Imaging dislocation microstructures in 3D and monitoring their interactions over time is a major challenge. In this study, we show that enhancing the contrast of dislocation lines prior to reconstruction, allows to optimize an acquisition phase with fewer images and thus to follow the 3D evolution of a microstructure over time. We illustrate this new possibility by studying the first stages of formation of helical dislocations in MgO under electron irradiation. We highlight the role of segment mobility on the initiation of climb and reveal the existence of preferential mixed climb planes.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Published online:
Alexandre Mussi 1; Philippe Carrez 1; Karine Gouriet 1; Benoit Hue 1; Patrick Cordier 1, 2

@article{CRPHYS_2021__22_S3_67_0, author = {Alexandre Mussi and Philippe Carrez and Karine Gouriet and Benoit Hue and Patrick Cordier}, title = {4D electron tomography of dislocations undergoing electron irradiation}, journal = {Comptes Rendus. Physique}, pages = {67--81}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S3}, year = {2021}, doi = {10.5802/crphys.80}, language = {en}, }
TY - JOUR AU - Alexandre Mussi AU - Philippe Carrez AU - Karine Gouriet AU - Benoit Hue AU - Patrick Cordier TI - 4D electron tomography of dislocations undergoing electron irradiation JO - Comptes Rendus. Physique PY - 2021 SP - 67 EP - 81 VL - 22 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.80 LA - en ID - CRPHYS_2021__22_S3_67_0 ER -
%0 Journal Article %A Alexandre Mussi %A Philippe Carrez %A Karine Gouriet %A Benoit Hue %A Patrick Cordier %T 4D electron tomography of dislocations undergoing electron irradiation %J Comptes Rendus. Physique %D 2021 %P 67-81 %V 22 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.80 %G en %F CRPHYS_2021__22_S3_67_0
Alexandre Mussi; Philippe Carrez; Karine Gouriet; Benoit Hue; Patrick Cordier. 4D electron tomography of dislocations undergoing electron irradiation. Comptes Rendus. Physique, Plasticity and Solid State Physics, Volume 22 (2021) no. S3, pp. 67-81. doi : 10.5802/crphys.80. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.80/
[1] Atomic electron tomography: 3D structures without crystals, Science, Volume 353 (2016), aaf2157 | DOI
[2] Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, Volume 367 (2020), pp. 1260-1263 | DOI
[3] High-resolution three-dimensional imaging of dislocations, Science, Volume 313 (2006), p. 319 | DOI
[4] 4D electron tomography, Science, Volume 328 (2010), pp. 1668-1673 | DOI
[5] Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel, Acta Mater., Volume 60 (2012), pp. 6657-6672 | DOI
[6] et al. Electron tomography imaging methods with diffraction contrast for materials research, Microscopy, Volume 69 (2020), pp. 141-155 | DOI
[7] Application of electron tomography of dislocations in beam-sensitive quartz to the determination of strain components, Tectonophysics, Volume 803 (2021), 228754 | DOI
[8] Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus, Mater. Sci. Eng. A, Volume 309 (2001), pp. 38-43 | DOI
[9] Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography, Phys. Chem. Miner., Volume 41 (2014), pp. 537-545 | DOI
[10] Convolution reconstruction techniques for divergent beams, Comput. Biol. Med., Volume 6 (1976), pp. 259-271 | DOI
[11] TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy, BMC Bioinform., Volume 8 (2007), 288 | DOI
[12] UCSF Chimera—A visualization system for exploratory research and analysis, J. Comput. Chem., Volume 25 (2004), pp. 1605-1612 | DOI
[13] Three-dimensional visualization of dislocation-precipitate interactions in a Al–4Mg–0.3Sc alloy using weak-beam dark-field electron tomography, J. Mater. Res., Volume 26 (2011), pp. 514-522 | DOI
[14] Depth-aware video frame interpolation, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2019), pp. 3698-3707
[15] Rapid low dose electron tomography using a direct electron detection camera, Sci. Rep., Volume 5 (2015), 14516 | DOI
[16] Observation of helicoidal dislocation lines in fluorite crystals, Phil. Mag., Volume 2 (1957), pp. 94-96 | DOI
[17] Helical dislocations, Phys. Rev., Volume 107 (1957), pp. 1259-1261 | DOI
[18] Self-energy of a helical dislocation, Phys. Rev., Volume 116 (1959), pp. 592-597 | DOI | Zbl
[19] Frank loops and helical dislocations in quenched aluminium, Phys. Stat. Sol. (a), Volume 5 (1971), pp. 95-108 | DOI
[20] Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe, Scr. Mater., Volume 59 (2008), pp. 51-54 | DOI
[21] Prismatic and helical dislocation loop generation from defects, Acta Mater., Volume 103 (2016), pp. 217-228 | DOI
[22] Numerical investigations of helical dislocations based on coupled glide-climb model, Int. J. Plast., Volume 92 (2017), pp. 2-18 | DOI
[23] On the formation and properties of helical dislocations, Philos. Mag., Volume 2 (1957), pp. 355-378 | DOI
[24] Electron tomography of dislocations in an Al–Cu–Mg alloy, IOP Conf. Series: Mater. Sci. Eng., Volume 219 (2017), 012018
[25] Dislocation motion and formation of dislocation structures during in situ deformation in a high voltage electron microscope, Mat. Sci. Eng. A, Volume 113 (1989), pp. 409-414 | DOI
[26] Study by atomic force microscopy of elementary deformation mechanisms involved in low load indentations in MgO crystals, Philos. Mag. A, Volume 80 (2000), pp. 2325-2335 | DOI
[27] Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl, Philos. Mag., Volume 84 (2004), pp. 3671-3687 | DOI
[28] Experimental study of the influence of some parameters on the helical dislocation equilibrium in quenched alloys, Acta Metall., Volume 19 (1971), pp. 1047-1051 | DOI
[29] Helical dislocations in Sn doped GaP epitaxial layers and their characterization by transmission electron microscopy, Philos. Mag. A, Volume 52 (1985), pp. 395-406 | DOI
[30] Theory of Dislocations, John Wiley & Sons, New York, 1982
[31] Stabilité des dislocations hélicoïdales, Acta Metall., Volume 12 (1964), pp. 1081-1088 | DOI
Cited by Sources:
Comments - Policy