In this paper, we investigate the quasi normal modes (QNMs) of static spherically symmetric black holes in the Einstein-bumblebee gravity model, taking into account the effects of the field mass and the cosmological constant. Through separation of the angular components, the scalar field perturbations outside the black hole are reduced to a purely radial main equation. We calculated the quasinormal modes using the matrix method and the WKB approximation, and also studied the dynamical evolution of the purely radial main equation using the finite difference method in the time domain. The eigenfrequencies of the waveforms from the time-domain evolution are fitted to cross-validate the frequency-domain results. The Lorentz-violating parameter $\ell $, cosmological constant $\Lambda $, and scalar field mass $\mu M$ affect QNMs. Specifically, increasing $\ell $ decreases both real and imaginary parts of the monopole modes, but in the dipole and quadrupole modes, the real part remains nearly unchanged while the imaginary part drops rapidly; rising $\Lambda $ reduces both parts of QNMs; increasing $\mu M$ raises the real part and lowers the imaginary part. Time-domain analysis confirms these findings, clarifying how Lorentz symmetry breaking impacts QNMs in de Sitter spacetime.
Dans cet article, nous étudions les modes quasi normaux (QNM) des trous noirs statiques sphériquement symétriques dans le modèle de gravité Einstein-bumblebee, en tenant compte des effets de la masse du champ et de la constante cosmologique. Grâce à la séparation des composantes angulaires, les perturbations du champ scalaire à l’extérieur du trou noir sont réduites à une équation principale purement radiale. Nous avons calculé les modes quasi normaux à l’aide de la méthode matricielle et de l’approximation WKB, et avons également étudié l’évolution dynamique de l’équation principale purement radiale à l’aide de la méthode des différences finies dans le domaine temporel. Les fréquences propres des formes d’onde issues de l’évolution dans le domaine temporel sont ajustées afin de valider les résultats dans le domaine fréquentiel. Le paramètre de violation de Lorentz $\ell $, la constante cosmologique $\Lambda $ et la masse du champ scalaire $\mu M$ affectent les QNM. Plus précisément, l’augmentation de $\ell $ diminue à la fois les parties réelles et imaginaires des modes monopôles, mais dans les modes dipôles et quadrupôles, la partie réelle reste pratiquement inchangée tandis que la partie imaginaire diminue rapidement ; l’augmentation de $\Lambda $ réduit les deux parties des QNM ; l’augmentation de $\mu M$ augmente la partie réelle et diminue la partie imaginaire. L’analyse dans le domaine temporel confirme ces résultats, clarifiant ainsi l’impact de la rupture de la symétrie de Lorentz sur les QNM dans l’espace-temps de Sitter.
Revised:
Accepted:
Published online:
Mots-clés : Violation de Lorentz, trous noirs, modes quasi normaux
Hao Hu 1; Guoxiong Zhu 2, 3
CC-BY 4.0
@article{CRPHYS_2025__26_G1_571_0,
author = {Hao Hu and Guoxiong Zhu},
title = {Quasinormal modes and dynamical evolution of scalar fields in the {Einstein-bumblebee} theory with a cosmological constant},
journal = {Comptes Rendus. Physique},
pages = {571--586},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {26},
doi = {10.5802/crphys.260},
language = {en},
}
TY - JOUR AU - Hao Hu AU - Guoxiong Zhu TI - Quasinormal modes and dynamical evolution of scalar fields in the Einstein-bumblebee theory with a cosmological constant JO - Comptes Rendus. Physique PY - 2025 SP - 571 EP - 586 VL - 26 PB - Académie des sciences, Paris DO - 10.5802/crphys.260 LA - en ID - CRPHYS_2025__26_G1_571_0 ER -
%0 Journal Article %A Hao Hu %A Guoxiong Zhu %T Quasinormal modes and dynamical evolution of scalar fields in the Einstein-bumblebee theory with a cosmological constant %J Comptes Rendus. Physique %D 2025 %P 571-586 %V 26 %I Académie des sciences, Paris %R 10.5802/crphys.260 %G en %F CRPHYS_2025__26_G1_571_0
Hao Hu; Guoxiong Zhu. Quasinormal modes and dynamical evolution of scalar fields in the Einstein-bumblebee theory with a cosmological constant. Comptes Rendus. Physique, Volume 26 (2025), pp. 571-586. doi: 10.5802/crphys.260
[1] Lorentz invariance with an invariant energy scale, Phys. Rev. Lett., Volume 88 (2002), 190403, 4 pages | DOI
[2] gravity and local Lorentz invariance, Phys. Rev. D, Volume 83 (2011), 064035, 5 pages | DOI
[3] A systematic approach to generalisations of general relativity and their cosmological implications, Phys. Rep., Volume 796 (2019), pp. 1-113 | DOI | MR
[4] Lorentz invariance violation tests in astroparticle physics, Symmetry, Volume 12 (2020) no. 8, 1232, 14 pages | DOI
[5] A short review of loop quantum gravity, Rep. Prog. Phys., Volume 84 (2021) no. 4, 042001 | DOI | MR
[6] Conformal loop quantum gravity coupled to the standard model, Class. Quant. Grav., Volume 34 (2016) no. 2, 02LT01 | DOI | MR | Zbl
[7] Lorentz-violating extension of the standard model, Phys. Rev. D, Volume 58 (1998), 116002, 23 pages | DOI
[8] Testing CPT symmetry with correlated neutral mesons, Phys. Rev. D, Volume 96 (2017), 116015, 14 pages | DOI
[9] Static and spherically symmetric black holes in gravity with a background Kalb–Ramond field, Phys. Rev. D, Volume 108 (2023), 124004, 11 pages | DOI | MR
[10] Electrically charged black holes in gravity with a background Kalb–Ramond field, Eur. Phys. J. C, Volume 84 (2024), 798, 14 pages | DOI | Zbl
[11] Exploring antisymmetric tensor effects on black hole shadows and quasinormal frequencies, J. Cosmol. Astropart. Phys., Volume 2024 (2024) no. 05, 029 | DOI | MR
[12] Static neutral black holes in Kalb–Ramond gravity, J. Cosmol. Astropart. Phys., Volume 2024 (2024) no. 09, 017 | DOI | MR | Zbl
[13] Shadow of slowly rotating Kalb–Ramond black holes, J. Cosmol. Astropart. Phys., Volume 2025 (2025) no. 05, 017 | DOI | Zbl | MR
[14] The impact of an antisymmetric tensor on charged black holes: evaporation process, geodesics, deflection angle, scattering effects and quasinormal modes (2024) | arXiv
[15] Shadows, greybody factors, emission rate, topological charge, and phase transitions for a charged black hole with a Kalb–Ramond field background (2024) | arXiv
[16] Thermal, topological, and scattering effects of an AdS charged black hole with an antisymmetric tensor background (2024) | arXiv
[17] Lorentz violation signatures in the low-energy sector of Hořava gravity from black hole shadow observations, Phys. Lett. B, Volume 868 (2025), 139812, 9 pages | DOI | MR
[18] Observational signature of Lorentz violation in acceleration radiation (2025) | arXiv
[19] Optical phenomena in a non-commutative Kalb–Ramond black hole spacetime (2025) | arXiv
[20] A non-commutative Kalb–Ramond black hole (2025) | arXiv
[21] Global monopole in a Ricci-coupled Kalb–Ramond bumblebee gravity, Eur. Phys. J. C, Volume 85 (2025), 658, 15 pages | DOI
[22] Towards thermodynamics of universal horizons in Einstein-æther theory, Phys. Rev. Lett., Volume 110 (2013), 071301, 5 pages | DOI
[23] Gravitational phenomenology in higher-dimensional theories and strings, Phys. Rev. D, Volume 40 (1989), pp. 1886-1903 | DOI
[24] Exact Schwarzschild-like solution in a bumblebee gravity model, Phys. Rev. D, Volume 97 (2018), 104001, 14 pages | DOI | MR
[25] Black holes with a cosmological constant in bumblebee gravity, Phys. Rev. D, Volume 103 (2021), 044002, 11 pages | DOI | MR
[26] Vacuum solution within a metric-affine bumblebee gravity, Phys. Rev. D, Volume 108 (2023), 085010, 13 pages | DOI | MR
[27] Exact traversable wormhole solution in bumblebee gravity, Phys. Rev. D, Volume 99 (2019), 024042, 10 pages | DOI | MR
[28] Exact Kerr-like solution and its shadow in a gravity model with spontaneous Lorentz symmetry breaking, Eur. Phys. J. C, Volume 80 (2020), 178, 7 pages | DOI
[29] Rotating BTZ-like black hole and central charges in Einstein-bumblebee gravity, Eur. Phys. J. C, Volume 83 (2023), 573, 9 pages | DOI
[30] Einstein–Gauss–Bonnet gravity coupled to bumblebee field in four dimensional spacetime, Nucl. Phys., B, Volume 975 (2022), 115688, 17 pages | DOI | MR | Zbl
[31] Quasinormal frequencies for a black hole in a bumblebee gravity, Europhys. Lett., Volume 135 (2021) no. 1, 10003 | DOI
[32] QNMs of slowly rotating Einstein-bumblebee black hole, Eur. Phys. J. C, Volume 83 (2023), 83, 16 pages | DOI
[33] Quasinormal modes of the bumblebee black holes with a global monopole, Int. J. Theor. Phys., Volume 63 (2024), 199 | DOI | MR | Zbl
[34] Dynamic instability analysis for bumblebee black holes: the odd parity, Phys. Rev. D, Volume 109 (2024), 084076, 13 pages | DOI | MR
[35] Quasinormal modes of a massive scalar field in slowly rotating Einstein-bumblebee black holes (2025) | arXiv
[36] Bumblebee gravity with a Kerr–Sen like solution and its shadow, Eur. Phys. J. C, Volume 81 (2021), 345 | DOI
[37] Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole, Ann. Phys., Volume 447 (2022), 169147 | DOI | MR | Zbl
[38] Gravitational lensing and shadow by a Schwarzschild-like black hole in metric-affine bumblebee gravity, Eur. Phys. J. C, Volume 84 (2024), 973, 10 pages | DOI
[39] Testing black holes with cosmological constant in Einstein-bumblebee gravity through the black hole shadow using EHT data and deflection angle (2025) | arXiv
[40] Charged spherically symmetric and slowly rotating charged black hole solutions in bumblebee gravity (2025) | arXiv
[41] Light rings and shadows of static black holes in effective quantum gravity II: a new solution without Cauchy horizons, Phys. Lett. B, Volume 868 (2025), 139742, 9 pages | DOI | MR
[42] Light rings and shadows of static black holes in effective quantum gravity, Phys. Lett. B, Volume 858 (2024), 139052, 8 pages | DOI | MR | Zbl
[43] Testing EGB gravity coupled to bumblebee field and black hole parameter estimation with EHT observations, Phys. Dark Universe, Volume 46 (2024), 101642 | DOI
[44] Probing Schwarzschild-like black holes in metric-affine bumblebee gravity with accretion disk, deflection angle, greybody bounds, and neutrino propagation, J. Cosmol. Astropart. Phys., Volume 2023 (2023) no. 12, 026, 19 pages | DOI | MR | Zbl
[45] Lorentz violation alleviates gravitationally induced entanglement degradation, J. High Energy Phys., Volume 2025 (2025), 184, 20 pages | DOI | Zbl
[46] Harvesting correlations from BTZ black hole coupled to a Lorentz-violating vector field, J. High Energy Phys., Volume 2025 (2025), 94, 26 pages | DOI | MR
[47] How does non-metricity affect particle creation and evaporation in bumblebee gravity? (2025) | arXiv
[48] Gravitational traces of bumblebee gravity in metric-affine formalism, Class. Quant. Grav., Volume 41 (2024) no. 5, 055003 | DOI | MR | Zbl
[49] Gravitational waves effects in a Lorentz-violating scenario, Phys. Lett. B, Volume 855 (2024), 138785, 7 pages | DOI | MR | Zbl
[50] Probing Schwarzschild-like black holes in metric-affine bumblebee gravity with accretion disk, deflection angle, greybody bounds, and neutrino propagation, J. Cosmol. Astropart. Phys., Volume 2023 (2023) no. 12, 026, 19 pages | DOI | MR | Zbl
[51] An exact stationary axisymmetric vacuum solution within a metric-affine bumblebee gravity, J. Cosmol. Astropart. Phys., Volume 2024 (2024) no. 07, 004 | DOI | MR | Zbl
[52] Gravitational lensing and shadow by a Schwarzschild-like black hole in metric-affine bumblebee gravity, Eur. Phys. J. C, Volume 84 (2024), 973, 10 pages | DOI
[53] Scattering effects of bumblebee gravity in metric-affine formalism, Eur. Phys. J. C, Volume 84 (2024), 1221, 13 pages | DOI
[54] Constrain from shadows of M87* and Sgr A* and quasiperiodic oscillations of galactic microquasars on a black hole arising from metric-affine bumblebee model (2024) | arXiv
[55] Modified particle dynamics and thermodynamics in a traversable wormhole in bumblebee gravity, Eur. Phys. J. C, Volume 85 (2025), 83, 19 pages | DOI
[56] Gravitational lensing by a Lorentz-violating black hole (2024) | arXiv
[57] Lorentz violation induces isospectrality breaking in Einstein-bumblebee gravity theory, Sci. China Phys. Mech. Astron., Volume 67 (2024), 280413 | DOI
[58] Neutron stars in the bumblebee theory of gravity, Phys. Rev. D, Volume 110 (2024), 104057, 16 pages | DOI | MR
[59] Black-hole no-hair theorems for a positive cosmological constant, Phys. Rev. Lett., Volume 99 (2007), 201101, 4 pages | DOI | MR | Zbl
[60] Kerr black holes with Proca hair, Class. Quant. Grav., Volume 33 (2016) no. 15, 154001 | DOI
[61] Stability of Schwarzschild singularity in non-local gravity, Phys. Lett. B, Volume 773 (2017), pp. 596-600 | DOI
[62] Generalized Regge–Wheeler equation from effective field theory of black hole perturbations with a timelike scalar profile, J. Cosmol. Astropart. Phys., Volume 2022 (2022) no. 10, 050 | DOI
[63] Gravitational perturbations in the Newman–Penrose formalism: applications to wormholes, Phys. Rev. D, Volume 103 (2021), 084033, 16 pages | DOI | MR
[64] Accelerating black holes: quasinormal modes and late-time tails, Phys. Rev. D, Volume 102 (2020), 044005, 15 pages | DOI | MR
[65] Gravitation with superposed Gauss–Bonnet terms in higher dimensions: black hole metrics and maximal extensions, Phys. Rev. D, Volume 65 (2001), 024029, 9 pages | MR | DOI
[66] Quasi-normal modes of Schwarzschild–de Sitter black holes, Class. Quant. Grav., Volume 21 (2003) no. 1, 273 | DOI | MR | Zbl
[67] Quasinormal behavior of the -dimensional Schwarzschild black hole and the higher order WKB approach, Phys. Rev. D, Volume 68 (2003), 024018, 8 pages | DOI
[68] A matrix method for quasinormal modes: Schwarzschild black holes in asymptotically flat and (anti-) de Sitter spacetimes, Class. Quant. Grav., Volume 34 (2017) no. 9, 095004 | DOI
[69] A matrix method for quasinormal modes: Kerr and Kerr–Sen black holes, Modern Phys. Lett. A, Volume 32 (2017) no. 25, 1750134 | DOI
[70] The matrix method for black hole quasinormal modes, Chin. Phys. C, Volume 43 (2019) no. 3, 035105 | DOI
[71] Dirac quasinormal modes of the Reissner–Nordström–de Sitter black hole, Phys. Rev. D, Volume 69 (2004), 084009, 8 pages | DOI
[72] Gravito-electromagnetic perturbations of MOG black holes with a cosmological constant: quasinormal modes and ringdown waveforms, J. Cosmol. Astropart. Phys., Volume 2023 (2023) no. 11, 057 | DOI
[73] Kerr-MOG-(A)dS black hole and its shadow in scalar-tensor-vector gravity theory, J. Cosmol. Astropart. Phys., Volume 2024 (2024) no. 08, 035 | DOI
[74] Quasinormal modes and the correspondence with shadow in black holes with a deficit solid angle and quintessence-like matter, Nucl. Phys., B, Volume 983 (2022), 115925, 16 pages | DOI
[75] Gauge invariant perturbations of general spherically symmetric spacetimes, Sci. China Phys. Mech. Astron., Volume 66 (2023), 210411 | DOI
[76] Quasinormal modes and isospectrality of Bardeen (anti-) de Sitter black holes, Chin. Phys. C, Volume 48 (2024) no. 3, 035102 | DOI
[77] Instability of the massive Klein–Gordon field on the Kerr spacetime, Phys. Rev. D, Volume 76 (2007), 084001, 12 pages | DOI
[78] Quasibound state reminiscent in de Sitter black holes: quasinormal modes and the decay of massive fields, Phys. Rev. D, Volume 109 (2024), 084018, 13 pages | DOI
[79] Quasinormal frequencies of self-dual black holes, Phys. Rev. D, Volume 93 (2016), 084047, 9 pages | DOI
[80] Test of quantum gravity in statistical mechanics, Phys. Rev. D, Volume 104 (2021), 026014, 15 pages | DOI
[81] Phase transitions and regions of stability in Reissner–Nordström holographic superconductors, Phys. Rev. D, Volume 82 (2010), 124033, 6 pages | DOI
[82] Stability of Reissner–Nordström black hole in de Sitter background under charged scalar perturbation, Phys. Rev. D, Volume 90 (2014), 044042, 9 pages | DOI
[83] Echoes of axial gravitational perturbations in stars of uniform density, Chin. Phys. C, Volume 47 (2023) no. 8, 085101 | Zbl | DOI
[84] Squeezed gravitons from superradiant axion fields around rotating black holes (2025) | arXiv
[85] The spectroscopy of Kerr–Einstein–Maxwell-dilaton-axion: exact quasibound states, scalar cloud, horizon’s Boson statistics and superradiant, Eur. Phys. J. C, Volume 85 (2025), 352, 18 pages | DOI
[86] Superradiant instability of magnetic black holes, Phys. Rev. D, Volume 110 (2024), 104001, 15 pages | DOI
[87] Superradiance and stability of rotating charged black holes in T-duality (2023) | arXiv
[88] Alice falls into a black hole: entanglement in noninertial frames, Phys. Rev. Lett., Volume 95 (2005), 120404, 4 pages | DOI
[89] Entanglement of Dirac fields in noninertial frames, Phys. Rev. A, Volume 74 (2006), 032326, 15 pages | DOI
[90] Stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., Volume 84 (2012), pp. 1-24 | DOI
[91] Genuinely accessible and inaccessible entanglement in Schwarzschild black hole, Phys. Lett. B, Volume 848 (2024), 138334, 6 pages | DOI
[92] Does Hawking effect always degrade fidelity of quantum teleportation in Schwarzschild spacetime?, J. High Energy Phys., Volume 2023 (2023), 232, 19 pages | DOI
[93] Does gravitational wave assist vacuum steering and Bell nonlocality?, J. High Energy Phys., Volume 2024 (2024), 155, 15 pages | DOI
[94] Influence of dark matter on quantum entanglement and coherence in curved spacetime (2025) | arXiv
[95] Entangled Unruh–DeWitt detectors amplify quantum coherence (2025) | arXiv
[96] Can the latent signatures of quantum superposition be detected through correlation harvesting? (2025) | arXiv
[97] Black hole solutions as topological thermodynamic defects, Phys. Rev. Lett., Volume 129 (2022), 191101, 6 pages | DOI
[98] Universal topological classifications of black hole thermodynamics (2024) | arXiv
[99] Thermodynamic topology and photon spheres in the hyperscaling violating black holes, Astropart. Phys., Volume 156 (2024), 102920 | DOI
[100] Topological classification and black hole thermodynamics, Phys. Dark Universe, Volume 42 (2023), 101361 | DOI
[101] Classifying topology of consistent thermodynamics of the four-dimensional neutral Lorentzian NUT-charged spacetimes, Eur. Phys. J. C, Volume 83 (2023), 365, 10 pages | DOI
[102] Consistent thermodynamics and topological classes for the four-dimensional Lorentzian charged Taub-NUT spacetimes, Eur. Phys. J. C, Volume 83 (2023), 589, 12 pages | DOI
[103] Topological classes of thermodynamics of the four-dimensional static accelerating black holes, Phys. Rev. D, Volume 108 (2023), 084041, 13 pages | DOI
[104] Topological classes of thermodynamics of the static multi-charge AdS black holes in gauged supergravities: novel temperature-dependent thermodynamic topological phase transition, J. High Energy Phys., Volume 2024 (2024), 213, 34 pages | DOI
[105] Novel topological classes in black hole thermodynamics, Phys. Rev. D, Volume 111 (2025), L061501, 8 pages | DOI
[106] Thermodynamic topological classes of the rotating, accelerating black holes, Class. Quant. Grav., Volume 42 (2025) no. 12, 125007 | DOI
[107] Universal thermodynamic topological classes of rotating black holes, Phys. Lett. B, Volume 860 (2025), 139163, 9 pages | DOI
[108] Thermodynamic topology of Einstein–Maxwell-dilaton theories (2025) | arXiv
Cited by Sources:
Comments - Policy
