Comptes Rendus
4D electron tomography of dislocations undergoing electron irradiation
Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 67-81.

Imaging dislocation microstructures in 3D and monitoring their interactions over time is a major challenge. In this study, we show that enhancing the contrast of dislocation lines prior to reconstruction, allows to optimize an acquisition phase with fewer images and thus to follow the 3D evolution of a microstructure over time. We illustrate this new possibility by studying the first stages of formation of helical dislocations in MgO under electron irradiation. We highlight the role of segment mobility on the initiation of climb and reveal the existence of preferential mixed climb planes.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Online First:
Published online:
DOI: 10.5802/crphys.80
Keywords: Dislocation, Electron tomography, Irradiation, Helical dislocations, MgO
Alexandre Mussi 1; Philippe Carrez 1; Karine Gouriet 1; Benoit Hue 1; Patrick Cordier 1, 2

1 Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux Et Transformations, F-59000 Lille, France
2 Institut Universitaire de France, 1 rue Descartes, F-75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Alexandre Mussi and Philippe Carrez and Karine Gouriet and Benoit Hue and Patrick Cordier},
     title = {4D electron tomography of dislocations undergoing electron irradiation},
     journal = {Comptes Rendus. Physique},
     pages = {67--81},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S3},
     year = {2021},
     doi = {10.5802/crphys.80},
     language = {en},
AU  - Alexandre Mussi
AU  - Philippe Carrez
AU  - Karine Gouriet
AU  - Benoit Hue
AU  - Patrick Cordier
TI  - 4D electron tomography of dislocations undergoing electron irradiation
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 67
EP  - 81
VL  - 22
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.80
LA  - en
ID  - CRPHYS_2021__22_S3_67_0
ER  - 
%0 Journal Article
%A Alexandre Mussi
%A Philippe Carrez
%A Karine Gouriet
%A Benoit Hue
%A Patrick Cordier
%T 4D electron tomography of dislocations undergoing electron irradiation
%J Comptes Rendus. Physique
%D 2021
%P 67-81
%V 22
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.80
%G en
%F CRPHYS_2021__22_S3_67_0
Alexandre Mussi; Philippe Carrez; Karine Gouriet; Benoit Hue; Patrick Cordier. 4D electron tomography of dislocations undergoing electron irradiation. Comptes Rendus. Physique, Volume 22 (2021) no. S3, pp. 67-81. doi : 10.5802/crphys.80.

[1] J. Miao; P. Ercius; S. J. L. Billinge Atomic electron tomography: 3D structures without crystals, Science, Volume 353 (2016), aaf2157 | DOI

[2] D. Wrapp; N. Wang; K. S. Corbett; J. A. Goldsmith; C. L. Hsieh; O. Abiona; B. S. Graham; J. S. McLellan Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, Volume 367 (2020), pp. 1260-1263 | DOI

[3] J. S. Barnard; J. Sharp; J. R. Tong; P. A. Midgley High-resolution three-dimensional imaging of dislocations, Science, Volume 313 (2006), p. 319 | DOI

[4] O. H. Kwon; A. H. Zewail 4D electron tomography, Science, Volume 328 (2010), pp. 1668-1673 | DOI

[5] J. Kacher; I. M. Robertson Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel, Acta Mater., Volume 60 (2012), pp. 6657-6672 | DOI

[6] S. Hata; H. Furukawa; T. Gondo; D. Hirakami; N. Horii; K. I. Ikeda; K. Kawamoto; K. Kimura et al. Electron tomography imaging methods with diffraction contrast for materials research, Microscopy, Volume 69 (2020), pp. 141-155 | DOI

[7] A. Mussi; J. Gallet; O. Castelnau; P. Cordier Application of electron tomography of dislocations in beam-sensitive quartz to the determination of strain components, Tectonophysics, Volume 803 (2021), 228754 | DOI

[8] P. Cordier; D. Rubie Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus, Mater. Sci. Eng. A, Volume 309 (2001), pp. 38-43 | DOI

[9] A. Mussi; P. Cordier; S. Demouchy; C. Vanmansart Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography, Phys. Chem. Miner., Volume 41 (2014), pp. 537-545 | DOI

[10] G. T. Herman; A. V. Lakshminarayanan; A. Naparstek Convolution reconstruction techniques for divergent beams, Comput. Biol. Med., Volume 6 (1976), pp. 259-271 | DOI

[11] C. Messaoudi; T. Boudier; C. O. Sanchez Sorzano; S. Marco TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy, BMC Bioinform., Volume 8 (2007), 288 | DOI

[12] E. F. Pettersen; T. D. Goddard; C. C. Huang; G. S. Couch; D. M. Greenblatt; E. C. Meng; T. E. Ferrin UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., Volume 25 (2004), pp. 1605-1612 | DOI

[13] G. S. Liu; I. M. Robertson Three-dimensional visualization of dislocation-precipitate interactions in a Al–4Mg–0.3Sc alloy using weak-beam dark-field electron tomography, J. Mater. Res., Volume 26 (2011), pp. 514-522 | DOI

[14] W. Bao; W. S. Lai; C. Ma; X. Zhang; Z. Gao; M. H. Yang Depth-aware video frame interpolation, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2019), pp. 3698-3707

[15] V. Migunov; H. Ryll; X. Zhuge; M. Simson; L. Strüder; K. J. Batenburg; L. Houben; R. E. Dunin-Borkowski Rapid low dose electron tomography using a direct electron detection camera, Sci. Rep., Volume 5 (2015), 14516 | DOI

[16] W. Bontinck; S. Amelinckx Observation of helicoidal dislocation lines in fluorite crystals, Phil. Mag., Volume 2 (1957), pp. 94-96 | DOI

[17] J. Weertman Helical dislocations, Phys. Rev., Volume 107 (1957), pp. 1259-1261 | DOI

[18] R. de Wit Self-energy of a helical dislocation, Phys. Rev., Volume 116 (1959), pp. 592-597 | DOI | Zbl

[19] P. Guyot Frank loops and helical dislocations in quenched aluminium, Phys. Stat. Sol. (a), Volume 5 (1971), pp. 95-108 | DOI

[20] X. Y. Liu; S. B. Biner Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe, Scr. Mater., Volume 59 (2008), pp. 51-54 | DOI

[21] L. B. Munday; J. C. Crone; J. Knap Prismatic and helical dislocation loop generation from defects, Acta Mater., Volume 103 (2016), pp. 217-228 | DOI

[22] F. Liu; Z.-L. Liu; P. Li; Z. Zhuang Numerical investigations of helical dislocations based on coupled glide-climb model, Int. J. Plast., Volume 92 (2017), pp. 2-18 | DOI

[23] S. Amelinckx; W. Bontinck; W. Dekeyser; F. Seitz On the formation and properties of helical dislocations, Philos. Mag., Volume 2 (1957), pp. 355-378 | DOI

[24] Z. Q. Feng; C. W. Lin; T. T. Li; X. Luo; G. L. Wu; X. X. Huang Electron tomography of dislocations in an Al–Cu–Mg alloy, IOP Conf. Series: Mater. Sci. Eng., Volume 219 (2017), 012018

[25] U. Messerschmidt; F. Appel Dislocation motion and formation of dislocation structures during in situ deformation in a high voltage electron microscope, Mat. Sci. Eng. A, Volume 113 (1989), pp. 409-414 | DOI

[26] C. Tromas; J. C. Girard; J. Woirgard Study by atomic force microscopy of elementary deformation mechanisms involved in low load indentations in MgO crystals, Philos. Mag. A, Volume 80 (2000), pp. 2325-2335 | DOI

[27] J. Malaplate; D. Caillard; A. Couret Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl, Philos. Mag., Volume 84 (2004), pp. 3671-3687 | DOI

[28] P. Veyssière; J. Grilhé Experimental study of the influence of some parameters on the helical dislocation equilibrium in quenched alloys, Acta Metall., Volume 19 (1971), pp. 1047-1051 | DOI

[29] G. Wagner; V. Gottschalch Helical dislocations in Sn doped GaP epitaxial layers and their characterization by transmission electron microscopy, Philos. Mag. A, Volume 52 (1985), pp. 395-406 | DOI

[30] J. P. Hirth; J. Lothe Theory of Dislocations, John Wiley & Sons, New York, 1982

[31] J. Grilhé Stabilité des dislocations hélicoïdales, Acta Metall., Volume 12 (1964), pp. 1081-1088 | DOI

Cited by Sources:

Articles of potential interest

The core structure of screw dislocations with [001] Burgers vector in Mg 2 SiO 4 olivine

Srinivasan Mahendran; Philippe Carrez; Patrick Cordier

C. R. Phys (2021)

Screw dislocations in BCC transition metals: from ab initio modeling to yield criterion

Emmanuel Clouet; Baptiste Bienvenu; Lucile Dezerald; ...

C. R. Phys (2021)

Multiscale modeling of the effective viscoplastic behavior of Mg 2 SiO 4 wadsleyite: bridging atomic and polycrystal scales

O. Castelnau; K. Derrien; S. Ritterbex; ...

C. R. Méca (2020)