Comptes Rendus
Analysing discrete dislocation data using alignment and curvature tensors
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 249-266.

Analysis of large scale discrete dislocation data requires the characterisation of complex dislocation networks by suitable average quantities. In the current work, we suggest dislocation alignment tensors and closely related curvature tensors as easily extractable and intelligible measures of geometrical and topological characteristics of dislocation distributions. We provide formulae for extracting these measures from discrete dislocation data based on straight segments. Examples for interpreting and visualising these measures are provided for a simple configuration and two more involved results from discrete dislocation simulations. We suggest the alignment and curvature tensors for wider use in plasticity research.

Première publication :
Publié le :
DOI : 10.5802/crphys.60
Mots clés : Discrete dislocation simulations, Dislocation alignment tensors, Dislocation curvature tensors, Data analysis, Plasticity, Microstructure
Benedikt Weger 1 ; Satyapriya Gupta 1 ; Thomas Hochrainer 1

1 Institut für Festigkeitslehre, Technische Universität Graz, Kopernikusgasse 24, 8010 Graz, Austria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_S3_249_0,
     author = {Benedikt Weger and Satyapriya Gupta and Thomas Hochrainer},
     title = {Analysing discrete dislocation data using alignment and curvature tensors},
     journal = {Comptes Rendus. Physique},
     pages = {249--266},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.60},
     language = {en},
}
TY  - JOUR
AU  - Benedikt Weger
AU  - Satyapriya Gupta
AU  - Thomas Hochrainer
TI  - Analysing discrete dislocation data using alignment and curvature tensors
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 249
EP  - 266
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.60
LA  - en
ID  - CRPHYS_2021__22_S3_249_0
ER  - 
%0 Journal Article
%A Benedikt Weger
%A Satyapriya Gupta
%A Thomas Hochrainer
%T Analysing discrete dislocation data using alignment and curvature tensors
%J Comptes Rendus. Physique
%D 2021
%P 249-266
%V 22
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.60
%G en
%F CRPHYS_2021__22_S3_249_0
Benedikt Weger; Satyapriya Gupta; Thomas Hochrainer. Analysing discrete dislocation data using alignment and curvature tensors. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 249-266. doi : 10.5802/crphys.60. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.60/

[1] M. D. Sangid Coupling in situ experiments and modeling — opportunities for data fusion, machine learning, and discovery of emergent behavior, Curr. Opin. Solid State Mater. Sci., Volume 24 (2020) no. 1, 100797

[2] L. A. Zepeda-Ruiz; A. Stukowski; T. Oppelstrup; V. V. Bulatov Probing the limits of metal plasticity with molecular dynamics simulations, Nature, Volume 550 (2017) no. 7677, pp. 492-495 | DOI

[3] S. I. Rao; C. Woodward; B. Akdim; E. Antillon; T. A. Parthasarathy; J. A. El-Awady; D. M. Dimiduk Large-scale dislocation dynamics simulations of strain hardening of ni microcrystals under tensile loading, Acta Mater., Volume 164 (2019), pp. 171-183 | DOI

[4] E. Kröner Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal., Volume 4 (1959), pp. 273-334 | DOI | MR | Zbl

[5] E. Kröner Benefits and shortcomings of the continuous theory of dislocations, Int. J. Solids Struct., Volume 38 (2001) no. 6–7, pp. 1115-1134 | DOI | Zbl

[6] G. Z. Voyiadjis; M. Yaghoobi Size and strain rate effects in metallic samples of confined volumes: Dislocation length distribution, Scr. Mater., Volume 130 (2017), pp. 182-186 | DOI

[7] R. B. Sills; N. Bertin; A. Aghaei; W. Cai Dislocation networks and the microstructural origin of strain hardening, Phys. Rev. Lett., Volume 121 (2018), 085501

[8] T. Hochrainer Multipole expansion of continuum dislocations dynamics in terms of alignment tensors, Philos. Mag., Volume 95 (2015) no. 12, pp. 1321-1367 | DOI

[9] S. Sandfeld; G. Po Microstructural comparison of the kinematics of discrete and continuum dislocations models, Model. Simul. Mater. Sci. Eng., Volume 23 (2015) no. 8, 085003 | DOI

[10] D. Steinberger; H. Song; S. Sandfeld Machine learning-based classification of dislocation microstructures, Front. Mater., Volume 6 (2019), pp. 141-150 | DOI

[11] S. Hess Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals, Z. Naturforsch., Volume 30a (1975), pp. 728-733 | DOI

[12] S. G. Advani; C. L. Tucker The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., Volume 31 (1987) no. 8, pp. 751-784 | DOI

[13] M. Kröger Flow-induced alignment of rod-like and flexible polymers in the molten state, Physica A, Volume 249 (1998), pp. 332-336 | DOI

[14] A. N. Pressley Elementary Differential Geometry, Springer-Verlag, 2001 | DOI | Zbl

[15] M. Tang; G. Hommes; S. Aubry; A. Arsenlis ParaDIS-FEM dislocation dynamics simulation code primer, 2011 (Technical Report, https://www.osti.gov/biblio/1037843/)

[16] E. Kröner Initial studies of a plasticity theory based upon statistical mechanics, Inelastic Behavior of Solids, McGraw-Hill Book Company, New York, 1969, pp. 137-147

[17] M. Zaiser Local density approximation for the energy functional of three-dimensional dislocation systems, Phys. Rev. B, Volume 92 (2015), 174120 | DOI

[18] L. Balogh; L. Capolungo; C. N. Tomé On the measure of dislocation densities from diffraction line profiles: A comparison with discrete dislocation methods, Acta Mater., Volume 60 (2012) no. 4, pp. 1467-1477 | DOI

[19] Nicolas Bertin; Wei Cai Computation of virtual X-ray diffraction patterns from discrete dislocation structures, Comput. Mater. Sci., Volume 146 (2018), pp. 268-277 | DOI

[20] D. Bamney; A. Tallman; L. Capolungo; D. E. Spearot Virtual diffraction analysis of dislocations and dislocation networks in discrete dislocation dynamics simulations, Comput. Mater. Sci., Volume 174 (2020), 109473 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Foreword: Plasticity and Solid State Physics

Samuel Forest; David Rodney

C. R. Phys (2021)


Microstructure evolution of compressed micropillars investigated by in situ HR-EBSD analysis and dislocation density simulations

Kolja Zoller; Szilvia Kalácska; Péter Dusán Ispánovity; ...

C. R. Phys (2021)


The core structure of screw dislocations with [001] Burgers vector in Mg 2 SiO 4 olivine

Srinivasan Mahendran; Philippe Carrez; Patrick Cordier

C. R. Phys (2021)