Comptes Rendus
Research article
The inertial regimes in Rayleigh–Bénard convection
Comptes Rendus. Physique, Volume 26 (2025), pp. 587-617

Most theoretical studies of Rayleigh–Bénard Convection assume that the velocity boundary layer develops on the whole width or height $H$ of the convection cell, or that the development length $h$ scales with $H$. We argue that it is probably not the case, and examine the consequences of an intermediate asymptotics hypothesis in the sense of Barenblatt [1], the development length $h$ scaling with the Nusselt number: $h\propto H\mathrm{Nu}^{-\alpha }$. This hypothesis is checked through existing experimental data, which show that $\alpha $ can take several different values. The analysis of Grossmann and Lohse [2] is reexamined with this new point of view, stressing on pure scaling regimes.

La plupart des études théoriques sur la convection de Rayleigh–Bénard supposent que la couche limite de vitesse se développe sur toute la largeur ou la hauteur $H$ de la cellule de convection, ou que la longueur de développement $h$ est proportionnelle à $H$. Nous soutenons qu’il est probablement incorrect de faire cette supposition, et nous examinons les conséquences d’une hypothèse d’asymptotique intermédiaire au sens de Barenblatt [1], où la longueur de développement $h$ dépend du nombre de Nusselt : $h \propto H\mathrm{Nu}^{-\alpha }$. Cette hypothèse est vérifiée à partir de données expérimentales existantes, qui montrent que $\alpha $ peut prendre plusieurs valeurs différentes. L’analyse de Grossmann et Lohse [2] est réexaminée sous cette nouvelle perspective, en mettant l’accent sur les régimes d’échelle pure.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crphys.257
Keywords: Hydrodynamics, Thermal Convection, Turbulence, Boundary layers, Scaling laws
Mots-clés : Hydrodynamique, Convection thermique, Turbulence, Couches limites, Lois d’échelle

Bernard Castaing 1; Francesca Chillà 2; Julien Salort 2; Yann Fraigneau 3; Anne Sergent 3

1 Laboratoire des écoulements géophysiques et industriels, Domaine Universitaire, CS 40700, 38058 Grenoble Cedex 9, France
2 ENSL, CNRS, Laboratoire de physique, 69342 Lyon, France
3 Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91405 Orsay, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2025__26_G1_587_0,
     author = {Bernard Castaing and Francesca Chill\`a and Julien Salort and Yann Fraigneau and Anne Sergent},
     title = {The inertial regimes in {Rayleigh{\textendash}B\'enard} convection},
     journal = {Comptes Rendus. Physique},
     pages = {587--617},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     doi = {10.5802/crphys.257},
     language = {en},
}
TY  - JOUR
AU  - Bernard Castaing
AU  - Francesca Chillà
AU  - Julien Salort
AU  - Yann Fraigneau
AU  - Anne Sergent
TI  - The inertial regimes in Rayleigh–Bénard convection
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 587
EP  - 617
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.257
LA  - en
ID  - CRPHYS_2025__26_G1_587_0
ER  - 
%0 Journal Article
%A Bernard Castaing
%A Francesca Chillà
%A Julien Salort
%A Yann Fraigneau
%A Anne Sergent
%T The inertial regimes in Rayleigh–Bénard convection
%J Comptes Rendus. Physique
%D 2025
%P 587-617
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.257
%G en
%F CRPHYS_2025__26_G1_587_0
Bernard Castaing; Francesca Chillà; Julien Salort; Yann Fraigneau; Anne Sergent. The inertial regimes in Rayleigh–Bénard convection. Comptes Rendus. Physique, Volume 26 (2025), pp. 587-617. doi: 10.5802/crphys.257

[1] Grigory Isaakovich Barenblatt Scaling, self-similarity, and intermediate asymptotics, Cambridge Texts in Applied Mathematics, 14, Cambridge University Press, 1996, xxii+386 pages | DOI | MR | Zbl

[2] Detlef Lohse; K.-Q. Xia Small-scale properties of turbulent Rayleigh–Bénard convection, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 335-364 | Zbl | DOI

[3] F. Chillà; J. Schumacher New perspectives in turbulent Rayleigh–Bénard convection, Eur. Phys. J. E, Volume 35 (2012), pp. 1-25 | DOI

[4] Guenter Ahlers; S. Grossmann; Detlef Lohse Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection, Rev. Mod. Phys., Volume 81 (2009), 503

[5] Detlef Lohse; Olga Shishkina Ultimate Rayleigh–Bénard turbulence, Rev. Mod. Phys., Volume 96 (2024), 035001

[6] C. R. Doering; P. Constantin Variational bounds on energy dissipation in incompressible flows. III. Convection, Phys. Rev. E, Volume 53 (1996), 5957 | DOI

[7] S. Grossmann; Detlef Lohse Scaling in thermal convection: a unifying theory, J. Fluid Mech., Volume 407 (2000), pp. 27-56 | MR | Zbl | DOI

[8] Richard J. A. M. Stevens; E. P. van der Poel; S. Grossmann; Detlef Lohse The unifying theory of scaling in thermal convection: the updated prefactors, J. Fluid Mech., Volume 730 (2013), pp. 295-308 | DOI | Zbl

[9] M. V. R. Malkus The heat transport and spectrum of thermal turbulence, Proc. R. Soc. Lond., Ser. A, Volume 225 (1954) no. 1161, pp. 196-212 | MR | Zbl

[10] X. Chavanne; F. Chillà; B. Chabaud; B. Castaing; B. Hébral Turbulent Rayleigh–Bénard convection in gaseous and liquid He, Phys. Fluids, Volume 13 (2001) no. 5, pp. 1300-1320 | DOI | Zbl

[11] Paul E. Dimotakis The mixing transition in turbulent flows, J. Fluid Mech., Volume 409 (2000), pp. 69-98 | MR | Zbl | DOI

[12] B. Castaing; E. Rusaouën; J. Salort; F. Chillà Turbulent heat transport regimes in a channel, Phys. Rev. Fluids, Volume 2 (2017), 062801 | DOI

[13] B. Castaing; G. Gunaratne; F. Heslot; L. Kadanoff; Albert Libchaber; S. Thomae; X. Z. Wu; S. Zaleski; G. Zanetti Scaling of hard thermal turbulence in Rayleigh–Bénard convection, J. Fluid Mech., Volume 204 (1989), pp. 1-30 | MR | DOI

[14] X. Z. Wu Along a road to developed turbulence: Free thermal convection in low temperature helium gas, Ph. D. Thesis, University of Chicago (USA) (1991)

[15] S. Cioni; S. Ciliberto; J. Sommeria Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number, J. Fluid Mech., Volume 335 (1997), pp. 111-140 | MR | DOI

[16] P.-E. Roche; B. Castaing; B. Chabaud; B. Hébral Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection, Eur. Phys. Lett., Volume 58 (2002) no. 5, 693

[17] F. Chillà; M. Rastello; S. Chaumat; B. Castaing Long relaxation times and tilt sensitivity in Rayleigh–Bénard turbulence, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 40 (2004), pp. 223-227 | DOI

[18] B. Dubrulle Scaling in large Prandtl number turbulent thermal convection, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 28 (2002), pp. 361-367 | DOI

[19] P.-E. Roche; B. Castaing; B. Chabaud; B. Hébral; J. Sommeria Side wall effects in Rayleigh–Bénard experiments, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 24 (2001), pp. 405-408 | DOI

[20] Guenter Ahlers Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection, Phys. Rev. E, Volume 63 (2000), 015303, 4 pages | DOI

[21] V. Musilovà; T. Kràlík; M. La Mantia; M. Macek; P. Urban; L. Skrbek Reynolds number scaling in cryogenic turbulent Rayleigh–Bénard convection in a cylindrical aspect ratio one cell, J. Fluid Mech., Volume 832 (2017), pp. 721-744 | DOI

[22] M. Belkadi; L. Guislain; A. Sergent; B. Podvin; F. Chillà; J. Salort Experimental and numerical shadowgraph in turbulent Rayleigh–Bénard convection with a rough boundary: investigation of plumes, J. Fluid Mech., Volume 895 (2020), A7 | DOI

[23] M. Belkadi; A. Sergent; Y. Fraigneau; B. Podvin On the role of roughness valleys in turbulent Rayleigh–Bénard convection, J. Fluid Mech., Volume 923 (2021), A6, 22 pages | DOI | MR | Zbl

[24] Emily S. C. Ching Heat flux and shear rate in turbulent convection, Phys. Rev. E, Volume 55 (1997), pp. 1189-1192 | DOI

[25] Robert H. Kraichnan Turbulent thermal convection at arbitrary Prandtl number, Phys. Fluids, Volume 5 (1962) no. 11, pp. 1374-1389 | DOI | Zbl

[26] L. D. Landau; E. M. Lifchitz Physique théorique. Tome VI: Mécanique des fluides, Éditions Mir, 1971, 669 pages | Zbl

[27] Roberto Verzicco; R. Camussi Prandtl number effects in convective turbulence, J. Fluid Mech., Volume 383 (1999), pp. 55-73 | DOI | Zbl

[28] Baburaj A. Puthenveettil; G. S. Gunasegarane; Yogesh K. Agrawal; Daniel Schmeling; Johannes Bosbach; Jaywant H. Arakeri Length of near-wall plumes in turbulent convection, J. Fluid Mech., Volume 685 (2011), pp. 335-364 | DOI | Zbl

[29] Giovanni Zocchi; Elisha Moses; Albert Libchaber Coherent structures in turbulent convection, an experimental study, Phys. A: Stat. Mech. Appl., Volume 166 (1990) no. 3, pp. 387-407 | DOI

[30] Étienne Guyon; Jean-Pierre Hulin; Luc Petit Hydrodynamique physique, Savoirs actuels, EDP Sciences, 2012, 724 pages

[31] Guenter Ahlers; Eberhard Bodenschatz; Xiaozhou He Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8, J. Fluid Mech., Volume 758 (2014), pp. 436-467 | DOI | MR

[32] Uriel Frisch Turbulence, Cambridge University Press, 1995, 312 pages | DOI | MR

[33] Olga Shishkina; Detlef Lohse Ultimate regime of Rayleigh–Bénard turbulence: subregimes and their scaling relations for the Nusselt vs Rayleigh and Prandtl numbers, Phys. Rev. Lett., Volume 133 (2024), 144001, 7 pages | DOI | MR

[34] Antoine Choffrut; Camilla Nobili; Felix Otto Upper bounds on Nusselt number at finite Prandtl number, J. Differ. Equations, Volume 260 (2016) no. 4, pp. 3860-3880 | DOI | MR | Zbl

[35] Xiaozhou He; Dennis P. M. van Gils; Eberhard Bodenschatz; Guenter Ahlers Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh–Bénard convection, New J. Phys., Volume 17 (2015), 063028, 26 pages | DOI

[36] M. Cholemari; Jaywant H. Arakeri Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe, J. Fluid Mech., Volume 621 (2009), pp. 69-102 | Zbl | DOI

[37] J.-C. Tisserand; M. Creyssels; M. Gibert; B. Castaing; F. Chillà Convection in a vertical channel, New J. Phys., Volume 12 (2010), 075024, 21 pages | DOI

[38] Enrico Calzavarini; Detlef Lohse; Federico Toschi; Raffaele Tripiccione Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence, Phys. Fluids, Volume 17 (2005) no. 5, 055107

[39] J. J. Niemela; L. Skrbek; K. R. Sreenivasan; R. J. Donnelly Turbulent convection at very high Rayleigh numbers, Nature, Volume 404 (2000), pp. 837-840 | DOI

[40] P.-E. Roche; F. Gauthier; R. Kaiser; J. Salort On the triggering of the Ultimate Regime of convection, New J. Phys., Volume 12 (2010), 085014, 26 pages | DOI

[41] Richard J. A. M. Stevens; Detlef Lohse; Roberto Verzicco Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection, J. Fluid Mech., Volume 688 (2011), pp. 31-43 | DOI | Zbl

[42] J. Bailon-Cuba; M. S. Emran; J. Schumacher Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection, J. Fluid Mech., Volume 655 (2010), pp. 152-173 | DOI | Zbl

[43] F. Gauthier; P.-E. Roche Evidence of a boundary layer instability at very high Rayleigh number, Eur. Phys. Lett., Volume 83 (2008) no. 2, 24005 | DOI

Cited by Sources:

Comments - Policy