Comptes Rendus
Novel transport phenomena in graphene induced by strong spin-orbit interaction
Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 145-162.

Graphene is known to have small intrinsic spin-orbit Interaction (SOI). In this review, we demonstrate that SOIs in graphene can be strongly enhanced by proximity effect when graphene is deposited on the top of transition metal dichalcogenides. We discuss the symmetry of the induced SOIs and differences between TMD underlayers in the capacity of inducing strong SOIs in graphene. The strong SOIs contribute to bring novel phenomena to graphene, exemplified by robust supercurrents sustained even under tesla-range magnetic fields.

Online First:
Published online:
DOI: 10.5802/crphys.93
Keywords: Mesoscopic physics, Quantum transport, Spin-orbit interaction, Superconductivity

Taro Wakamura 1, 2; Sophie Guéron 2; Hélène Bouchiat 2

1 NTT Basic Research Laboratories, 243-0198, Atsugi, Japan
2 Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2021__22_S4_145_0,
     author = {Taro Wakamura and Sophie Gu\'eron and H\'el\`ene Bouchiat},
     title = {Novel transport phenomena in graphene induced by strong spin-orbit interaction},
     journal = {Comptes Rendus. Physique},
     pages = {145--162},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {S4},
     year = {2021},
     doi = {10.5802/crphys.93},
     language = {en},
}
TY  - JOUR
AU  - Taro Wakamura
AU  - Sophie Guéron
AU  - Hélène Bouchiat
TI  - Novel transport phenomena in graphene induced by strong spin-orbit interaction
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 145
EP  - 162
VL  - 22
IS  - S4
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.93
LA  - en
ID  - CRPHYS_2021__22_S4_145_0
ER  - 
%0 Journal Article
%A Taro Wakamura
%A Sophie Guéron
%A Hélène Bouchiat
%T Novel transport phenomena in graphene induced by strong spin-orbit interaction
%J Comptes Rendus. Physique
%D 2021
%P 145-162
%V 22
%N S4
%I Académie des sciences, Paris
%R 10.5802/crphys.93
%G en
%F CRPHYS_2021__22_S4_145_0
Taro Wakamura; Sophie Guéron; Hélène Bouchiat. Novel transport phenomena in graphene induced by strong spin-orbit interaction. Comptes Rendus. Physique, Recent advances in 2D material physics, Volume 22 (2021) no. S4, pp. 145-162. doi : 10.5802/crphys.93. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.93/

[1] K. S. Novoselov; A. K. Geim; S. V. Morozov; D. Jiang; Yuanbo Zhang; S. V. Dubonos; I. V. Grigorieva; A. A. Firsov Electric Field Effect in Atomically Thin Carbon Films, Science, Volume 306 (2004) no. 5696, pp. 666-669 | DOI

[2] Yuan Cao; Valla Fatemi; Shiang Fang; Kenji Watanabe; Takashi Taniguchi; Efthimios Kaxiras; Pablo Jarillo-Herrero Unconventional superconductivity in magic-angle graphene superlattices, Nature, Volume 556 (2018), pp. 43-50 | DOI

[3] M. I. Katsnelson; K. S. Novoselov; A. K. Geim Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., Volume 2 (2006), pp. 620-625 | DOI

[4] Yafis Barlas; Kun Yang; Allan H. MacDonald Quantum Hall effects in graphene-based two-dimensional electron systems, Nanotechnology, Volume 23 (2012) no. 5, 052001 | DOI

[5] Martin Gmitra; S. Konschuh; C. Ertler; C. Ambrosch-Draxl; Jaroslav Fabian Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B, Volume 80 (2009) no. 23, 235431 | DOI

[6] Igor Žutić; Jaroslav Fabian; S. Das Sarma Spintronics: Fundamentals and applications, Rev. Mod. Phys., Volume 76 (2004) no. 2, pp. 323-410 | DOI

[7] M. Z. Hasan; C. L. Kane Colloquium: Topological insulators, Rev. Mod. Phys., Volume 82 (2010) no. 4, pp. 3045-3067 | DOI

[8] Conan Weeks; Jun Hu; Jason Alicea; Marcel Franz; Ruqian Wu Engineering a Robust Quantum Spin Hall State in Graphene via Adatom Deposition, Phys. Rev. X, Volume 1 (2011) no. 2, 021001 | DOI

[9] Jun Hu; Jason Alicea; Ruqian Wu; Marcel Franz Giant Topological Insulator Gap in Graphene with 5d Adatoms, Phys. Rev. Lett., Volume 109 (2012) no. 26, 266801 | DOI

[10] Jayakumar Balakrishnan; Gavin Kok Wai Koon; Ahmet Avsar; Yuda Ho; Jong Hak Lee; Manu Jaiswal; Seung-Jae Baeck; Jong-Hyun Ahn; Aires Ferreira; Miguel A. Cazalilla; Antonio H. Castro Neto; Barbaros Özyilmaz Giant spin Hall effect in graphene grown by chemical vapour deposition, Nat. Commun., Volume 5 (2014), 4748 | DOI

[11] C. R. Dean; A. F. Young; I. Meric; Changgu Lee; L. Wang; S. Sorgenfrei; Kenji Watanabe; Takashi Taniguchi; P. Kim; K. L. Shepard; James C. Hone Boron nitride substrates for high-quality graphene electronics, Nature Nanotech., Volume 5 (2010), pp. 722-726 | DOI

[12] L. Wang; I. Meric; P. Y. Huang; Q. Gao; Y. Gao; H. Tran; Takashi Taniguchi; Kenji Watanabe; L. M. Campos; D. A. Muller; J. Guo; P. Kim; James C. Hone; K. L. Shepard; C. R. Dean One-Dimensional Electrical Contact to a Two-Dimensional Material, Science, Volume 342 (2013) no. 6158, pp. 614-617 | DOI

[13] Zhiyong Wang; Chi Tang; Raymond Sachs; Yafis Barlas; Jing Shi Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect, Phys. Rev. Lett., Volume 114 (2015) no. 1, 016603 | DOI

[14] Di Xiao; Gui-Bin Liu; Wanxiang Feng; Xiaodong Xu; Wang Yao Coupled Spin and Valley Physics in Monolayers of MoS 2 and Other Group-VI Dichalcogenides, Phys. Rev. Lett., Volume 108 (2012) no. 19, 196802 | DOI

[15] Andrea Splendiani; Liang Sun; Yuanbo Zhang; Tianshu Li; Jonghwan Kim; Chi-Yung Chim; Giulia Galli; Feng Wang Emerging Photoluminescence in Monolayer MoS 2 , Nano Lett., Volume 10 (2010) no. 4, pp. 1271-1275 | DOI

[16] Kin Fai Mak; Changgu Lee; James C. Hone; Jie Shan; Tony F. Heinz Atomically Thin MoS 2 : A New Direct-Gap Semiconductor, Phys. Rev. Lett., Volume 105 (2010) no. 13, 136805 | DOI

[17] Francesco Reale; Pawel Palczynski; Iddo Amit; Gareth F. Jones; Jake D. Mehew; Agnes Bacon; Na Ni; Peter C. Sherrell; Stefano Agnoli; Monica F. Craciun; Saverio Russo; Cecilia Mattevi High-Mobility and High-Optical Quality Atomically Thin WS2, Sci. Rep., Volume 7 (2017), p. 14911 | DOI

[18] Gerd Bergmann Weak localization in thin films: a time-of-flight experiment with conduction electrons, Phys. Rep., Volume 107 (1984) no. 1, pp. 1-58 | DOI

[19] Kentaro Nomura; Mikito Koshino; Shinsei Ryu Topological Delocalization of Two-Dimensional Massless Dirac Fermions, Phys. Rev. Lett., Volume 99 (2007) no. 14, 146806 | DOI

[20] Minhao Liu; Jinsong Zhang; Cui-Zu Chang; Zuocheng Zhang; Xiao Feng; Kang Li; Ke He; Li-li Wang; Xi Chen; Xi Dai; Zhong Fang; Qi-Kun Xue; Xucun Ma; Yayu Wang Crossover between Weak Antilocalization and Weak Localization in a Magnetically Doped Topological Insulator, Phys. Rev. Lett., Volume 108 (2012) no. 3, 036805 | DOI

[21] F. V. Tikhonenko; D. W. Horsell; R. V. Gorbachev; A. K. Savchenko Weak Localization in Graphene Flakes, Phys. Rev. Lett., Volume 100 (2008) no. 5, 056802 | DOI

[22] Edward McCann; Vladimir I. Fal’ko z-z Symmetry of Spin-Orbit Coupling and Weak Localization in Graphene, Phys. Rev. Lett., Volume 108 (2012) no. 16, 166606 | DOI

[23] Taro Wakamura; Francesco Reale; P. Palczynski; Sophie Guéron; Cecilia Mattevi; Hélène Bouchiat Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer WS 2 , Phys. Rev. Lett., Volume 120 (2018) no. 10, 106802 | DOI

[24] Taro Wakamura; Francesco Reale; P. Palczynski; M. Q. Zhao; A. T. Charlie Johnson; Sophie Guéron; Cecilia Mattevi; Abdelkarim Ouerghi; Hélène Bouchiat Spin-orbit interaction induced in graphene by transition metal dichalcogenides, Phys. Rev. B, Volume 99 (2019) no. 24, 245402 | DOI

[25] J. M. Riley; F. Mazzola; M. Dendzik; M. Michiardi; T. Takayama; L. Bawden; C. Granerød; M. Leandersson; T. Balasubramanian; M. Hoesch; T. K. Kim; H. Takagi; W. Meevasana; Ph. Hofmann; M. S. Bahramy; J. W. Wells; P. D. C. King Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor, Nat. Phys., Volume 10 (2014), pp. 835-839 | DOI

[26] Drew W. Latzke; Wentao Zhang; Aslihan Suslu; Tay-Rong Chang; Hsin Lin; Horng-Tay Jeng; Sefaattin Tongay; Junqiao Wu; Arun Bansil; Alessandra Lanzara Electronic structure, spin-orbit coupling, and interlayer interaction in bulk MoS 2 and WS 2 , Phys. Rev. B, Volume 91 (2015) no. 23, 235202 | DOI

[27] Yang Li; Mikito Koshino Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides, Phys. Rev. B, Volume 99 (2019) no. 7, 075438 | DOI

[28] Zhe Wang; Dong-Keun Ki; Jun Yong Khoo; Diego Mauro; Helmuth Berger; Leonid S. Levitov; Alberto F. Morpurgo Origin and Magnitude of “Designer” Spin-Orbit Interaction in Graphene on Semiconducting Transition Metal Dichalcogenides, Phys. Rev. X, Volume 6 (2016) no. 4, 041020 | DOI

[29] Denis Kochan; Susanne Irmer; Jaroslav Fabian Model spin-orbit coupling Hamiltonians for graphene systems, Phys. Rev. B, Volume 95 (2017) no. 16, 165415 | DOI

[30] Alessandro David; Péter Rakyta; Andor Kormányos; Guido Burkard Induced spin-orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: Twistronics meets spintronics, Phys. Rev. B, Volume 100 (2019) no. 8, 085412 | DOI

[31] P. J. Zomer; M. H. D. Guimarães; N. Tombros; Bart J. van Wees Long-distance spin transport in high-mobility graphene on hexagonal boron nitride, Phys. Rev. B, Volume 86 (2012) no. 16, 161416 | DOI

[32] J. Martin; N. Akerman; G. Ulbricht; T. Lohmann; J. H. Smet; K. von Klitzing; A. Yacoby Observation of electron–hole puddles in graphene using a scanning single-electron transistor, Nat. Phys., Volume 4 (2008), pp. 144-148 | DOI

[33] F. Amet; C. T. Ke; I. V. Borzenets; J. Wang; Kenji Watanabe; Takashi Taniguchi; R. S. Deacon; M. Yamamoto; Y. Bomze; S. Tarucha; Gleb Finkelstein Supercurrent in the quantum Hall regime, Science, Volume 352 (2016) no. 6288, pp. 966-969 | DOI | MR | Zbl

[34] I. V. Borzenets; F. Amet; C. T. Ke; Anne W. Draelos; M. T. Wei; A. Seredinski; Kenji Watanabe; Takashi Taniguchi; Y. Bomze; M. Yamamoto; S. Tarucha; Gleb Finkelstein Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes, Phys. Rev. Lett., Volume 117 (2016), 237002 | DOI

[35] M. Ben Shalom; M. J. Zhu; Vladimir I. Fal’ko; A. Mishchenko; A. V. Kretinin; K. S. Novoselov; C. R. Woods; Kenji Watanabe; Takashi Taniguchi; A. K. Geim; J. R. Prance Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene, Nat. Phys., Volume 12 (2016), pp. 318-322 | DOI

[36] V. E. Calado; S. Goswami; G. Nanda; M. Diez; A. R. Akhmerov; Kenji Watanabe; Takashi Taniguchi; T. M. Klapwijk; L. M. K. Vandersypen Ballistic Josephson junctions in edge-contacted graphene, Nature Nanotechnology, Volume 10 (2015), pp. 761-764 | DOI

[37] Lingfei Zhao; Ethan G. Arnault; Alexey Bondarev; Andrew Seredinski; Trevyn F. Q. Larson; Anne W. Draelos; Hengming Li; Kenji Watanabe; Takashi Taniguchi; François Amet; Harold U. Baranger; Gleb Finkelstein Interference of chiral Andreev edge states, Nat. Phys., Volume 16 (2020), pp. 862-867 | DOI

[38] J. O. Island; X. Cui; C. Lewandowski; Jun Yong Khoo; E. M. Spanton; H. Zhou; D. Rhodes; James C. Hone; Takashi Taniguchi; Kenji Watanabe; Leonid S. Levitov; M. P. Zaletel; A. F. Young Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect, Nature, Volume 571 (2019), pp. 85-89 | DOI

[39] Taro Wakamura; N. J. Wu; Alexei D. Chepelianskii; Sophie Guéron; M. Och; M. Ferrier; Takashi Taniguchi; Kenji Watanabe; Cecilia Mattevi; Hélène Bouchiat Spin-Orbit-Enhanced Robustness of Supercurrent in Graphene/WS 2 Josephson Junctions, Phys. Rev. Lett., Volume 125 (2020) no. 26, 266801 | DOI

[40] C. W. J. Beenakker Universal limit of critical-current fluctuations in mesoscopic Josephson junctions, Phys. Rev. Lett., Volume 67 (1991) no. 27, pp. 3836-3839 | DOI

[41] Hendrik Meier; Vladimir I. Fal’ko; Leonid I. Glazman Edge effects in the magnetic interference pattern of a ballistic SNS junction, Phys. Rev. B, Volume 93 (2016) no. 18, 184506 | DOI

[42] Markus König; Hartmut Buhmann; Laurens W. Molenkamp; Taylor Hughes; Chao-Xing Liu; Xiao-Liang Qi; Shou-Cheng Zhang The Quantum Spin Hall Effect: Theory and Experiment, J. Phys. Soc. Japan, Volume 77 (2008) no. 3, 031007 | DOI

[43] V. P. Ostroukh; B. Baxevanis; A. R. Akhmerov; C. W. J. Beenakker Two-dimensional Josephson vortex lattice and anomalously slow decay of the Fraunhofer oscillations in a ballistic SNS junction with a warped Fermi surface, Phys. Rev. B, Volume 94 (2016) no. 9, 094514 | DOI

[44] Zhe Wang; Dong-Keun Ki; Hua Chen; Helmuth Berger; Allan H. MacDonald; Alberto F. Morpurgo Strong interface-induced spin–orbit interaction in graphene on WS2, Nat. Commun., Volume 6 (2015) no. 1, 8339 | DOI

[45] Simon Zihlmann; Aron W. Cummings; Jose H. Garcia; Máté Kedves; Kenji Watanabe; Takashi Taniguchi; Christian Schönenberger; Péter Makk Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe 2 /graphene/h-BN heterostructures, Phys. Rev. B, Volume 97 (2018) no. 7, 075434 | DOI

[46] Tobias Frank; Petra Högl; Martin Gmitra; Denis Kochan; Jaroslav Fabian Protected Pseudohelical Edge States in 2 -Trivial Proximitized Graphene, Phys. Rev. Lett., Volume 120 (2018) no. 15, 156402 | DOI

[47] Chuan Li; Jorrit C. de Boer; Bob de Ronde; Shyama V. Ramankutty; Erik van Heumen; Yingkai Huang; Anne de Visser; Alexander A. Golubov; Mark S. Golden; Alexander Brinkman 4π-periodic Andreev bound states in a Dirac semimetal, Nature Mater., Volume 17 (2018) no. 10, pp. 875-880 | DOI

[48] An-Qi Wang; Cai-Zhen Li; Chuan Li; Zhi-Min Liao; Alexander Brinkman; Da-Peng Yu 4π-Periodic Supercurrent from Surface States in Cd 3 As 2 Nanowire-Based Josephson Junctions, Phys. Rev. Lett., Volume 121 (2018) no. 23, 237701 | DOI

[49] Anil Murani; Alik Kasumov; Shamashis Sengupta; Yu A. Kasumov; V. T. Volkov; I. I. Khodos; F. Brisset; Raphaëlle Delagrange; Alexei D. Chepelianskii; Richard Deblock; Hélène Bouchiat; Sophie Guéron Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry, Nat. Commun., Volume 8 (2017) no. 1, 15941 | DOI

[50] Benjamin T. Zhou; Noah F. Q. Yuan; Hong-Liang Jiang; K. T. Law Ising superconductivity and Majorana fermions in transition-metal dichalcogenides, Phys. Rev. B, Volume 93 (2016) no. 18, 180501 | DOI

[51] Martin Gmitra; Jaroslav Fabian Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics, Phys. Rev. B, Volume 92 (2015) no. 15, 155403 | DOI

[52] Martin Gmitra; Denis Kochan; Petra Högl; Jaroslav Fabian Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides, Phys. Rev. B, Volume 93 (2016) no. 15, 155104 | DOI

[53] Ahmet Avsar; J. Y. Tan; T. Taychatanapat; Jayakumar Balakrishnan; Gavin Kok Wai Koon; Y. Yeo; J. Lahiri; A. Carvalho; A. S. Rodin; E. C. T. O’Farrell; G. Eda; A. H. Castro Neto; Barbaros Özyilmaz Spin–orbit proximity effect in graphene, Nat. Commun., Volume 5 (2014), 4875 | DOI

[54] Tobias Völkl; Tobias Rockinger; Martin Drienovsky; Kenji Watanabe; Takashi Taniguchi; Dieter Weiss; Jonathan Eroms Magnetotransport in heterostructures of transition metal dichalcogenides and graphene, Phys. Rev. B, Volume 96 (2017) no. 12, 125405 | DOI

[55] Sebastian Ringer; Stefan Hartl; Matthias Rosenauer; Tobias Völkl; Maximilian Kadur; Franz Hopperdietzel; Dieter Weiss; Jonathan Eroms Measuring anisotropic spin relaxation in graphene, Phys. Rev. B, Volume 97 (2018) no. 20, 205439 | DOI

[56] Bowen Yang; Min-Feng Tu; Jeongwoo Kim; Yong Wu; Hui Wang; Jason Alicea; Ruqian Wu; Marc Bockrath; Jing Shi Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS 2 , 2D Mater., Volume 3 (2016) no. 3, 031012 | DOI

[57] Bowen Yang; Mark Lohmann; David Barroso; Ingrid Liao; Zhisheng Lin; Yawen Liu; Ludwig Bartels; Kenji Watanabe; Takashi Taniguchi; Jing Shi Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures, Phys. Rev. B, Volume 96 (2017) no. 4, 041409 | DOI

[58] Debora Pierucci; Hugo Henck; Jose Avila; Adrian Balan; Carl H. Naylor; Gilles Patriarche; Yannick J. Dappe; Mathieu G. Silly; Fausto Sirotti; A. T. Charlie Johnson; Maria C. Asensio; Abdelkarim Ouerghi Band Alignment and Minigaps in Monolayer MoS 2 -Graphene van der Waals Heterostructures, Nano Lett., Volume 16 (2016) no. 7, pp. 4054-4061 | DOI

[59] Hugo Henck; Zeineb Ben Aziza; Debora Pierucci; Feriel Laourine; Francesco Reale; Pawel Palczynski; Julien Chaste; Mathieu G. Silly; François Bertran; Patrick Le Fèvre; Emmanuel Lhuillier; Taro Wakamura; Cecilia Mattevi; Julien E. Rault; Matteo Calandra; Abdelkarim Ouerghi Electronic band structure of Two-Dimensional WS 2 /Graphene van der Waals Heterostructures, Phys. Rev. B, Volume 97 (2018) no. 15, 155421 | DOI

[60] J. Sichau; M. Prada; T. Anlauf; T. J. Lyon; B. Bosnjak; L. Tiemann; R. H. Blick Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State, Phys. Rev. Lett., Volume 122 (2019) no. 4, 046403 | DOI

[61] S. Omar; Bart J. van Wees Spin transport in high-mobility graphene on WS 2 substrate with electric-field tunable proximity spin-orbit interaction, Phys. Rev. B, Volume 97 (2018) no. 4, p. 045414 | DOI

[62] L. Antonio Benítez; Juan F. Sierra; Williams Savero Torres; Aloïs Arrighi; Frédéric Bonell; Marius V. Costache; Sergio O. Valenzuela Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature, Nat. Phys., Volume 14 (2018), pp. 303-308 | DOI

[63] Talieh S. Ghiasi; Alexey A. Kaverzin; Patrick J. Blah; Bart J. van Wees Charge-to-Spin Conversion by the Rashba–-Edelstein Effect in Two-Dimensional van der Waals Heterostructures up to Room Temperature, Nano Lett., Volume 19 (2019) no. 9, pp. 5959-5966 | DOI

[64] L. Antonio Benítez; Williams Savero Torres; Juan F. Sierra; Matias Timmermans; Jose H. Garcia; Stephan Roche; Marius V. Costache; Sergio O. Valenzuela Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures, Nature Mater., Volume 19 (2020), pp. 170-175 | DOI

Cited by Sources:

Comments - Policy