Most theoretical studies of Rayleigh–Bénard Convection assume that the velocity boundary layer develops on the whole width or height $H$ of the convection cell, or that the development length $h$ scales with $H$. We argue that it is probably not the case, and examine the consequences of an intermediate asymptotics hypothesis in the sense of Barenblatt [1], the development length $h$ scaling with the Nusselt number: $h\propto H\mathrm{Nu}^{-\alpha }$. This hypothesis is checked through existing experimental data, which show that $\alpha $ can take several different values. The analysis of Grossmann and Lohse [2] is reexamined with this new point of view, stressing on pure scaling regimes.
La plupart des études théoriques sur la convection de Rayleigh–Bénard supposent que la couche limite de vitesse se développe sur toute la largeur ou la hauteur $H$ de la cellule de convection, ou que la longueur de développement $h$ est proportionnelle à $H$. Nous soutenons qu’il est probablement incorrect de faire cette supposition, et nous examinons les conséquences d’une hypothèse d’asymptotique intermédiaire au sens de Barenblatt [1], où la longueur de développement $h$ dépend du nombre de Nusselt : $h \propto H\mathrm{Nu}^{-\alpha }$. Cette hypothèse est vérifiée à partir de données expérimentales existantes, qui montrent que $\alpha $ peut prendre plusieurs valeurs différentes. L’analyse de Grossmann et Lohse [2] est réexaminée sous cette nouvelle perspective, en mettant l’accent sur les régimes d’échelle pure.
Revised:
Accepted:
Published online:
Mots-clés : Hydrodynamique, Convection thermique, Turbulence, Couches limites, Lois d’échelle
Bernard Castaing 1; Francesca Chillà 2; Julien Salort 2; Yann Fraigneau 3; Anne Sergent 3
CC-BY 4.0
@article{CRPHYS_2025__26_G1_587_0,
author = {Bernard Castaing and Francesca Chill\`a and Julien Salort and Yann Fraigneau and Anne Sergent},
title = {The inertial regimes in {Rayleigh{\textendash}B\'enard} convection},
journal = {Comptes Rendus. Physique},
pages = {587--617},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {26},
doi = {10.5802/crphys.257},
language = {en},
}
TY - JOUR AU - Bernard Castaing AU - Francesca Chillà AU - Julien Salort AU - Yann Fraigneau AU - Anne Sergent TI - The inertial regimes in Rayleigh–Bénard convection JO - Comptes Rendus. Physique PY - 2025 SP - 587 EP - 617 VL - 26 PB - Académie des sciences, Paris DO - 10.5802/crphys.257 LA - en ID - CRPHYS_2025__26_G1_587_0 ER -
%0 Journal Article %A Bernard Castaing %A Francesca Chillà %A Julien Salort %A Yann Fraigneau %A Anne Sergent %T The inertial regimes in Rayleigh–Bénard convection %J Comptes Rendus. Physique %D 2025 %P 587-617 %V 26 %I Académie des sciences, Paris %R 10.5802/crphys.257 %G en %F CRPHYS_2025__26_G1_587_0
Bernard Castaing; Francesca Chillà; Julien Salort; Yann Fraigneau; Anne Sergent. The inertial regimes in Rayleigh–Bénard convection. Comptes Rendus. Physique, Volume 26 (2025), pp. 587-617. doi: 10.5802/crphys.257
[1] Scaling, self-similarity, and intermediate asymptotics, Cambridge Texts in Applied Mathematics, 14, Cambridge University Press, 1996, xxii+386 pages | DOI | MR | Zbl
[2] Small-scale properties of turbulent Rayleigh–Bénard convection, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 335-364 | Zbl | DOI
[3] New perspectives in turbulent Rayleigh–Bénard convection, Eur. Phys. J. E, Volume 35 (2012), pp. 1-25 | DOI
[4] Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection, Rev. Mod. Phys., Volume 81 (2009), 503
[5] Ultimate Rayleigh–Bénard turbulence, Rev. Mod. Phys., Volume 96 (2024), 035001
[6] Variational bounds on energy dissipation in incompressible flows. III. Convection, Phys. Rev. E, Volume 53 (1996), 5957 | DOI
[7] Scaling in thermal convection: a unifying theory, J. Fluid Mech., Volume 407 (2000), pp. 27-56 | MR | Zbl | DOI
[8] The unifying theory of scaling in thermal convection: the updated prefactors, J. Fluid Mech., Volume 730 (2013), pp. 295-308 | DOI | Zbl
[9] The heat transport and spectrum of thermal turbulence, Proc. R. Soc. Lond., Ser. A, Volume 225 (1954) no. 1161, pp. 196-212 | MR | Zbl
[10] Turbulent Rayleigh–Bénard convection in gaseous and liquid He, Phys. Fluids, Volume 13 (2001) no. 5, pp. 1300-1320 | DOI | Zbl
[11] The mixing transition in turbulent flows, J. Fluid Mech., Volume 409 (2000), pp. 69-98 | MR | Zbl | DOI
[12] Turbulent heat transport regimes in a channel, Phys. Rev. Fluids, Volume 2 (2017), 062801 | DOI
[13] Scaling of hard thermal turbulence in Rayleigh–Bénard convection, J. Fluid Mech., Volume 204 (1989), pp. 1-30 | MR | DOI
[14] Along a road to developed turbulence: Free thermal convection in low temperature helium gas, Ph. D. Thesis, University of Chicago (USA) (1991)
[15] Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number, J. Fluid Mech., Volume 335 (1997), pp. 111-140 | MR | DOI
[16] Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection, Eur. Phys. Lett., Volume 58 (2002) no. 5, 693
[17] Long relaxation times and tilt sensitivity in Rayleigh–Bénard turbulence, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 40 (2004), pp. 223-227 | DOI
[18] Scaling in large Prandtl number turbulent thermal convection, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 28 (2002), pp. 361-367 | DOI
[19] Side wall effects in Rayleigh–Bénard experiments, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 24 (2001), pp. 405-408 | DOI
[20] Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection, Phys. Rev. E, Volume 63 (2000), 015303, 4 pages | DOI
[21] Reynolds number scaling in cryogenic turbulent Rayleigh–Bénard convection in a cylindrical aspect ratio one cell, J. Fluid Mech., Volume 832 (2017), pp. 721-744 | DOI
[22] Experimental and numerical shadowgraph in turbulent Rayleigh–Bénard convection with a rough boundary: investigation of plumes, J. Fluid Mech., Volume 895 (2020), A7 | DOI
[23] On the role of roughness valleys in turbulent Rayleigh–Bénard convection, J. Fluid Mech., Volume 923 (2021), A6, 22 pages | DOI | MR | Zbl
[24] Heat flux and shear rate in turbulent convection, Phys. Rev. E, Volume 55 (1997), pp. 1189-1192 | DOI
[25] Turbulent thermal convection at arbitrary Prandtl number, Phys. Fluids, Volume 5 (1962) no. 11, pp. 1374-1389 | DOI | Zbl
[26] Physique théorique. Tome VI: Mécanique des fluides, Éditions Mir, 1971, 669 pages | Zbl
[27] Prandtl number effects in convective turbulence, J. Fluid Mech., Volume 383 (1999), pp. 55-73 | DOI | Zbl
[28] Length of near-wall plumes in turbulent convection, J. Fluid Mech., Volume 685 (2011), pp. 335-364 | DOI | Zbl
[29] Coherent structures in turbulent convection, an experimental study, Phys. A: Stat. Mech. Appl., Volume 166 (1990) no. 3, pp. 387-407 | DOI
[30] Hydrodynamique physique, Savoirs actuels, EDP Sciences, 2012, 724 pages
[31] Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8, J. Fluid Mech., Volume 758 (2014), pp. 436-467 | DOI | MR
[32] Turbulence, Cambridge University Press, 1995, 312 pages | DOI | MR
[33] Ultimate regime of Rayleigh–Bénard turbulence: subregimes and their scaling relations for the Nusselt vs Rayleigh and Prandtl numbers, Phys. Rev. Lett., Volume 133 (2024), 144001, 7 pages | DOI | MR
[34] Upper bounds on Nusselt number at finite Prandtl number, J. Differ. Equations, Volume 260 (2016) no. 4, pp. 3860-3880 | DOI | MR | Zbl
[35] Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh–Bénard convection, New J. Phys., Volume 17 (2015), 063028, 26 pages | DOI
[36] Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe, J. Fluid Mech., Volume 621 (2009), pp. 69-102 | Zbl | DOI
[37] Convection in a vertical channel, New J. Phys., Volume 12 (2010), 075024, 21 pages | DOI
[38] Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence, Phys. Fluids, Volume 17 (2005) no. 5, 055107
[39] Turbulent convection at very high Rayleigh numbers, Nature, Volume 404 (2000), pp. 837-840 | DOI
[40] On the triggering of the Ultimate Regime of convection, New J. Phys., Volume 12 (2010), 085014, 26 pages | DOI
[41] Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection, J. Fluid Mech., Volume 688 (2011), pp. 31-43 | DOI | Zbl
[42] Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection, J. Fluid Mech., Volume 655 (2010), pp. 152-173 | DOI | Zbl
[43] Evidence of a boundary layer instability at very high Rayleigh number, Eur. Phys. Lett., Volume 83 (2008) no. 2, 24005 | DOI
Cited by Sources:
Comments - Policy
