, Phys. Rev. Lett., Volume 125 (2020) no. 25, 254502 | DOI

[117] M. Duran-Matute; J.-B. Flór; F. S. Godeferd; C. Jause-Labert Turbulence and columnar vortex formation through inertial-wave focusing, Phys. Rev. E, Volume 87 (2013) no. 4, 041001 | DOI

[118] A. Campagne; B. Gallet; F. Moisy; P.-P. Cortet Direct and inverse energy cascades in a forced rotating turbulence experiment, Phys. Fluids, Volume 26 (2014) no. 12, 125112 | DOI

[119] O. Shaltiel; A. Salhov; O. Gat; E. Sharon Direct measurement of energy transfer in strongly driven rotating turbulence, Phys. Rev. Lett., Volume 132 (2024) no. 22, 224001 | DOI

[120] Y. Zhou A phenomenological treatment of rotating turbulence, Phys. Fluids, Volume 7 (1995) no. 8, pp. 2092-2094 | DOI

[121] S. V. Nazarenko; A. A. Schekochihin Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture, J. Fluid Mech., Volume 677 (2011), pp. 134-153 | DOI

[122] Y. B. Baqui; P. A. Davidson A phenomenological theory of rotating turbulence, Phys. Fluids, Volume 27 (2015) no. 2, 025107 | DOI

[123] S. Galtier Weak inertial-wave turbulence theory, Phys. Rev. E, Volume 68 (2003) no. 1, 015301 | DOI

[124] C. Cambon; R. Rubinstein; F. S. Godeferd Advances in wave turbulence: rapidly rotating flows, New J. Phys., Volume 6 (2004) no. 1, 73 | DOI

[125] F. Bellet; F. S. Godeferd; J. F. Scott; C. Cambon Wave turbulence in rapidly rotating flows, J. Fluid Mech., Volume 562 (2006), pp. 83-121 | DOI

[126] L. M. Smith; F. Waleffe Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence, Phys. Fluids, Volume 11 (1999) no. 6, pp. 1608-1622 | DOI

[127] M. Thiele; W.-C. Müller Structure and decay of rotating homogeneous turbulence, J. Fluid Mech., Volume 637 (2009), pp. 425-442 | DOI

[128] S. Galtier A multiple time scale approach for anisotropic inertial wave turbulence, J. Fluid Mech., Volume 974 (2023), A24 | DOI

[129] S. Galtier Physics of Wave Turbulence, Cambridge University Press, Cambridge, 2022 | DOI

[130] A. A. Gelash; V. S. L’vov; V. E. Zakharov Complete Hamiltonian formalism for inertial waves in rotating fluids, J. Fluid Mech., Volume 831 (2017), pp. 128-150 | DOI

[131] P. Clark Di Leoni; P. J. Cobelli; P. D. Mininni The spatio-temporal spectrum of turbulent flows, Eur. Phys. J. E, Volume 38 (2015), pp. 1-10 | DOI

[132] T. Le Reun; B. Favier; M. Le Bars Evidence of the Zakharov–Kolmogorov spectrum in numerical simulations of inertial wave turbulence, Europhys. Lett., Volume 132 (2020) no. 6, 64002 | DOI

[133] N. Yokoyama; M. Takaoka Energy-flux vector in anisotropic turbulence: application to rotating turbulence, J. Fluid Mech., Volume 908 (2021), A17 | DOI

[134] C. N. Baroud; B. B. Plapp; Z.-S. She; H. L. Swinney Anomalous self-similarity in a turbulent rapidly rotating fluid, Phys. Rev. Lett., Volume 88 (2002) no. 11, 114501 | DOI

[135] G. P. Bewley; D. P. Lathrop; L. R. M. Maas; K. R. Sreenivasan Inertial waves in rotating grid turbulence, Phys. Fluids, Volume 19 (2007) no. 7, 071701 | DOI

[136] C. Lamriben; P.-P. Cortet; F. Moisy; L. R. M. Maas Excitation of inertial modes in a closed grid turbulence experiment under rotation, Phys. Fluids, Volume 23 (2011) no. 1, 015102 | DOI

[137] J. Boisson; C. Lamriben; L. R. M. Maas; P.-P. Cortet; F. Moisy Inertial waves and modes excited by the libration of a rotating cube, Phys. Fluids, Volume 24 (2012) no. 7, 076602 | DOI

[138] L. Bourouiba Discreteness and resolution effects in rapidly rotating turbulence, Phys. Rev. E, Volume 78 (2008) no. 5, 056309 | DOI

[139] J. F. Scott Wave turbulence in a rotating channel, J. Fluid Mech., Volume 741 (2014), pp. 316-349 | DOI

[140] H. P. Greenspan On the non-linear interaction of inertial modes, J. Fluid Mech., Volume 36 (1969) no. 2, pp. 257-264 | DOI

[141] P. A. Davidson; P. J. Staplehurst; S. B. Dalziel On the evolution of eddies in a rapidly rotating system, J. Fluid Mech., Volume 557 (2006), pp. 135-144 | DOI

[142] P. J. Staplehurst; P. A. Davidson; S. B. Dalziel Structure formation in homogeneous freely decaying rotating turbulence, J. Fluid Mech., Volume 598 (2008), pp. 81-105 | DOI

[143] B. Gallet Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows, J. Fluid Mech., Volume 783 (2015), pp. 412-447 | DOI

[144] F. P. Bretherton Resonant interactions between waves. The case of discrete oscillations, J. Fluid Mech., Volume 20 (1964) no. 3, pp. 457-479 | DOI

[145] L. M. Smith; Y. Lee On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number, J. Fluid Mech., Volume 535 (2005), pp. 111-142 | DOI

[146] P. Clark di Leoni; P. D. Mininni Quantifying resonant and near-resonant interactions in rotating turbulence, J. Fluid Mech., Volume 809 (2016), pp. 821-842 | DOI

[147] T. Le Reun; B. Gallet; B. Favier; M. Le Bars Near-resonant instability of geostrophic modes: beyond Greenspan’s theorem, J. Fluid Mech., Volume 900 (2020), R2 | DOI

[148] M. Brunet; B. Gallet; P.-P. Cortet Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability, Phys. Rev. Lett., Volume 124 (2020) no. 12, 124501 | DOI

[149] P. D. Mininni; A. Alexakis; A. Pouquet Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers, Phys. Fluids, Volume 21 (2009) no. 1, 015108 | DOI

[150] L. Bourouiba; D. N. Straub; M. L. Waite Non-local energy transfers in rotating turbulence at intermediate Rossby number, J. Fluid Mech., Volume 690 (2012), pp. 129-147 | DOI

[151] M. Buzzicotti; H. Aluie; L. Biferale; M. Linkmann Energy transfer in turbulence under rotation, Phys. Rev. Fluids, Volume 3 (2018) no. 3, 034802 | DOI

[152] H. Lam; A. Delache; F. S. Godeferd Supply mechanisms of the geostrophic mode in rotating turbulence: interactions with self, waves and eddies, J. Fluid Mech., Volume 971 (2023), A10

[153] A. van Kan; A. Alexakis Critical transition in fast-rotating turbulence within highly elongated domains, J. Fluid Mech., Volume 899 (2020), A33 | DOI

[154] D. Lemasquerier; A. M. Grannan; J. Vidal; D. Cébron; B. Favier; M. Le Bars; J. M. Aurnou Libration-driven flows in ellipsoidal shells, J. Geophys. Res. Planets, Volume 122 (2017) no. 9, pp. 1926-1950 | DOI

[155] A. Wilson; R. R. Kerswell Can libration maintain Enceladus’s ocean?, Earth Planet. Sci. Lett., Volume 500 (2018), pp. 41-46 | DOI

[156] K. S. Reddy; B. Favier; M. Le Bars Turbulent kinematic dynamos in ellipsoids driven by mechanical forcing, Geophys. Res. Lett., Volume 45 (2018) no. 4, pp. 1741-1750 | DOI

[157] J. Vidal; D. Cébron; N. Schaeffer; R. Hollerbach Magnetic fields driven by tidal mixing in radiative stars, Mon. Not. R. Astron. Soc., Volume 475 (2018) no. 4, pp. 4579-4594 | DOI

[158] P. A. Davidson Scaling laws for planetary dynamos, Geophys. J. Int., Volume 195 (2013) no. 1, pp. 67-74 | DOI

[159] A. J. Barker; Y. Lithwick Non-linear evolution of the tidal elliptical instability in gaseous planets and stars, Mon. Not. R. Astron. Soc., Volume 435 (2013) no. 4, pp. 3614-3626 | DOI

[160] J.n Vidal; D. Cébron; A. ud-Doula; E. Alecian Fossil field decay due to nonlinear tides in massive binaries, Astron. Astrophys., Volume 629 (2019), A142 | DOI

[161] A. J. Barker On turbulence driven by axial precession and tidal evolution of the spin–orbit angle of close-in giant planets, Mon. Not. R. Astron. Soc., Volume 460 (2016) no. 3, pp. 2339-2350 | DOI

[162] L. Lacaze; P. Le Gal; S. Le Dizes Elliptical instability of the flow in a rotating shell, Phys. Earth Planet. Int., Volume 151 (2005) no. 3-4, pp. 194-205 | DOI

[163] M. Rieutord; B. Georgeot; L. Valdettaro Wave attractors in rotating fluids: a paradigm for ill-posed Cauchy problems, Phys. Rev. Lett., Volume 85 (2000) no. 20, pp. 4277-4280 | DOI

[164] I. Bashmachnikov; F. Neves; T. Calheiros; X. Carton Properties and pathways of Mediterranean water eddies in the Atlantic, Prog. Oceanogr., Volume 137 (2015), pp. 149-172 | DOI

[165] P. S. Marcus Jupiter’s Great Red Spot and other vortices, Annu. Rev. Astron. Astrophys., Volume 31 (1993) no. 1, pp. 523-569 | DOI

[166] J. Labarbe; O. N. Kirillov Diffusive instabilities of baroclinic lenticular vortices, Phys. Fluids, Volume 33 (2021) no. 10, 104108 | DOI

[167] J. Vidal; Y. Colin de Verdière Inertia-gravity waves in geophysical vortices, Proc. R. Soc. A, Volume 480 (2024) no. 2285, 20230789 | DOI

[168] M. Le Bars Numerical study of the McIntyre instability around Gaussian floating vortices in thermal wind balance, Phys. Rev. Fluids, Volume 6 (2021) no. 9, 093801 | DOI

[169] O. Aubert; M. Le Bars; P. Le Gal; P. S. Marcus The universal aspect ratio of vortices in rotating stratified flows: experiments and observations, J. Fluid Mech., Volume 706 (2012), pp. 34-45 | DOI

[170] H. M. De la Rosa Zambrano; A. Cros; R. C. Gómez; M. Le Bars; P. Le Gal A laboratory study of floating lenticular anticyclones, Eur. J. Mech. B Fluids, Volume 61 (2017), pp. 1-8 | DOI

[171] D. Lemasquerier; G. Facchini; B. Favier; M. Le Bars Remote determination of the shape of Jupiter’s vortices from laboratory experiments, Nat. Phys., Volume 16 (2020) no. 6, pp. 695-700 | DOI

[172] S. Su; D. Cébron; H.-C. Nataf; P. Cardin; J. Vidal; M. Solazzo; Y. Do Acoustic spectra of a gas-filled rotating spheroid, Eur. J. Mech. B Fluids, Volume 84 (2020), pp. 302-310 | DOI

[173] G. I. Taylor Experiments on the motion of solid bodies in rotating fluids, Proc. R. Soc. Lond. A, Volume 104 (1923) no. 725, pp. 213-218 | DOI

[174] R. Hide; A. Ibbetson An experimental study of Taylor columns, Icarus, Volume 5 (1966) no. 1-6, pp. 279-290 | DOI

[175] R. Hide; A. Ibbetson; M. J. Lighthill On slow transverse flow past obstacles in a rapidly rotating fluid, J. Fluid Mech., Volume 32 (1968) no. 2, pp. 251-272 | DOI

[176] D. L. Boyer; P. A. Davies; W. R. Holland Rotating flow past disks and cylindrical depressions, J. Fluid Mech., Volume 141 (1984), pp. 67-95 | DOI

[177] K. E. Heikes; T. Maxworthy Observations of inertial waves in a homogeneous rotating fluid, J. Fluid Mech., Volume 125 (1982), pp. 319-345 | DOI

[178] E. R. Johnson The effects of obstacle shape and viscosity in deep rotating flow over finite-height topography, J. Fluid Mech., Volume 120 (1982), pp. 359-383 | DOI

[179] N. Machicoane; V. Labarre; B. Voisin; F. Moisy; P.-P. Cortet Wake of inertial waves of a horizontal cylinder in horizontal translation, Phys. Rev. Fluids, Volume 3 (2018) no. 3, 034801 | DOI

[180] E. R. Weeks; Y. Tian; J. S. Urbach; K. Ide; H. L. Swinney; M. Ghil Transitions between blocked and zonal flows in a rotating annulus with topography, Science, Volume 278 (1997) no. 5343, pp. 1598-1601 | DOI

[181] F. Burmann; J. Noir Effects of bottom topography on the spin-up in a cylinder, Phys. Fluids, Volume 30 (2018) no. 10, 106601 | DOI

[182] T. Radko A generalized theory of flow forcing by rough topography, J. Fluid Mech., Volume 961 (2023), A24 | DOI

[183] T. Radko The sandpaper theory of flow–topography interaction for homogeneous shallow-water systems, J. Fluid Mech., Volume 977 (2023), A9 | DOI

[184] V. Dehant; R. Laguerre; J. Rekier; A. Rivoldini; S. A. Triana; A. Trinh; T. Van Hoolst; P. Zhu Understanding the effects of the core on the nutation of the Earth, Geod. Geodyn., Volume 8 (2017) no. 6, pp. 389-395 | DOI

[185] G. N. Coleman Similarity statistics from a direct numerical simulation of the neutrally stratified planetary boundary layer, J. Atmos. Sci., Volume 56 (1999) no. 6, pp. 891-900 | DOI

[186] D. K. Lilly On the instability of Ekman boundary flow, J. Atmos. Sci.., Volume 23 (1966) no. 5, pp. 481-494 | DOI

[187] D. R. Caldwell; C. W. Van Atta Characteristics of Ekman boundary layer instabilities, J. Fluid Mech., Volume 44 (1970) no. 1, pp. 79-95 | DOI

[188] D. Aelbrecht; G. Chabert D’Hieres; D. Renouard Experimental study of the Ekman layer instability in steady or oscillating flows, Cont. Shelf Res., Volume 19 (1999) no. 15-16, pp. 1851-1867 | DOI

[189] G. D. Hess; J. R. Garratt Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part I. Overview, Bound.-Layer Meteorol., Volume 104 (2002), pp. 333-358 | DOI

[190] G. D. Hess; J. R. Garratt Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part II. Modelling observed conditions, Bound.-Layer Meteorol., Volume 104 (2002) no. 3, pp. 359-369 | DOI

[191] G. Csanady On the “resistance law” of a turbulent Ekman layer, J. Atmos. Sci., Volume 24 (1967) no. 5, pp. 467-471 | DOI

[192] A. K. Blackadar; H. Tennekes Asymptotic similarity in neutral barotropic planetary boundary layers, J. Atmos. Sci., Volume 25 (1968) no. 6, pp. 1015-1020 | DOI

[193] P. R. Spalart Theoretical and numerical study of a three-dimensional turbulent boundary layer, J. Fluid Mech., Volume 205 (1989), pp. 319-340 | DOI

[194] S. B. Pope Turbulent Flows, Cambridge University Press, New York, 2000

[195] C. Ansorge; J. P. Mellado Global intermittency and collapsing turbulence in the stratified planetary boundary layer, Bound.-Layer Meteorol., Volume 153 (2014) no. 1, pp. 89-116 | DOI

[196] C. B. Millikan A critical discussion of turbulent flows in channels and circular tubes, Proceedings of the Fifth International Congress for Applied Mechanics, Cambridge, 1938, pp. 386-392

[197] P. R. Spalart; G. N. Coleman; R. Johnstone Retraction: “Direct numerical simulation of the Ekman layer: A step in Reynolds number, and cautious support for a log law with a shifted origin” [Phys. Fluids 20, 101507 (2008)], Phys. Fluids, Volume 21 (2009) no. 10, 109901 | DOI

[198] P. R. Spalart; G. N. Coleman; R. Johnstone Direct numerical simulation of the Ekman layer: a step in Reynolds number, and cautious support for a log law with a shifted origin, Phys. Fluids, Volume 20 (2008) no. 10, 101507 | DOI

[199] W. K. George Is there a universal log law for turbulent wall-bounded flows?, Philos. Trans. R. Soc. Lond. A, Volume 365 (2007) no. 1852, pp. 789-806 | DOI

[200] D. R. Caldwell; C. W. Van Atta; K. N. Helland A laboratory study of the turbulent Ekman layer, Geophys. Astrophys. Fluid Dyn., Volume 3 (1972) no. 2, pp. 125-160 | DOI

[201] K. Shingai; H. Kawamura A study of turbulence structure and large-scale motion in the Ekman layer through direct numerical simulations, J. Turbul., Volume 5 (2004) no. 1, 013 | DOI

[202] G. C. Howroyd; P. R. Slawson The characteristics of a laboratory produced turbulent Ekman layer, Bound.-Layer Meteorol., Volume 8 (1975), pp. 201-219 | DOI

[203] M. R. Raupach; R. A. Antonia; S. Rajagopalan Rough-wall turbulent boundary layers, Appl. Mech. Rev., Volume 44 (1991) no. 1, pp. 1-25 | DOI

[204] M. Kadivar; D. Tormey; G. McGranaghan A review on turbulent flow over rough surfaces: fundamentals and theories, Int. J. Thermofluids, Volume 10 (2021), 100077 | DOI

[205] L. Braun; B. A. Younis; B. Weigand A turbulence closure study of the flow and thermal fields in the Ekman layer, Bound.-Layer Meteorol., Volume 175 (2020), pp. 25-55 | DOI

[206] S.-A. Shih; S. A. Triana; J. Rekier; V. Dehant Turbulent dissipation in the boundary layer of precession-driven flow in a sphere, AIP Adv., Volume 13 (2023) no. 7, 075025 | DOI

[207] E. Deusebio; G. Brethouwer; P. Schlatter; E. Lindborg A numerical study of the unstratified and stratified Ekman layer, J. Fluid Mech., Volume 755 (2014), pp. 672-704 | DOI

[208] G. N. Coleman; J. H. Ferziger; P. R. Spalart A numerical study of the turbulent Ekman layer, J. Fluid Mech., Volume 213 (1990), pp. 313-348 | DOI

[209] C. F. Yoder Venus’ free obliquity, Icarus, Volume 117 (1995) no. 2, pp. 250-286 | DOI

[210] J. G. Williams; D. H. Boggs; C. F. Yoder; J. T. Ratcliff; J. O. Dickey Lunar rotational dissipation in solid body and molten core, J. Geophys. Res. Planets, Volume 106 (2001) no. E11, pp. 27933-27968 | DOI

[211] J. F. Kreider A laboratory study of the turbulent Ekman layer, PhD thesis, University of Colorado, Boulder (1973)

[212] E. Ferrero; A. Longhetto; L. Montabone et al. Physical simulations of neutral boundary layer in rotating tank, Il Nuovo Cimento, Volume 28 (2005), pp. 1-17

[213] D. Sous; J. Sommeria A Tsai’s model based S-PIV method for velocity measurements in a turbulent Ekman layer, Flow Meas. Instrum., Volume 26 (2012), pp. 102-110 | DOI

[214] L. Prandtl; W. Tollmien Die Windverteilung über dem Erdboden, errechnet aus den Gesetzen der Rohrströmung, Z. Geophys., Volume 1 (1924), pp. 47-55

[215] E. C. Kung On the momentum exchange between the atmosphere and earth over the northern hemisphere, Mon. Weather Rev., Volume 96 (1968) no. 6, pp. 337-341 | DOI

[216] I. G. Jonsson A new approach to oscillatory rough turbulent boundary layers, Ocean Eng., Volume 7 (1980) no. 1, pp. 109-152 | DOI

[217] J. Sleath Turbulent oscillatory flow over rough beds, J. Fluid Mech., Volume 182 (1987), pp. 369-409 | DOI

[218] M. Méndez; M. S. Shadloo; A. Hadjadj; A. Ducoin Boundary layer transition over a concave surface caused by centrifugal instabilities, Comput. Fluids, Volume 171 (2018), pp. 135-153 | DOI

[219] B. A. Buffett Conditions for turbulent Ekman layers in precessionally driven flow, Geophys. J. Int., Volume 226 (2021) no. 1, pp. 56-65 | DOI

[220] B. Sikdar; M. Dumberry The differential precession of Earth’s fluid and solid cores, Phys. Earth Planet. Int., Volume 339 (2023), 107022 | DOI

[221] J. R. Taylor; S. Sarkar Stratification effects in a bottom Ekman layer, J. Phys. Oceanogr., Volume 38 (2008) no. 11, pp. 2535-2555 | DOI

[222] P. G. Huang; P. Bradshaw Law of the wall for turbulent flows in pressure gradients, AIAA J., Volume 33 (1995) no. 4, pp. 624-632 | DOI

[223] P. Bradshaw; G. P. Huang The law of the wall in turbulent flow, Proc. R. Soc. Lond. A, Volume 451 (1995) no. 1941, pp. 165-188 | DOI

[224] M. G. Rosevear; B. Gayen; B. K. Galton-Fenzi The role of double-diffusive convection in basal melting of Antarctic ice shelves, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 6, e2007541118 | DOI

[225] L. Mahrt Stably stratified atmospheric boundary layers, Annu. Rev. Fluid Mech., Volume 46 (2014), pp. 23-45 | DOI

[226] A. S. Monin The atmospheric boundary layer, Annu. Rev. Fluid Mech., Volume 2 (1970) no. 1, pp. 225-250 | DOI

[227] A. M. Obukhov Turbulence in an atmosphere with a non-uniform temperature, Bound.-Layer Meteorol., Volume 2 (1971) no. 1, pp. 7-29 | DOI

[228] A. Perlin; J. N. Moum; J. M. Klymak; M. D. Levine; T. Boyd; P. M. Kosro A modified law-of-the-wall applied to oceanic bottom boundary layers, J. Geophys. Res. Oceans, Volume 110 (2005) no. C10, pp. 1-9 | DOI

[229] J. R. Taylor; S. Sarkar Internal gravity waves generated by a turbulent bottom Ekman layer, J. Fluid Mech., Volume 590 (2007), pp. 331-354 | DOI

[230] P. F. Linden The deepening of a mixed layer in a stratified fluid, J. Fluid Mech., Volume 71 (1975) no. 2, pp. 385-405 | DOI

[231] E. Xuequan; E. J. Hopfinger On mixing across an interface in a stably stratified fluid, J. Fluid Mech., Volume 166 (1986), pp. 227-244 | DOI

[232] J. R. Munroe; B. R. Sutherland Internal wave energy radiated from a turbulent mixed layer, Phys. Fluids, Volume 26 (2014) no. 9, 096604 | DOI

[233] S. Hanasoge; L. Gizon; K. R. Sreenivasan Seismic sounding of convection in the Sun, Annu. Rev. Fluid Mech., Volume 48 (2016), pp. 191-217 | DOI

[234] T. Gastine; J. M. Aurnou Latitudinal regionalization of rotating spherical shell convection, J. Fluid Mech., Volume 954 (2023), R1 | DOI

[235] X. Zhu; R. J. A. M. Stevens; O. Shishkina; R. Verzicco; D. Lohse N u R a 1/2 scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence, J. Fluid Mech., Volume 869 (2019), R4 | DOI

[236] E. A. Spiegel; G. Veronis On the Boussinesq approximation for a compressible fluid, Astrophys. J., Volume 131 (1960), pp. 442-447 | DOI

[237] D. D. Gray; A. Giorgini The validity of the Boussinesq approximation for liquids and gases, Int. J. Heat Mass Transf., Volume 19 (1976) no. 5, pp. 545-551 | DOI

[238] J. S. Cheng; M. Madonia; A. J. Aguirre Guzmán; R. P. J. Kunnen Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection, Phys. Rev. Fluids, Volume 5 (2020) no. 11, 113501 | DOI

[239] P.-E. Roche The ultimate state of convection: a unifying picture of very high Rayleigh numbers experiments, New J. Phys., Volume 22 (2020) no. 7, 073056

[240] V. Solomatov 9.04 - Magma oceans and primordial mantle differentiation, Treatise on Geophysics (G. Schubert, ed.), Elsevier, Oxford, 2015, pp. 81-104 | DOI

[241] Y. Zhang; N. Zhang; M. Tian Internal dynamics of magma ocean and its linkage to atmospheres, Acta Geochim., Volume 41 (2022) no. 4, pp. 568-591 | DOI

[242] J. Schumacher; K. R. Sreenivasan Colloquium: Unusual dynamics of convection in the Sun, Rev. Mod. Phys., Volume 92 (2020) no. 4, 041001 | DOI

[243] R. E. Ecke; O. Shishkina Turbulent rotating Rayleigh–Bénard convection, Annu. Rev. Fluid Mech., Volume 55 (2023), pp. 603-638 | DOI

[244] D. Lohse; O. Shishkina Ultimate Rayleigh–Bénard turbulence, Rev. Mod. Phys., Volume 96 (2024) no. 3, 035001 | DOI

[245] P. Cardin; P. Olson 8.13 - Experiments on core dynamics, Treatise on Geophysics (G. Schubert, ed.), Elsevier, Oxford, 2015, pp. 317-339 | DOI

[246] A. Pothérat; S. Horn Seven decades of exploring planetary interiors with rotating convection experiments, C. R. Phys., Volume 25 (2024) no. S3, pp. 1-48

[247] W. V. R. Malkus The heat transport and spectrum of thermal turbulence, Proc. R. Soc. Lond. A, Volume 225 (1954) no. 1161, pp. 196-212 | DOI

[248] E. A. Spiegel A generalization of the mixing-length theory of turbulent convection, Astrophys. J., Volume 138 (1963), pp. 216-225 | DOI

[249] R. H. Kraichnan Turbulent thermal convection at arbitrary Prandtl number, Phys. Fluids, Volume 5 (1962) no. 11, pp. 1374-1389 | DOI

[250] J. Schumacher; V. Bandaru; A. Pandey; J. D. Scheel Transitional boundary layers in low-Prandtl-number convection, Phys. Rev. Fluids, Volume 1 (2016) no. 8, 084402 | DOI

[251] G. Ahlers; E. Bodenschatz; D. Funfschilling; S. Grossmann; X. He; D. Lohse; R. J. A. M. Stevens; R. Verzicco Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 109 (2012) no. 11, 114501 | DOI

[252] G. Ahlers; E. Bodenschatz; X. He Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8, J. Fluid Mech., Volume 758 (2014), pp. 436-467 | DOI

[253] E. P. Van Der Poel; R. Ostilla-Mónico; R. Verzicco; S. Grossmann; D. Lohse Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 115 (2015) no. 15, 154501 | DOI

[254] X. Zhu; V. Mathai; R. J. A. M. Stevens; R. Verzicco; D. Lohse Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 120 (2018) no. 14, 144502 | DOI

[255] J.-C. He; Y. Bao; X. Chen Turbulent boundary layers in thermal convection at moderately high Rayleigh numbers, Phys. Fluids, Volume 36 (2024) no. 2, 025140 | DOI

[256] J. D. Scheel; J. Schumacher Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows, Phys. Rev. Fluids, Volume 2 (2017) no. 12, 123501 | DOI

[257] A. Blass; P. Tabak; R. Verzicco; R. J. A. M. Stevens; D. Lohse The effect of Prandtl number on turbulent sheared thermal convection, J. Fluid Mech., Volume 910 (2021), A37 | DOI

[258] O. Liot; J. Salort; R. Kaiser; R. Du Puits; F. Chillà Boundary layer structure in a rough Rayleigh–Bénard cell filled with air, J. Fluid Mech., Volume 786 (2016), pp. 275-293 | DOI

[259] O. Liot; Q. Ehlinger; É. Rusaouën; T. Coudarchet; J. Salort; F. Chillà Velocity fluctuations and boundary layer structure in a rough Rayleigh–Bénard cell filled with water, Phys. Rev. Fluids, Volume 2 (2017) no. 4, 044605 | DOI

[260] S. Toppaladoddi; S. Succi; J. S. Wettlaufer Roughness as a route to the ultimate regime of thermal convection, Phys. Rev. Lett., Volume 118 (2017) no. 7, 074503 | DOI

[261] Y. Shen; P. Tong; K.-Q. Xia Turbulent convection over rough surfaces, Phys. Rev. Lett., Volume 76 (1996) no. 6, p. 908 | DOI

[262] Y.-B. Du; P. Tong Enhanced heat transport in turbulent convection over a rough surface, Phys. Rev. Lett., Volume 81 (1998) no. 5, pp. 987-990 | DOI

[263] S. Ciliberto; C. Laroche Random roughness of boundary increases the turbulent convection scaling exponent, Phys. Rev. Lett., Volume 82 (1999) no. 20, pp. 3998-4001 | DOI

[264] Y.-B. Du; P. Tong Turbulent thermal convection in a cell with ordered rough boundaries, J. Fluid Mech., Volume 407 (2000), pp. 57-84 | DOI

[265] J.-C. Tisserand; M. Creyssels; Y. Gasteuil; H. Pabiou; M. Gibert; B. Castaing; F. Chillà Comparison between rough and smooth plates within the same Rayleigh–Bénard cell, Phys. Fluids, Volume 23 (2011) no. 1, 015105 | DOI

[266] J. Salort; O. Liot; E. Rusaouen; F. Seychelles; J.-C. Tisserand; M. Creyssels; B. Castaing; F. Chillà Thermal boundary layer near roughnesses in turbulent Rayleigh–Bénard convection: flow structure and multistability, Phys. Fluids, Volume 26 (2014) no. 1, 015112 | DOI

[267] P. Wei; T.-S. Chan; R. Ni; X.-Z. Zhao; K.-Q. Xia Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection, J. Fluid Mech., Volume 740 (2014), pp. 28-46 | DOI

[268] Y.-C. Xie; K.-Q. Xia Turbulent thermal convection over rough plates with varying roughness geometries, J. Fluid Mech., Volume 825 (2017), pp. 573-599 | DOI

[269] E. Rusaouën; O. Liot; B. Castaing; J. Salort; F. Chillà Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries, J. Fluid Mech., Volume 837 (2018), pp. 443-460 | DOI

[270] R. du Puits Thermal boundary layers in turbulent Rayleigh–Bénard convection with rough and smooth plates: A one-to-one comparison, Phys. Rev. Fluids, Volume 9 (2024) no. 2, 023501 | DOI

[271] P.-E. Roche; B. Castaing; B. Chabaud; B. Hébral Observation of the 1/2 power law in Rayleigh–Bénard convection, Phys. Rev. E, Volume 63 (2001) no. 4, 045303 | DOI

[272] X. Zhu; R. A. Verschoof; D. Bakhuis; S. G. Huisman; R. Verzicco; C. Sun; D. Lohse Wall roughness induces asymptotic ultimate turbulence, Nat. Phys., Volume 14 (2018) no. 4, pp. 417-423 | DOI

[273] X. Zhu; R. J. A. M. Stevens; R. Verzicco; D. Lohse Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection, Phys. Rev. Lett., Volume 119 (2017) no. 15, 154501 | DOI

[274] B. Favier; E. Knobloch Robust wall states in rapidly rotating Rayleigh–Bénard convection, J. Fluid Mech., Volume 895 (2020), R1 | DOI

[275] P. Joshi; H. Rajaei; R. P. J. Kunnen; H. J. H. Clercx Heat transfer in rotating Rayleigh–Bénard convection with rough plates, J. Fluid Mech., Volume 830 (2017), R3 | DOI

[276] V. K. Tripathi; P. Joshi Regimes in rotating Rayleigh–Bénard convection over rough boundaries, J. Fluid Mech., Volume 982 (2024), A15 | DOI

[277] X. Zhang; D. P. M. Van Gils; S. Horn et al. Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 124 (2020) no. 8, 084505 | DOI

[278] X. M. de Wit; W. J. M. Boot; M. Madonia; A. J. Aguirre Guzmán; R. P. J. Kunnen Robust wall modes and their interplay with bulk turbulence in confined rotating Rayleigh–Bénard convection, Phys. Rev. Fluids, Volume 8 (2023) no. 7, 073501

[279] F. Zhang; J.-H. Xie Non-Hermitian Chern number in rotating Rayleigh–Bénard convection, J. Fluid Mech., Volume 999 (2024), A65 | DOI

[280] L. Terrien; B. Favier; E. Knobloch Suppression of wall modes in rapidly rotating Rayleigh–Bénard convection by narrow horizontal fins, Phys. Rev. Lett., Volume 130 (2023) no. 17, 174002 | DOI

[281] A. García; J. P. Solano; P. G. Vicente; A. Viedma The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils, Appl. Therm. Eng., Volume 35 (2012), pp. 196-201 | DOI

[282] P. Urban; P. Hanzelka; T. Králík; M. Macek; V. Musilová; L. Skrbek Elusive transition to the ultimate regime of turbulent Rayleigh–Bénard convection, Phys. Rev. E, Volume 99 (2019) no. 1, 011101 | DOI

[283] R. Menaut; Y. Corre; L. Huguet et al. Experimental study of convection in the compressible regime, Phys. Rev. Fluids, Volume 4 (2019) no. 3, 033502 | DOI

[284] Y. Ricard; T. Alboussière Compressible convection in super-Earths, Phys. Earth Planet. Int., Volume 341 (2023), 107062 | DOI

[285] C. R. Doering; P. Constantin Variational bounds on energy dissipation in incompressible flows. III. Convection, Phys. Rev. E, Volume 53 (1996) no. 6, pp. 5957-5981 | DOI

[286] T. Alboussière; Y. Ricard; S. Labrosse Upper bound of heat flux in an anelastic model for Rayleigh–Bénard convection, J. Fluid Mech., Volume 999 (2024), A94 | DOI

[287] P. I. Bell; A. M. Soward The influence of surface topography on rotating convection, J. Fluid Mech., Volume 313 (1996), pp. 147-180 | DOI

[288] J. Herrmann; F. H. Busse Stationary and time dependent convection in the rotating cylindrical annulus with modulated height, Phys. Fluids, Volume 10 (1998) no. 7, pp. 1611-1620 | DOI

[289] A. P. Bassom; A. M. Soward Localised rotating convection induced by topography, Phys. D, Volume 97 (1996) no. 1-3, pp. 29-44 | DOI

[290] M. Westerburg; F. H. Busse Centrifugally driven convection in the rotating cylindrical annulus with modulated boundaries, Nonlinear Process. Geophys., Volume 10 (2003) no. 3, pp. 275-280 | DOI

[291] M. A. Calkins; J. Noir; J. D. Eldredge; J. M. Aurnou The effects of boundary topography on convection in Earth’s core, Geophys. J. Int., Volume 189 (2012) no. 2, pp. 799-814 | DOI

[292] P. G. Baines Topographic Effects in Stratified Flows, Cambridge University Press, Cambridge, 2022

[293] D. L. Boyer; P. A. Davies Laboratory studies of orographic effects in rotating and stratified flows, Annu. Rev. Fluid Mech., Volume 32 (2000) no. 1, pp. 165-202 | DOI

[294] K. D. Stewart; C. J. Shakespeare On stratified flow over a topographic ridge in a rotating annulus, Geophys. Astrophys. Fluid Dyn., Volume 118 (2024) no. 1, pp. 25-70 | DOI

[295] M. Economidou; G. R. Hunt Density stratified environments: the double-tank method, Exp. Fluids, Volume 46 (2009), pp. 453-466 | DOI

[296] T. Peacock; P. Weidman The effect of rotation on conical wave beams in a stratified fluid, Exp. Fluids, Volume 39 (2005), pp. 32-37 | DOI

[297] Ž. Nosan; F. Burmann; P. A. Davidson; J. Noir Evanescent inertial waves, J. Fluid Mech., Volume 918 (2021), R2 | DOI

[298] S. Friedlander; W. L. Siegmann Internal waves in a contained rotating stratified fluid, J. Fluid Mech., Volume 114 (1982), pp. 123-156 | DOI

[299] Y. Colin de Verdière; J. Vidal On gravito-inertial surface waves, preprint, 2024 (p. 1–14) | arXiv

[300] S. Friedlander; W. L. Siegmann Internal waves in a rotating stratified fluid in an arbitrary gravitational field, Geophys. Astrophys. Fluid Dyn., Volume 19 (1982) no. 3-4, pp. 267-291 | DOI

[301] B. Dintrans; M. Rieutord; L. Valdettaro Gravito-inertial waves in a rotating stratified sphere or spherical shell, J. Fluid Mech., Volume 398 (1999), pp. 271-297 | DOI

[302] D. S. Zimmerman; S. A. Triana; D. P. Lathrop Bi-stability in turbulent, rotating spherical Couette flow, Phys. Fluids, Volume 23 (2011) no. 6, 065104 | DOI

[303] D. S. Zimmerman; S. A. Triana; H.-C. Nataf; D. P. Lathrop A turbulent, high magnetic Reynolds number experimental model of Earth’s core, J. Geophys. Res. Solid Earth, Volume 119 (2014) no. 6, pp. 4538-4557 | DOI

[304] F. Stefani; A. Gailitis; G. Gerbeth; A. Giesecke; T. Gundrum; G. Rüdiger; M. Seilmayer; T. Vogt The DRESDYN project: liquid metal experiments on dynamo action and magnetorotational instability, Geophys. Astrophys. Fluid Dyn., Volume 113 (2019) no. 1–2, pp. 51-70 | DOI

[305] D. Lemasquerier; B. Favier; M. Le Bars Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance, J. Fluid Mech., Volume 910 (2021), A18 | DOI

[306] J. Boisson; D. Cébron; F. Moisy; P.-P. Cortet Earth rotation prevents exact solid-body rotation of fluids in the laboratory, Europhys. Lett., Volume 98 (2012) no. 5, 59002 | DOI

[307] S. A. Triana; D. S. Zimmerman; D. P. Lathrop Precessional states in a laboratory model of the Earth’s core, J. Geophys. Res. Solid Earth, Volume 117 (2012), B04103 | DOI

[308] U. R. Christensen; J. Aubert; P. Cardin et al. A numerical dynamo benchmark, Phys. Earth Planet. Int., Volume 128 (2001) no. 1-4, pp. 25-34 | DOI

[309] P. Marti; N. Schaeffer; R. Hollerbach et al. Full sphere hydrodynamic and dynamo benchmarks, Geophys. J. Int., Volume 197 (2014) no. 1, pp. 119-134 | DOI

Cited by Sources:

Comments - Policy