Angle-resolved photoemission is a direct probe of the momentum-resolved electronic structure and proved influential in the study of bulk crystals with novel electronic properties. Thanks to recent technical advances, this technique can now be applied for the first time for the study of van der Waals heterostructures built by stacking two-dimensional crystals. In this article we will present the current state of the art in angle-resolved photoemission measurements on two-dimensional materials and review this still young field. We will focus in particular on devices similar to those used in transport and optics experiments, including the latest developments on magic-angle twisted bilayer graphene and on the in-operando characterization of gate tunable devices.
La photoémission résolue en angle mesure directement la structure électronique des matériaux et s’est distinguée dans l’étude de cristaux volumiques avec de nouvelles propriétés électroniques. Grâce à des avancées techniques récentes, cette technique peut maintenant être utilisée pour étudier les hétérostructures de van der Waals construites en empilant des cristaux bidimensionnels. Dans cet article, nous présenterons l’état de l’art actuel pour la photoémission résolue en angle appliquée aux matériaux bidimensionnels, et nous dresserons un panorama de ce domaine encore jeune. Nous nous focaliserons en particulier sur des systèmes similaires à ceux utilisés pour des expériences de transport et d’optique, y compris la bicouche de graphène avec une orientation relative entre les couches proche de l’angle magique (magic-angle twisted bilayer graphene), et l’effet de la variation in-situ de tension dans les hétérostructures de van der Waals.
Published online:
Keywords: nano-ARPES, matériaux 2D, hétérostructure de van der Waals, structure électronique
Irène Cucchi 1; Simone Lisi 1; Florian Margot 1; Hugo Henck 1; Anna Tamai 1; Felix Baumberger 1, 2

@article{CRPHYS_2021__22_S4_107_0, author = {Ir\`ene Cucchi and Simone Lisi and Florian Margot and Hugo Henck and Anna Tamai and Felix Baumberger}, title = {Electronic structure of {2D} van der {Waals} crystals and heterostructures investigated by spatially- and angle-resolved photoemission}, journal = {Comptes Rendus. Physique}, pages = {107--131}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {S4}, year = {2021}, doi = {10.5802/crphys.91}, language = {en}, }
TY - JOUR AU - Irène Cucchi AU - Simone Lisi AU - Florian Margot AU - Hugo Henck AU - Anna Tamai AU - Felix Baumberger TI - Electronic structure of 2D van der Waals crystals and heterostructures investigated by spatially- and angle-resolved photoemission JO - Comptes Rendus. Physique PY - 2021 SP - 107 EP - 131 VL - 22 IS - S4 PB - Académie des sciences, Paris DO - 10.5802/crphys.91 LA - en ID - CRPHYS_2021__22_S4_107_0 ER -
%0 Journal Article %A Irène Cucchi %A Simone Lisi %A Florian Margot %A Hugo Henck %A Anna Tamai %A Felix Baumberger %T Electronic structure of 2D van der Waals crystals and heterostructures investigated by spatially- and angle-resolved photoemission %J Comptes Rendus. Physique %D 2021 %P 107-131 %V 22 %N S4 %I Académie des sciences, Paris %R 10.5802/crphys.91 %G en %F CRPHYS_2021__22_S4_107_0
Irène Cucchi; Simone Lisi; Florian Margot; Hugo Henck; Anna Tamai; Felix Baumberger. Electronic structure of 2D van der Waals crystals and heterostructures investigated by spatially- and angle-resolved photoemission. Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 107-131. doi : 10.5802/crphys.91. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.91/
[1] Electric Field Effect in Atomically Thin Carbon Films, Science, Volume 306 (2004) no. 5696, pp. 666-669 | DOI
[2] 2D materials and van der Waals heterostructures, Science, Volume 353 (2016) no. 6298, aac9439 | DOI
[3] High-temperature superconductivity in monolayer BiSrCaCuO, Nature, Volume 575 (2019) no. 7781, pp. 156-163 | DOI
[4] Nematicity, magnetism and superconductivity in FeSe, J. Phys.: Condens. Matter, Volume 30 (2017) no. 2, 023001
[5] Emergence of the nematic electronic state in FeSe, Phys. Rev. B, Volume 91 (2015) no. 15, 155106 | DOI
[6] Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature, Volume 546 (2017) no. 7657, pp. 270-273 | DOI
[7] Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature, Volume 546 (2017) no. 7657, pp. 265-269 | DOI
[8] Electrical, structural and magnetic properties of pure and doped 1T-TaS, Philosophical Magazine B, Volume 39 (1979) no. 3, pp. 229-244 | DOI
[9] 1T-TaS as a quantum spin liquid, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 27, pp. 6996-7000 | DOI
[10] Evidence for an Excitonic Insulator Phase in 1T-TiSe, Phys. Rev. Lett., Volume 99 (2007) no. 14, 146403 | DOI
[11] Excitonic Insulator State in TaNiSe Probed by Photoemission Spectroscopy, Phys. Rev. Lett., Volume 103 (2009), 026402 | DOI
[12] Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe, Phys. Rev. X, Volume 6 (2016) no. 3, 031021 | DOI
[13] Prediction and observation of an antiferromagnetic topological insulator, Nature, Volume 576 (2019) no. 7787, pp. 416-422 | DOI
[14] Observation of topological superconductivity on the surface of an iron-based superconductor, Science, Volume 360 (2018) no. 6385, pp. 182-186 | DOI
[15] Visualization of the strain-induced topological phase transition in a quasi-one-dimensional superconductor TaSe, Nature Mater., Volume 20 (2021) no. 8, pp. 1093–-1099 | DOI
[16] Bulk and Surface Electronic Structure of the Dual-Topology Semimetal PtHgSe, Phys. Rev. Lett., Volume 124 (2020) no. 10, 106402 | DOI
[17] Atomically thin MoS: A new direct-gap semiconductor, Phys. Rev. Lett., Volume 105 (2010) no. 13, 136805 | DOI
[18] Emerging photoluminescence in monolayer MoS, Nano Lett., Volume 10 (2010) no. 4, pp. 1271-1275 | DOI
[19] Type-II Weyl semimetals, Nature, Volume 527 (2015) no. 7579, pp. 495-498 | DOI
[20] Edge conduction in monolayer WTe, Nat. Phys., Volume 13 (2017) no. 7, pp. 677-682 | DOI
[21] Quantum spin Hall state in monolayer 1T’-WTe, Nat. Phys., Volume 13 (2017) no. 7, pp. 683-687 | DOI
[22] Observation of the Quantum Spin Hall Effect up to 100 Kelvin in a Monolayer, Science, Volume 359 (2018) no. 6371, pp. 76-79 | MR | Zbl
[23] Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature, Volume 556 (2018) no. 7699, pp. 80-84 | DOI
[24] Photoelectron Spectroscopy, Advanced Texts in Physics, Springer, 2003 | DOI
[25] Angle-resolved photoemission studies of quantum materials, Rev. Mod. Phys., Volume 93 (2021) no. 2, 025006 | DOI
[26] Surface states and topological invariants in three-dimensional topological insulators: Application to BiSb, Phys. Rev. B, Volume 78 (2008) no. 4, 045426 | DOI
[27] Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., Volume 5 (2009), pp. 398-402 | DOI
[28] Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science, Volume 349 (2015) no. 6248, pp. 613-617 | DOI
[29] Growth and electronic structure of epitaxial single-layer WS on Au(111), Phys. Rev. B, Volume 92 (2015) no. 24, 245442 | DOI
[30] Van der Waals epitaxy of two-dimensional MoS-graphene heterostructures in ultrahigh vacuum, ACS Nano, Volume 9 (2015) no. 6, pp. 6502-6510 | DOI
[31] Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe, Nature Nanotech., Volume 9 (2014) no. 2, pp. 111-115 | DOI
[32] Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe, Nano Lett., Volume 18 (2018) no. 7, pp. 4493-4499 | DOI
[33] Electronic structure of monolayer 1T-MoTe grown by molecular beam epitaxy, APL Mater., Volume 6 (2018) no. 2, 026601 | DOI
[34] Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni, Phys. Rev. Lett., Volume 101 (2008) no. 15, 157601 | DOI
[35] Dirac cones and minigaps for graphene on Ir(111), Phys. Rev. Lett., Volume 102 (2009) no. 5, 056808 | DOI
[36] Electronic structure of graphene on single-crystal copper substrates, Phys. Rev. B, Volume 84 (2011) no. 19, 195443 | DOI
[37] Electronic structure of few-layer epitaxial graphene on Ru(0001), Nano Lett., Volume 9 (2009) no. 7, pp. 2654-2660 | DOI
[38] Controlling the electronic structure of bilayer graphene, Science, Volume 313 (2006) no. 5789, pp. 951-954 | DOI
[39] Renormalization of graphene bands by many-body interactions, Solid State Commun., Volume 143 (2007) no. 1-2, pp. 63-71 | DOI
[40] Quasiparticle dynamics in graphene, Nat. Phys., Volume 3 (2007) no. 1, pp. 36-40 | DOI
[41] Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation, Phys. Rev. Lett., Volume 103 (2009) no. 24, 246804 | DOI
[42] Observation of plasmarons in quasi-freestanding doped graphene, Science, Volume 328 (2010) no. 5981, pp. 999-1002 | DOI
[43] Evidence for interlayer coupling and moiré periodic potentials in twisted bilayer graphene, Phys. Rev. Lett., Volume 109 (2012) no. 18, 186807 | DOI
[44] Multiple -bands and Bernal stacking of multilayer graphene on C-face SiC, revealed by nano-Angle Resolved Photoemission, Sci. Rep., Volume 4 (2014) no. 1, 4157 | DOI
[45] Extremely flat band in bilayer graphene, Science Advances, Volume 4 (2018) no. 11, eaau0059 | DOI
[46] Chemical Vapor Deposition and Characterization of Aligned and Incommensurate Graphene/Hexagonal Boron Nitride Heterostack on Cu(111), Nano Lett., Volume 13 (2013) no. 6, pp. 2668-2675 | DOI
[47] Zooming in on Electronic Structure: NanoARPES at SOLEIL and ALS, Synchrotron Radiat. News, Volume 25 (2012) no. 5, pp. 19-25 | DOI
[48] Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY 32L beamline of Elettra, J. Synchr. Rad., Volume 17 (2010) no. 4, pp. 445-450 | DOI
[49] Development of laser-based scanning µ-ARPES system with ultimate energy and momentum resolutions, Ultramicroscopy, Volume 182 (2017), pp. 85-91 | DOI
[50] Nano focusing of soft x-rays by a new capillary mirror optic, Synchrotron Radiat. News, Volume 31 (2018) no. 4, pp. 50-52 | DOI
[51] MicroARPES and nanoARPES at diffraction-limited light sources: Opportunities and performance gains, J. Synchr. Rad., Volume 21 (2014) no. 5, pp. 1048-1056 | DOI
[52] Microfocus Laser-Angle-Resolved Photoemission on Encapsulated Mono-, Bi-, and Few-Layer 1T’-WTe, Nano Lett., Volume 19 (2019) no. 1, pp. 554-560 | DOI
[53] Effects of Defects on Band Structure and Excitons in WS Revealed by Nanoscale Photoemission Spectroscopy, ACS Nano, Volume 13 (2019) no. 2, pp. 1284-1291 | DOI
[54] In-situ strain study of rare-earth doped Ca-Ruthenates by angle-resolved photoemission spectroscopy, Ph. D. Thesis, University of Geneva, Geneva, Switzerland (2019)
[55] Spin-orbit splitting of the Shockley surface state on Cu(111), Phys. Rev. B, Volume 87 (2013) no. 7, 075113 | DOI
[56] Buried double CuO chains in YBaCuO uncovered by nano-ARPES, Phys. Rev. B, Volume 99 (2019) no. 14, 140510 | DOI
[57] Materials characterization by synchrotron X-ray microprobes and nanoprobes, Rev. Mod. Phys., Volume 90 (2018) no. 2, 025007 | DOI | MR
[58] Stable sub-micrometre high-flux probe for soft X-ray ARPES using a monolithic Wolter mirror, J. Synchr. Rad., Volume 27 (2020) no. 5, pp. 1103-1107 | DOI
[59] First NanoARPES User Facility Available at SOLEIL: An Innovative and Powerful Tool for Studying Advanced Materials, Synchrotron Radiat. News, Volume 27 (2014) no. 2, pp. 24-30 | DOI
[60] Low-Energy Electron Diffraction Studies of Gas Adsorption on the Platinum (100) Crystal Surface, Surf. Sci., Volume 12 (1968) no. 3, pp. 405-425 | DOI
[61] Platinum Surface LEED Rings, Surf. Sci., Volume 17 (1969) no. 1, pp. 267-270 | DOI
[62] Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study, Sci. Rep., Volume 3 (2013) no. 1, pp. 1-8 | DOI
[63] Weak mismatch epitaxy and structural Feedback in graphene growth on copper foil, Nano Res., Volume 6 (2013) no. 2, pp. 99-112 | DOI
[64] Interaction, growth, and ordering of epitaxial graphene on SiC surfaces: A comparative photoelectron spectroscopy study, Phys. Rev. B, Volume 77 (2008) no. 15, 155303 | DOI
[65] Heteroepitaxial graphite on Interface formation through conduction-band electronic structure, Phys. Rev. B, Volume 58 (1998) no. 24, pp. 16396-16406 | DOI
[66] Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit, Nano Lett., Volume 16 (2016) no. 8, pp. 4738-4745 | DOI
[67] Coupled spin and valley physics in monolayers of MoS and other group-VI dichalcogenides, Phys. Rev. Lett., Volume 108 (2012) no. 19, 196802 | DOI
[68] Band structure characterization of WS grown by chemical vapor deposition, Appl. Phys. Lett., Volume 108 (2016) no. 25, 252103 | DOI
[69] Spin-orbit coupling in the band structure of monolayer WSe, J. Phys.: Condens. Matter, Volume 27 (2015) no. 18, 182201 | DOI
[70] Valley-selective circular dichroism of monolayer molybdenum disulphide, Nat. Commun., Volume 3 (2012) no. 1, 887 | DOI
[71] Control of valley polarization in monolayer MoS by optical helicity, Nature Nanotech., Volume 7 (2012) no. 8, pp. 494-498 | DOI
[72] Tightly Bound Excitons in Monolayer WSe, Phys. Rev. Lett., Volume 113 (2014) no. 2, 026803 | DOI
[73] Probing excitonic dark states in single-layer tungsten disulphide, Nature, Volume 513 (2014) no. 7517, pp. 214-218 | DOI
[74] Photoluminescence of freestanding single- and few-layer MoS, Phys. Rev. B, Volume 89 (2014) no. 12, 125406 | DOI
[75] Coulomb engineering of the bandgap and excitons in two-dimensional materials, Nat. Commun., Volume 8 (2017) no. 1, 15251 | DOI
[76] A dielectric-defined lateral heterojunction in a monolayer semiconductor, Nature Electronics, Volume 2 (2019) no. 2, pp. 60-65 | DOI
[77] Substrate interactions with suspended and supported monolayer MoS: Angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 91 (2015) no. 12, 121409 | DOI
[78] Rigid band shifts in two-dimensional semiconductors through environmental screening, Phys. Rev. Lett., Volume 123 (2019) no. 20, 206403 | DOI
[79] Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal., Volume 1 (1979) no. 1, pp. 2-11 | DOI
[80] Fermi Surface, Surface States, and Surface Reconstruction in SrRuO, Phys. Rev. Lett., Volume 85 (2000) no. 24, pp. 5194-5197 | DOI
[81] High-Resolution Photoemission on SrRuO Reveals Correlation-Enhanced Effective Spin-Orbit Coupling and Dominantly Local Self-Energies, Phys. Rev. X, Volume 9 (2019) no. 2, 021048 | DOI
[82] Boron nitride substrates for high-quality graphene electronics, Nature Nanotech., Volume 5 (2010) no. 10, pp. 722-726 | DOI
[83] Disorder in van der Waals heterostructures of 2D materials, Nature Mater., Volume 18 (2019) no. 6, pp. 541-549 | DOI
[84] Observation of long-lived interlayer excitons in monolayer MoSe-WSe heterostructures, Nat. Commun., Volume 6 (2015) no. 1, 6242 | DOI
[85] Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 17, pp. 6198-6202 | DOI
[86] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, Volume 7 (2012) no. 11, pp. 699-712 | DOI
[87] Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials, Nano Lett., Volume 13 (2013) no. 8, pp. 3664-3670 | DOI
[88] Light-emitting diodes by band-structure engineering in van der Waals heterostructures, Nature Mater., Volume 14 (2015) no. 3, pp. 301-306 | DOI
[89] Design of van der Waals interfaces for broad-spectrum optoelectronics, Nature Mater., Volume 19 (2020) no. 3, pp. 299-304 | DOI
[90] Unconventional superconductivity in magic-angle graphene superlattices, Nature, Volume 556 (2018) no. 7699, pp. 43-50 | DOI
[91] Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures, Science Advances, Volume 3 (2017) no. 2, e1601832 | DOI
[92] Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett., Volume 102 (2013) no. 1, 012111 | DOI
[93] Direct observation of interlayer hybridization and dirac relativistic carriers in Graphene/MoS van der waals heterostructures, Nano Lett., Volume 15 (2015) no. 2, pp. 1135-1140 | DOI
[94] Band alignment and minigaps in monolayer MoS-graphene van der Waals heterostructures, Nano Lett., Volume 16 (2016) no. 7, pp. 4054-4061 | DOI
[95] Commensurate-incommensurate transition in graphene on hexagonal boron nitride, Nat. Phys., Volume 10 (2014) no. 6, pp. 451-456 | DOI
[96] Boron Nitride Nanomesh, Science, Volume 303 (2004) no. 5655, pp. 217-220 | DOI
[97] Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS/WSe hetero-bilayers, Science Advances, Volume 3 (2017) no. 1, e1601459 | DOI
[98] Cloning of Dirac fermions in graphene superlattices, Nature, Volume 497 (2013) no. 7451, pp. 594-597 | DOI
[99] Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nature Mater., Volume 10 (2011) no. 4, pp. 282-285 | DOI
[100] Emergence of superlattice Dirac points in graphene on hexagonal boron nitride, Nat. Phys., Volume 8 (2012) no. 5, pp. 382-386 | DOI
[101] Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure, Science, Volume 340 (2013) no. 6139, pp. 1427-1430 | DOI
[102] Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, Volume 497 (2013) no. 7451, pp. 598-602 | DOI
[103] Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride, Nat. Phys., Volume 12 (2016) no. 12, pp. 1111-1115 | DOI
[104] Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist, Nat. Phys., Volume 17 (2021), pp. 184-188 | DOI
[105] Ghost anti-crossings caused by interlayer umklapp hybridization of bands in 2D heterostructures, 2D Mater., Volume 8 (2020) no. 1, 015016
[106] Moiré bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. USA, Volume 108 (2011) no. 30, pp. 12233-12237 | DOI
[107] Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature, Volume 574 (2019) no. 7780, pp. 653-657 | DOI
[108] Observation of flat bands in twisted bilayer graphene, Nat. Phys., Volume 17 (2020) no. 2, pp. 189-193 | DOI
[109] Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene, Phys. Rev. X, Volume 8 (2018) no. 3, 031087 | DOI
[110] Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., Volume 11 (2011) no. 6, pp. 2396-2399 | DOI
[111] One-dimensional electrical contact to a two-dimensional material, Science, Volume 342 (2013) no. 6158, pp. 614-617 | DOI
[112] Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices, Nature Mater., Volume 11 (2012) no. 9, pp. 764-767 | DOI
[113] Electronic properties of graphene encapsulated with different two-dimensional atomic crystals, Nano Lett., Volume 14 (2014) no. 6, pp. 3270-3276 | DOI
[114] Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy, ACS Nano, Volume 13 (2019) no. 2, pp. 2136-2142 | DOI
[115] Large, non-saturating magnetoresistance in WTe, Nature, Volume 514 (2014) no. 7521, pp. 205-208 | DOI
[116] Electronic Structure Basis for the Extraordinary Magnetoresistance in WTe, Phys. Rev. Lett., Volume 113 (2014) no. 21, 216601 | DOI
[117] Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe, Phys. Rev. B, Volume 94 (2016) no. 12, 121112 | DOI
[118] Electronic properties of candidate type-II Weyl semimetal WTe . A review perspective, Electron. Struct., Volume 1 (2019) no. 1, 014003 | DOI
[119] Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science, Volume 346 (2014) no. 6215, pp. 1344-1347 | DOI
[120] Suppression of Magnetoresistance in Thin WTe Flakes by Surface Oxidation, ACS Appl. Mater. Interfaces, Volume 9 (2017) no. 27, pp. 23175-23180 | DOI
[121] Molecular beam epitaxy of thin HfTe semimetal films, 2D Mater., Volume 4 (2016) no. 1, 015001 | DOI
[122] Large quantum-spin-Hall gap in single-layer 1T WSe, Nat. Commun., Volume 9 (2018) no. 1, 2003 | DOI
[123] Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures, Phys. Rev. B, Volume 96 (2017) no. 3, 035407 | DOI
[124] Liquid-gated interface superconductivity on an atomically flat film, Nature Mater., Volume 9 (2010) no. 2, pp. 125-128 | DOI
[125] Electron-phonon coupling in potassium-doped graphene: Angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 81 (2010) no. 4, 041403 | DOI
[126] Tunable doping in hydrogenated single layered molybdenum disulfide, ACS Nano, Volume 11 (2017) no. 2, pp. 1755-1761 | DOI
[127] Giant spin-splitting and gap renormalization driven by trions in single-layer WS /h-BN heterostructures, Nat. Phys., Volume 14 (2018) no. 4, pp. 355-359 | DOI
[128] Charged-impurity scattering in graphene, Nat. Phys., Volume 4 (2008) no. 5, pp. 377-381 | DOI
[129] Charge-carrier screening in single-layer graphene, Phys. Rev. Lett., Volume 110 (2013) no. 14, 146802 | DOI
[130] Electronic Structure of a Quasi-Freestanding MoS Monolayer, Nano Lett., Volume 14 (2014) no. 3, pp. 1312-1316 | DOI
[131] Visualizing electrostatic gating effects in two-dimensional heterostructures, Nature, Volume 572 (2019) no. 7768, pp. 220-223 | DOI
[132] Visualizing the Effect of an Electrostatic Gate with Angle-Resolved Photoemission Spectroscopy, Nano Lett., Volume 19 (2019) no. 4, pp. 2682-2687 | DOI
[133] Momentum-resolved view of highly tunable many-body effects in a graphene/hBN field-effect device, Phys. Rev. B, Volume 101 (2020) no. 20, 201409 | DOI
[134] Accessing the Spectral Function in a Current-Carrying Device, Phys. Rev. Lett., Volume 125 (2020) no. 23, 236403 | DOI
[135] Correlation-Driven Electron-Hole Asymmetry in Graphene Field Effect Devices (2021) (https://arxiv.org/abs/2103.08076)
[136] Observation of Electrically Tunable van Hove Singularities in Twisted Bilayer Graphene from NanoARPES, Adv. Mater., Volume 32 (2020) no. 31, 2001656 | DOI
[137] In Operando Angle-Resolved Photoemission Spectroscopy with Nanoscale Spatial Resolution: Spatial Mapping of the Electronic Structure of Twisted Bilayer Graphene, Small Science, Volume 1 (2021) no. 6, 2000075 | DOI
[138] Direct observation of the band structure in bulk hexagonal boron nitride, Phys. Rev. B, Volume 95 (2017) no. 8, 085410 | DOI
Cited by Sources:
Comments - Policy