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Abstract In granular media, dissipation leads to interesting phenomena like cluster formation in
non-equilibrium dynamical states. As an example, the freely cooling system is examined
concerning the energy decay and the cluster evolution with time. Furthermore, the
probability distribution of the collision frequency is discussed. Uncorrelated events lead
to a Poisson distribution for the collision frequencies in the homogeneous system, whereas
cooperative phenomena can be related to a power-law decay of the collision probability
per unit time.To cite this article: S. Luding, C. R. Physique 3 (2002) 153–161.  2002
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

inhomogeneous free cooling / clustering / cooperative phenomena / event-driven
molecular dynamics

Résumé Dans les milieux granulaires, la dissipation conduit à des phénomènes intéressants comme
la formation d’amas dans des états dynamiques hors-équilibre. A titre d’exemple, nous
examinons la perte d’énergie et l’évolution des amas avec le temps d’un système qui se
refroidit librement. De plus, nous analysons la distribution de probabilité de la fréquence
de collision. Dans un système homogène, la fréquence de collision d’événements non
corrélés conduit à une distribution de Poisson, alors que les phénomènes coopératifs sont
caractérisés par une probabilité de collision par unité de temps qui décroît comme une loi
de puissance.Pour citer cet article : S. Luding, C. R. Physique 3 (2002) 153–161.  2002
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

refroidissement libre et inhomogène / phénomènes coopératifs / dynamique molécu-
laire gérée par les événements

1. Introduction

Astonishing phenomena occur when granular material is studied [1–4]. The subject of this study is the
pattern formation in a dissipative, freely cooling system [5–8]. The interesting behavior of granular media
is connected to its ability to form a hybrid state between a fluid and a solid: energy input can lead to a
reduction of density so that the material can flow, i.e. it becomes ‘fluid’. On the other hand, in the absence
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of energy input, granular materials ‘solidify’ due to dissipation. This makes granular media an interesting
multi-particle system with a rich phenomenology; however, theoretical approaches are non-classical and
appear often extremely difficult, so that there is still active research directed towards the understanding of
granular media.

The basic ingredients of a granular model material are discussed briefly in Section 2. The inhomogeneous
cooling and clustering are described in detail in Section 3. The basic idea is that in a freely cooling granular
gas, fluctuations in density and temperature cause a position dependent energy loss. Due to strong local
dissipation, pressure and energy drop rapidly and material moves from ‘hot’ to ‘cold’ regions, leading to
even stronger dissipation and thus causing the density instability with ever growing clusters. The probability
distribution function for the collision frequency is measured in both the homogeneously cooling and the
inhomogeneous clustering regime, where differences in the functional behavior are displayed [9]. The same
phenomenon is also found in the flow through a pipe [10], where shock waves and arching are the observed
cooperative phenomena.

2. Models for multi-particle simulations

The constituents of granular media are mesoscopic particles. When those objects interact (collide) the
attractive potentials of the individual grains can be neglected. Two models for the repulsive particle–particle
interactions are discussed in the following. They account for the excluded volume of the particles via a
repulsive potential, either ‘hard’ or ‘soft’ and also account for dissipation in collisions via some coefficient
of restitution. The third ingredient of a model granular material is friction which couples the rotational
degrees of freedom to the linear motion, but it is not discussed in this paper.

The difference between the two most frequently used discrete element methods is the repulsive
interaction potential. For the molecular dynamics (MD) method, soft particles with a power-law interaction
potential are assumed, whereas for the event-driven (ED) method perfectly rigid particles are used. The
consequence is that the duration of the contact of two particles,tc, is finite for MD, but vanishes for ED.

2.1. The event-driven, rigid particle method

Consider two particles with diameterd1 andd2 and massesm1 andm2. The normal unit vector for their
contact isn, andri is the vector to the position of the center of particlei (i = 1,2). The relative velocity
of the contact points isvc = v1 − v2, with the velocityvi of particle i. From momentum conservation it
follows

v′
1 = v1 +	P/m1 and v′

2 = v2 −	P/m2, (1)

wherev′
i is the unknown velocity of particlei after collision. The change of linear momentum of particle 1

is a function of the coefficient of restitutionr:

	P = −m12(1+ r)v(n)c , (2)

with the reduced massm12 =m1m2/(m1 +m2) and the normal velocityv(n)c .
For the simulation of rigid particles, an event-driven method is used [7,11,12]. The particles undergo

an undisturbed motion until an event occurs. An event can be either the collision of two particles or the
collision of a particle with a wall. From the velocities just before contact, the particle velocities after a
contact are computed following Eq. (1). Lubachevsky [11] introduced an efficient scalar ED algorithm
which updates only those particles involved in the previous collision. The original algorithm is implemented
and generalized to take into account dissipation.
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2.2. The time driven, soft particle technique

Even without using the soft particle method [13–15] in this study, it is convenient to discuss briefly
the standard approach. Replacing	P in Eq. (1) byf (t)	tMD, with the molecular dynamics time step
	tMD, allows the integration of the corresponding, discretized equations of motion with standard numerical
methods [14].

Since the modeling of realistic deformations of the particles would be much too complicated, let us
assume that the overlap of two particles is the only quantity important for the interaction potential. The
interaction of two particles can be split into (at least) three independent forces, and is typically short
range, i.e. the particles interact only when they are in contact. The first force, an elastic repulsive force
proportional to the overlap, accounts for the excluded volume which each particle occupies. In the simplest
case, a linear spring can be used. The second force, a viscous damping force, models the dissipation in the
normal direction and is proportional to the relative velocity. The simplest possible dashpot is again linear.
This linear spring-dashpot model can be solved analytically and leads to a constant contact durationtc
and a constant restitution coefficientr [16]. The third force, accounting for friction, acts in the tangential
direction, but will not be discussed here; for more information, see [1].

2.3. The connection between hard- and soft-sphere models

In the ED method, the time during which two particles are in contact is implicitly zero. The consequence
is that exclusively pair contacts occur and the instantaneous momentum change	P in Eq. (1) suffices to
describe the collision. However, ED algorithms with constantr run into difficulties when the time between
events,tn, becomes too small—typically in systems with strong dissipation—and the so-called ‘inelastic
collapse’ occurs [6,17], i.e. the collision rate diverges for a few particles in the system. Since this is an
artefact of the hard sphere model, it is unphysical and has to be avoided. Because a diverging number
of collisions is only possible if the contact duration vanishes, the physical contact durationtc has to be
reintroduced in order to allow for realistic ED simulations. In MD simulations, on the other hand, one
hastc > 0, since every contact takes some finite time. Therefore, only a limited amount of kinetic energy
(	E ∝ 1 − r2) can be dissipated per collision. A finite contact duration implies a finite energy dissipation
rate. In contrast, the consequence of a diverging collision rate would be a diverging energy dissipation rate.

In a dense system of real particles, energy dissipation becomes ineffective, i.e. the ‘detachment effect’
occurs [18,19]. This effect is not obtained with hard particles and a constant coefficient of restitutionr.
Therefore, in the framework of the so-called TC model, the restitution becomes elastic in nature,r

(i)
n = 1, if

collisions occur too frequently, i.e.t(i)n � tc, for the collisionn of particlei. The time since the last collision
is t(i)n and the cut-off parametertc for elastic contacts can be identified with the contact duration. Thus,
an additional material parameter is defined for the hard sphere model, that leads to qualitative agreement
between ED and MD simulations and, in addition, avoids the inelastic collapse artefact. Recently, it has
been shown that the TC model does not affect physical observables of the system, like the energy, as long
as it is reasonably small [17].

3. Freely cooling granular media

The simulations presented in the following involveN = 99856= 3162 dissipative particles with the
restitution coefficientsr = 0.9, 0.8, and 0.6, in a periodic, quadratic system with volume fractionν = 0.25.
The system size isl = Ld with dimensionless sizeL = 560 and particle diameterd = 1 mm. In order
to reach an equilibrated initial condition, the system is first allowed to equilibrate withr = 1 for several
hundreds of collisions per particle, so that a Maxwellian velocity distribution and a homogeneous density
can be found. Then, att = 0 s, dissipation is activated and the quantities of interest are examined. Snapshots
of the simulation withr = 0.9 are presented in Fig. 1 at different, rescaled timesτ (see below).
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τ = 0.123 τ = 15.7 τ = 62.8

τ = 251 τ = 1004 τ = 4016

Figure 1. ED simulation withN = 99856 particles in a system of sizeL= 560, volume fractionν = 0.25, restitution
coefficientr = 0.9, and critical collision frequencyt−1

c = 105 s−1. The collision frequency is color-coded: red,
green–yellow and blue correspond to collision ratest−1

n ≈ 250 s−1, 50 s−1 and 10 s−1, respectively.

The first picture in Fig. 1 is taken in the initially homogeneous cooling regime, whereas the next four
pictures show the different stages of the cluster growth regime. The final picture is taken in the limiting state,
where the cluster has reached the system size. The particles are colored spots, where the green–yellow/red
areas in the cluster centers correspond to particles with collision ratet−1

n � 50 s−1. This is much smaller
than the critical collision ratet−1

c = 105 s−1, so that only a very small number of particles will be affected
by the TC model.

3.1. Homogeneous and inhomogeneous cooling

In the homogeneous cooling state [6,20,21], one can expect that the kinetic energyE = K(t)/K(0) of
the system decays with time (the decay of energy with time is also evidenced by the change of color from
red over orange to green and blue in Fig. 1) and follows the master-curve

E(τ)= 1

(1+ τ )2
, (3)
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Figure 2. Left: kinetic energyE plotted againstτ for different values ofr = 0.9, 0.8, and 0.6. The dotted line
represents equation (3). Right: normalized collision ratetE/tn plotted againstτ . The solid straight line represents the

collision rate
√
E in the homogenously cooling case.

with the dimensionless timeτ = (1− r2)t/(4tE), the collision ratet−1
E = 8νg(ν)v̄/(

√
πd), the mean

velocity v̄ = √
K(t)/Nm, and the increased contact probabilityg(ν) = (1 − 7ν/16)/(1 − ν)2 due to

excluded volume effects at finite volume fractionsν. Inserting the parameters from the simulation,
1−r2 = 0.19,g(ν)≈ 1.5833, and̄v = 0.1444 m/s, one obtains an initial collision ratet−1

E (0)= 258.05 s−1

(corresponding to the red color in Fig. 1).
In Fig. 2, the normalized kinetic energyE and the normalized collision ratet−1

n /t−1
E , are presented, both

as a function of the normalized timeτ . At the beginning of the simulation we observe a perfect agreement
between the theory for homogeneous cooling and the simulations. Atτ ≈ 10–40 substantial deviations
from the homogeneous cooling behavior become evident, i.e. the decay of energy is slowed down earlier
for stronger dissipation. The deviation from the analytical form increases untilτ ≈ 103 where the clusters
reach system size and the behavior ofE changes again to a slightly more rapid decrease.

This change in behavior is evident from the collision ratet−1
n . At first, in the homogeneous cooling

regime, the collision rate decays witht−1
n ∝ √

E. Then the collision rate is almost constant (forr = 0.9
and r = 0.8) or even increases (forr = 0.6), until at τ ≈ 103 it becomes very noisy, indicating another
change in the collective behavior. The long-time power law for the decay of energy with time is−2 in
the homogeneous cooling case. In the cluster growth regime, however, we obtain slopes slightly smaller
than−1 (the best fit leads to−0.920,−0.927, and−0.941 for r = 0.9, 0.8, and 0.6, respectively, with
errors±0.002).

3.2. Cluster structure

In Fig. 3, zooms into the bottom-right area of the system in Fig. 1 are presented. In the initial state, the
system is rather disordered and homogeneous. In the cluster growth regime, some particles approach closer
and form loose clusters, however, the structure is still disordered, fluid-like. Only in the very late stage of
the simulation, where the clusters are very large, one obtains crystalline, triangular lattice structures with
a peculiar distribution of collision rates as color-coded.

This more qualitative picture can also be verified by computing the particle correlation functiong(r/d),
see Fig. 4. The data are displayed for differentτ -values, showing that the structure in the system becomes
more and more pronounced with increasing time. Like the zoom-in in Fig. 3, the correlation function also
shows that the crystalline structure occurs only in the late regime where the clusters are very large, with
‘frozen’ cores. Pronounced peaks at 1,

√
3, 2, . . . indicate a triangular order of the particles.
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τ = 62.8 τ = 502

τ = 2008 τ = 4016

Figure 3. Zooms into the lower right part of the ED simulation from Fig. 1.

Figure 4. Correlation functiong(r/d) as obtained from
the simulation in Fig. 1. The different curves are shifted
vertically in order to avoid overlap andτ is given in the

inset.

3.3. Cluster growth

The cluster growth can be studied quantitatively in the spirit of Luding and Herrmann [7]. All particle
pairs with a distance smaller than some cut-off distanceδ < (1 + S)d , with an arbitrary cut-off parameter
S = 0.1, are assumed to belong to the same cluster. After all particle pairs are examined, one obtains a
cluster-size distribution and its moments. The first moment, the mean cluster size〈M〉, and the size of the
largest clusterMmax are plotted in Fig. 5 against the timeτ .

Both values are almost constant in the initial, homogeneous cooling regime. In the cluster growth regime
a rapid increase of both〈M〉 andMmax is evidenced until, at largerτ , the values reach a maximum and
seemingly saturate or even decrease in the final regime where the clusters have reached system size. The
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Figure 5. Mean cluster size (left) and maximum cluster size (right) as functions of timeτ .

cluster growth startes earlier for stronger dissipation, but the largest cluster seems to grow more rapidly for
weaker dissipation, however, at a later time.

3.4. Probability distribution of the collision rate

For a more quantitative analysis of the clustering instability, the probability distribution for particle
collision frequencies is examined.P(C) gives the probability to find a particle that carried outC collisions in
the time interval	t . For an elastic, homogenous system with independent events, the Poisson distribution

Po(C)= exp(χ	t)(χ	t)C

C! , (4)

with mean collision rateχ = ∫
CP(C)dC describes the probability that a particle hadC collisions in the

time-interval	t . Since the statistics is better for large	t , the distribution broadens with decreasing	t .
In Fig. 6, the probability distribution of the collision rate,pn = P(t−1

n )	t , is plotted against the collision
rate t−1

n = C/	t , for the timesτ corresponding to the snapshots in Fig. 1. The shape ofpn resembles a
Poisson distribution with decreasing mean-valueχ for τ � 40 (only data forτ = 15.7 are shown here).

Figure 6.P(C) for differentτ -values from the simulation displayed in Fig. 1. The left panel contains a semi-log plot,
whereas the right panel shows the same data in log-log-distribution. The solid curvesPo correspond to equation (4)

and the symbols (connected by lines to guide the eye) are the simulation results.
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However, due to the sampling of the data in the homogeneous cooling regime (where the collision rate
changes with time), the agreement is not perfect. Using smaller time-intervals or elastic particles leads to
reasonable agreement betweenpn from simulations and the Poisson distributionpo.

As soon as the clusters start to grow, the shape of the probability distribution changes. In Fig. 6, one
observes a broadening of the initial Poisson distribution atτ = 62.8, and for larger times, the convex shape
has evolved to a slightly concave curve. The probability for large collision rates increases and can be
approximated a power-law of the form

Pp(C)= χ

(χ + C)2 , (5)

in the final regime where the clusters are as large as the system. Even though the shape is well approximated
by this curve, there is a cut-off at huge collision rates, possibly due to the finite size of the system.

Note that the shape of the distribution function is only weakly varying in the cluster-growth regime, and
it is almost stationary in the final regime of huge clusters. At large times, particles that carry out many
collisions coexist with those which carry out only a few.

4. Summary and conclusion

With a rather simple description of a granular material as an ensemble of inelastic spherical particles we
have investigated the interesting effect of clustering in freely cooling systems. For short times the system is
disordered and gas-like, whereas the structures at larger times are dense, crystalline clusters. The clusters
grow until they reach the system size. Simulations at very long times were possible with the TC model
which reduces dissipation when contacts become too frequent.

The statistics of the particle collision frequencies were examined: the probability distribution of the
collision frequencies shows two types of behavior. In the homogeneous, random regime the distribution
resembles a Poisson distribution, indicating that the collisions are uncorrelated events. As soon as
cooperative effects like clustering occur, the probability distribution changes to a power-law shape. We
proposed functional forms that approximate the distribution functions measured from simulations for both
regimes.

The described cooperative phenomenon of cluster growth leaves a fingerprint, i.e. a power-law, in the
global distribution function. An open issue is the theoretical verification and understanding of the shape
of the probability distribution function and, as usual, the examination of three-dimensional systems with
numerical methods, theory and possibly experiments.
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