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Abstract The electric polarizability and the electric permanent dipole are important quantities
for understanding the electronic properties of a cluster. Experimental techniques, the
simulations necessary to interpret the experimental results, and a review of measurements
on atomic and mixed clusters are presented. For atomic clusters, the polarizability is related
to the type of bonding. In simple metal clusters such as alkali clusters, the results are
well interpreted by the electron delocalization characteristic of the metallic bonding. In
other metal clusters, the polarizability reflects the difficulty of establishing a clear and
regular picture of the size evolution of electronic properties. The size evolution observed
for covalent and semiconductor clusters is different from the evolution for metal clusters,
and the influence of the geometry is preponderant, as demonstrated in the case of fullerenes.
For mixed clusters, the measurements of the electric dipole allows one to deduce the charge
transfers and the geometric arrangement. This is illustrated in the case of the metal-fullerene
system and alkali halide clusters. To cite this article: M. Broyer et al., C. R. Physique
3 (2002) 301–317.  2002 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS

cluster / electric polarizability / electric permanent dipole / metal-fullerene system /
alkali halide cluster

Structure des nano-objets determinée par mesures de polarisabilité et
de dipôle

Résumé La polarisabilité statique et le dipôle électrique permanent sont des quantités importantes
pour comprendre les propriétés électroniques et structurales d’un agrégat. Dans cet article
nous présentons les différents montages expérimentaux utilisés pour ces mesures et les
simulations nécessaires à l’interprétation des résultats. Les cas des agrégats polaires et
non polaires sont distingués et l’influence de la rigidité de l’agrégat sur son mouvement
dans un champ électrique est discutée. Ces deux premières parties sont suivies par une
revue des mesures réalisées sur des agrégats atomiques et des agrégats mixtes. Pour les
agrégats atomiques, la polarisabilité est reliée à la nature de la liaison. Dans les métaux
simples comme les agrégats alcalins, les résultats sont bien expliqués par la délocalisation
des électrons de valence, caractéristique de la liaison métallique. Pour les autres métaux,
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la polarisabilité reflète la difficulté à décrire simplement les propriétés électroniques de ces
agrégats. Dans le cas de l’aluminium, les mesures de polarisabilité mettent en évidence
une transition non-métal–métal avec l’augmentation de la taille de l’agrégat. Dans le cas
du nickel, de fortes variations avec la taille sont observées, certainement dues à un fort
couplage entre propriétés électroniques et structure atomique. L’évolution avec la taille pour
les agrégats semi-conducteurs (silicium, germanium) et covalents (fullerènes) est différente
de celle observée pour les agrégats métalliques. Les mesures réalisées sur les fullerènes
illustrent l’influence prépondérante de la géométrie sur la valeur de la polarisabilité. Dans
le cas des agrégats mixtes, le dipôle électrique est la mesure la plus simple de la densité
de charge dans l’agrégat. Ce dipôle dépend des transferts de charge et de l’arrangement
géométrique des atomes dans la particule. Les mesures de dipôle électrique permanent sont
illustrées par les résultats obtenus récemment sur deux exemples très différents : les agrégats
mixtes métal-fullerène où un fort transfert de charge se produit et les agrégats d’halogénure
d’alcalin dominés par une structure ionique. Pour citer cet article : M. Broyer et al.,
C. R. Physique 3 (2002) 301–317.  2002 Académie des sciences/Éditions scientifiques
et médicales Elsevier SAS
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1. Introduction

The miniaturization of electronic devices and the advent of nanotechnology render it essential to
understand the properties of atomic clusters. On the same point of view, the study of mixed clusters
constituted of materials having different electronic properties is crucial in designing complex nanostructures
made of small different nanoparticules and to take into account the charge transfers occurring in
nanocontacts. The geometric and electronic structures of small clusters, having typically ten to several
hundred atoms, may be investigated by various techniques [1] and references therein, such as laser
spectroscopy, including ionization potentials measurements and optical properties [1–3], photoelectron
spectroscopy [3,4] and imaging [5], photofragmentation, unimolecular evaporation [6,7] and ion mobility
[8]. Electronic properties are mainly deduced from spectroscopy experiments which measured transitions
between different electronic states or different charge states of the clusters. This tends to complicate the
interpretation of the experiments. It is not always easy to determine the ground state properties which are the
most essential for applications in nanoelectronics, and also to test the theoretical methods and calculations
of the studied clusters. In this respect, the direct measurement of the electric polarizability is a direct probe
of the cluster ground state and consequently of both geometric and electronic properties. In the same way
the measurement of the permanent dipole of mixed clusters is one of the best methods to investigate charge
transfers and geometric arrangements of these complex systems.

Electric polarizability and dipole may be in principle easily measured in beam deviation experiments in a
static electric field gradient [9,10]. For clusters, the first experiment was performed by Knight et al. [11] on
sodium and potassium clusters. Other measurements have been then performed on alkali clusters including
lithium and mixed lithium sodium clusters [12] aluminum clusters [13], semiconductor clusters [14] and
insulating clusters such as C60 and C70 clusters [15,16]. Recently Bonin et al. [17] have measured the
optical polarizability of C60 in performing the beam deviation by the standing wave of a Nd3+YAG
laser (λ = 1.064 µm). This last method is quite complementary, it has the advantage of using a different
experimental scheme and of providing a.c. polarizability.

Electric dipoles may be also deduced from deviation measurements. However, as explained in the
following, the resulting beam profile depends strongly whether the cluster is rigid or not. The same situation
is encountered in magnetic clusters [18–21] for the susceptibility measured in beam deviation by a magnetic
field gradient. However, we expect that the coupling between electric dipole and vibrational motion is easier
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to interpret and model [22,23]. Finally, the temperature dependence of the intrinsic polarizability of alkali
clusters was investigated theoretically [24–27] and recent measurements [28] shows that the polarizability
may be dependent on beam conditions.

In the present paper, we give an overview of recent results on electric dipole and polarizability of
atomic clusters and mixed clusters. The paper is divided in six parts. After the introduction, the second
part is devoted to the experimental techniques, in the third part, we present the simulations necessary to
extract permanent dipole and intrinsic polarizability from the experiment. In the fourth part, the results
on atomic clusters are given and discussed. In the fifth part mixed clusters with strong charge transfers
are investigated, these systems being specially interesting with respect to permanent dipole and electric
susceptibility. Finally, we end with a brief conclusion.

2. Experimental techniques

Static polarizability measurements are performed by deflecting a well-collimated beam through a static
inhomogeneous transverse electric field. All the experiments using static fields are similar [11,13,14,28–
30]. We describe here, as an example, the apparatus used in our laboratory (Fig. 1). The experiment
consists in a laser vaporization source coupled to an electric deflector and a mass spectrometer. The clusters
are produced in a simple or double rod laser vaporization source (the second or third harmonics of a
Nd3+ : YAG laser are used for the laser ablation) and are entrained by a inert gas pulse. They leave the
source through a 5 cm long nozzle which temperature can be adjusted from 80 K to 500 K. After two
skimmers, the beam is collimated by two rectangular slits (0.4 mm width) and travels through the electric
deflector (‘two-wires’ electric field configuration). The electric field and its gradient in the deflector are
F = 1.63 × 107 Vm−1 and ∇F = 2.82 × 109 Vm−2 respectively, for a voltage of 27 kV across the two
poles. Clusters are ionized one meter after the deflector in the extraction region of a position sensitive time
of flight mass spectrometer. The mass of the cluster and the profile of the beam are obtained from the arrival
time at the detector [10]. The beam profile is measured as a function of the electric field in the deflector.
A mechanical chopper located in front of the first slit allows us to select and measure the velocity v of the
beam.

In the deflector, a cluster is subjected to an instantaneous force:

�f = �µ∇ �F (1)

Figure 1. Schematic of an
experimental setup for electric
beam deflection experiments.

303



M. Broyer et al. / C. R. Physique 3 (2002) 301–317

where �µ is the electric dipole of the cluster in the field. The deviation d for a cluster of mass m with a
velocity v given by:

d = K〈f 〉
mv2 (2)

where K is a geometric factor. This electric field leads to a broadening or/and a global deviation of the
cluster beam.

3. Simulations

In a static electric field �F , the dipole moment of a particle is given by:

�µ= �µ0 + �✁α �F + · · · (3)

�µ0 is the permanent dipole of the particle and �✁α is the tensor of polarizability. Additional terms in the
development can be neglected for the values of the field and of the gradient of the field that are used in
static electric field experiments (see, for example, [31] for a discussion of additional terms). In the deviator,
the average force is:

〈f 〉 = 〈µZ〉∇FZ = 〈( �µ0 + �✁α �F ) · �Z〉∇FZ (4)

whereZ is the direction of the electric field. To simulate the deviation of the beam it is necessary to compute
the average value of the projection of the cluster dipole on the axis of the electric field. We will first discuss
nonpolar clusters (for example metal clusters, silicon clusters, . . . ) then we will discuss polar clusters (ionic
clusters, metal carbon clusters, . . . ).

3.1. Nonpolar clusters

For nonpolar clusters, the only contribution to the dipole is coming from the electronic polarizability
(second term in the right-hand of Eq. (3)). The induced dipole is proportional to the value of the electric
field. For a spherical cluster it is simply given by µZ = αFZ where α is the polarizability of the cluster on
any axis. For nonspherical clusters, the second order rank tensor of polarizability is not scalar. However,
the rotational average value of the ‘anisotropic part’ of the polarizability (�✁α − 1

3 Tr(�✁α)
�✁

I ) is small and it is
a very good approximation to use:

µZ ≈ αavgFZ with αavg = 1

3
Tr(�✁α) (5)

A full treatment of the asymmetric part of the polarizability for linear molecules can be found in
references [32,33]. The deviation of a nonpolar cluster obtained from Eqs. (2) and (5) is:

d =K
αF∇F
mv2 (6)

The electric field induces a global shift d of the molecular beam toward the high electric field region. This
shift is proportional to the average polarizability of the cluster. Fig. 2 shows an example of beam profiles
measured for a nonpolar cluster (C60) with and without an electric field in the deviator.

3.2. Rigid polar clusters

For polar clusters, the dominant contribution to the dipole in the electric field is due to the permanent
dipole. For a rigid rotor with a fixed dipole µ0, this contribution is equal to µ0〈cos θ〉 where θ is the angle
between the Z axis and the permanent dipole. For symmetric top molecules, the first order Stark effect [34]
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Figure 2. Beam profiles of C60 molecules:
� experimental profile measured without

electric field in the deviator (0 kV);
� experimental profile with

F = 1.5 × 107 Vm−1 in the deviator
(25 kV).

is nonnull and there is a force proportional to the value of the electric field. For asymmetric top or linear
molecules the average value of the cosine without electric field is zero at first order, and the force results of
an interaction induced by the electric field between neighboring levels.

The Hamiltonien of the system in the electric field is:

H =Hrot − �µ · �F =Hrot −µ0FZ cos(θ) (7)

For linear molecules, exact solutions for the Schrödinger equation with the above Hamiltonian can
easily be obtained. For clusters at room temperature, levels with high J values are populated and the
diagonalization of the above Hamiltonian would be a formidable task. For µ0FZ/kT small, one can use a
perturbative approach to compute the average value of cos(θ) (see, for example, [35,36]).

For clusters, a classical calculation is a good alternative to the quantum mechanical approach. An exact
calculation of the rotational motion in high electric field can be performed for symmetric top and linear
molecules [37,38]. In a static field the Lagrangian of the system is (for a symmetric top rotor):

L= I1

2

(
θ̇2 + ϕ̇2 sin2 θ

) + I3

2
(ψ̇ + ϕ̇ cosθ)2 +µ0FZ cosθ (8)

where θ , ϕ and ψ are the Euler angles, θ giving the inclination of the z axis of the symmetric top cluster
from the direction Z of the electric field. The value of the two equal momenta of inertia of the cluster is
I1, the value of the third momentum of inertia is I3. pθ , pϕ and pψ are the conjugate momenta of θ,ϕ and
ψ . pϕ and pψ are two constants of the motion. The average value of cos(θ) is obtained from Eq. (8) as a
function of pϕ , pψ and of the energyE of the cluster in the electric field. pϕ and pψ are invariant while the
cluster enters the electric field. The value of E is deduced from the energy E0 of the cluster before it enters
the electric field using the adiabatic invariance of

∮
pθ dθ [39]. At a temperature T , the profile of deviation

is given by [37]:

I (Z)=
∫∫∫∫

δ(Z−Kµ∇F 〈cos(θ)〉/(Mv2)) exp(−E0/(kT ))dpθ dpϕ dpψ dθ∫∫∫∫
exp(−E0/(kT ))dpθ dpϕ dpψ dθ

(9)

Fig. 3 shows an example of beam profiles measured for TiC60 (µ0 = 8.1D) with and without electric field
in the deflector. The symbols correspond to the experimental profiles and the lines to profiles calculated
using the classical method [37]. The value of 〈cosθ〉 and the average force depend on the rotational
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Figure 3. (a) Beam profiles of TiC60
molecules: � Experimental profile
without electric field in the deviator
(0 kV); � experimental profiles with
F = 2.4 × 106 Vm−1 in the deviator

(4 kV); (—) results of simulations at 0 kV
and 4 kV for a dipole moment of 8.1D,

[37].

motion of the cluster. The electric field induces a broadening of the beam, which is well reproduced by
the simulation.

Finally, as mentioned above, the effect of the induced dipole is for many systems, small when compared
to the effect of the permanent dipole. It can be included in both quantum and classical calculations without
any difficulty and it induces a global shift of the whole profile.

3.3. Nonrigid polar molecules

The rotational motion of a nonrigid rotor is no longer described by Eqs. (7) or (8); in particular coupling
between the vibration and the rotation and potential parts of the Hamiltonian has to be taken into account.
In the general case, the calculation of the projection of the dipole moment on the Z axis as a function of
time is not possible. However, if the fluctuations of the particles are such that the distribution of dipoles in
the electric field is given by a canonic distribution, a very simple formulation of the average value of the
dipole in the electric field is available. Assuming a linear response, the average value of the dipole in the
electric field is proportional to the fluctuations of the square of the dipole calculated with the unperturbed
distributions (i.e., without electric field) and to the value of the electric field. The average value of the dipole
is given by:

〈µ〉 =
[
αavg + 〈µ2〉0

3kT

]
FZ = χFZ (10)

where χ can be defined as the DC electric susceptibility of the cluster (the electronic polarizability is
included in Eq. (10)). It is analog to the DC susceptibility of a paraelectric system. In this case, the
deflected profiles are similar to the profiles obtained for a nonpolar cluster: there is a deviation without
broadening. The polar contribution to Eq. (10) is in general much larger than the electronic contribution
and is inversely proportional to the temperature. Examples of deflections measured for nonrigid clusters
are given in Section 5. These results are similar to Stern and Gerlach’s experiments performed on magnetic
clusters with spins that are not locked to the cluster lattice [18–21]. For some model systems, the fluctuations
of the cluster and of the dipole are easy to visualize [22,23], but a complete treatment and a justification
of the use of Eq. (10) in the general case has not been developed yet (neither for electric, nor for magnetic
dipole).
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4. Atomic clusters

4.1. Metal clusters

In metal clusters, the electrons are delocalized and we expect that the polarizability follows in first
approximation the law:

α = (R + δ)3 = (
N1/3rS + δ

)3 (11)

where δ is the electron spill-out and rS the Wigner–Seitz radius. This means that the polarizability per atom
of simple metal clusters is assumed to increase when the number of atoms decreases. The experimental
evolution as a function of size was observed in various metals namely sodium, potassium, lithium, lithium-
sodium, aluminum and recently nickel. We discuss firstly sodium clusters for which the measurements are
the most numerous and complete.

4.1.1. Sodium clusters

The general properties of sodium clusters are well interpreted in the frame work of the Jellium model
and sodium is the prototype of a simple metal cluster [1]. Fig. 4 shows measurements gathered from three
independent experiments [11,28,40]. They cover a large size domain extending from the atom to 90 atoms.
They show a global decrease with the size. However the results are in average above the approximate law
(Eq. (11)) where rS = 2.12 Å and δ = 0.69 Å. Some dips are observed for shell closures N = 8,20 but
they are not very pronounced. Ab initio calculations [24,40–45] or more empirical methods [46] have been
used to reproduce the experimental results. All the theoretical results agree with a global decrease as a
function of size but they all underestimate the experimental values. This discrepancy between theory and
experiment is usually explained by the influence of the temperature, the theoretical calculations being made
at 0 K, while the cluster temperature is larger than 300 K, but not precisely known. Temperature influence
on the polarizability has been recently calculated [25–27] but no conclusive comparison with experiment is
available because precise measurements as a function of cluster temperature are lacking.

Except for this problem related to temperature effects, the above results are in agreement with a
delocalization of valence electrons, even for very small sizes, as it is confirmed by ab initio calculations.
The results on potassium clusters are less complete but they exhibit similar phenomena.

Figure 4. Static dipole polarizabilities
per atom of sodium clusters plotted as a
function of the number of atoms in the
cluster: • data from [11]; � data from

[40]; � data from [28]. The dashed line
represents the prediction from the
classical metallic sphere (Eq. (11))
assuming a radius of 2.12 Å and an

electron spill-out of 0.69 Å. The solid
line corresponds to the bulk value. The

precision in experimental
measurements depends on the cluster
size and experiments but it is typically

±10%.
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Figure 5. Static dipole polarizabilities
per atom of lithium clusters plotted as a
function of the number of atoms in the
cluster [29]. The dashed line represents

the prediction from the classical
metallic sphere (Eq. (11)) assuming a

radius of 1.75 Å and an electron
spill-out of 0.75 Å. The precision in

experimental measurements is ±10%.

4.1.2. Lithium clusters

The case of lithium clusters is very interesting. The atomic polarizability is abnormally large, very close
to the sodium atomic value. On the other hand, the classical values for the corresponding metallic spheres
are very different since the Wigner–Seitz radi are 1.75 Å and 2.12 Å for Li and Na, respectively.

The evolution of lithium clusters polarizability is shown in Fig. 5. In fact, this polarizability is very close
to the finite metallic sphere for clusters larger than 3 or 4 atoms [29,40]. The abnormal value for the lithium
atom is due to the diffuse character of the valence electron which occupies about the same volume as in
the sodium atom. In clusters, the valence electrons are delocalized in a volume that principally depend on
internuclear distances. Even for very small sizes, these distances are close to the bulk values, because they
are mainly related to the ion sizes. This evolution of the polarizability in lithium illustrates the delocalization
of the valence electrons in alkali clusters, from 3 or 4 atoms. This also shows that the red-shift of the dipole
resonance of lithium clusters, as compared to the Mie theory is not related to static polarizability but to an
effective mass effect [29], which is due to nonlocal pseudopotential and affects the dynamic response [47].

The electric polarizability of mixed sodium–lithium clusters have also been measured for small sizes [12].
They decrease continuously from pure sodium, to pure lithium clusters as a function of the lithium content.
They are in good agreement with ab initio calculations.

4.1.3. Other metals

The measurements of electric polarizability of other metal clusters are quite scarce. To our knowledge,
only aluminum and nickel clusters have been studied. These measurements are difficult because in most
metals the polarizability per atom is much smaller than in alkali metals. In aluminum clusters [13], where
results are available for up to 60 atoms, the behavior as a function of size is very different from that of
alkali metals (Fig. 6). The polarizability increases from the atom to the dimer and is below the empiric
law (Eq. (11)) or Thomas–Fermi approximation [1,13,48] in the size range 15<N < 40. This is generally
interpreted by the bonding change in aluminum as a function of the size, the s electron of aluminum (atomic
structure s2p) being only partially delocalized for small sizes [49].

The results recently obtained for nickel clusters [30] are very interesting but much more difficult to
interpret. They are close to the empiric law (Eq. (11)) in absolute values, but they do not follow the slow
decrease as a function of size and tend rather to slightly increase (Fig. 6). Moreover, anomalous high values
are obtained for some sizes Ni21, Ni22 and Ni49−54. These sizes are expected to correspond to icosahedron
or polyicosahedron with ‘missing’ atoms. This kind of measurement is crucial for the determination of
nickel cluster structure but quite hard theoretical calculations are necessary to interpret them, the ab initio
calculations in transition metal clusters remaining a difficult challenge.
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Figure 6. Static dipole polarizabilities per
atom of aluminum [13] and nickel [30]

clusters plotted as a function of the
number of atoms in the cluster. The

dashed lines represent the prediction from
the classical metallic sphere assuming a
radius of 1.58 Å and 1.39 Å, an electron

spill-out of 0.76 Å and 0.74 Å for
aluminum and nickel, respectively. The
precision in experimental measurements

is of the order of ±10% for aluminum and
±20% for nickel.

4.2. Covalent clusters

In these systems (carbon, silicon, germanium) the electrons are not delocalized and the bonding has a
covalent character. The comparison with the bulk is usually realized through the Clausius–Mossotti relation:

α = ε− 1

ε+ 2
r3
SN

3 (12)

where ε is the static dielectric function, and rS the Wigner–Seitz radius.
The available results concern silicon clusters, other semiconductor clusters, and fullerenes.

4.2.1. Silicon and other semiconductor clusters

The polarizability of silicon clusters have been measured by beam deviation in the size range 10<N <

120 [14]. They are plotted in Fig. 7. The experimental values for α are below the bulk value αbulk = 3.71 Å3

deduced from relation (12) and strong variations from size to size are observed with high values for
N = 10,17,23,29.

The comparison between theory and experiment is quite puzzling for silicon. The polarizability is
calculated by higher-order finite-difference method with nonlocal pseudopotentials [50] or first principles
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Figure 7. Polarizabilities per atom of SiN
clusters [14]. The solid line corresponds

to the bulk value. The precision in
experimental measurements depends on
the cluster size but it is typically ±25%.

density-functional-based method [51,52]. The available results extend from one atom to 28 atoms. The
obtained polarizabilities are all above the bulk value, contrary to experimental results. They do not
reproduced relative size variations. The theoretical results are interpreted by the existence of dangling bonds
in small silicon clusters which results in averaged coordination numbers larger than 4. This is sometimes
called the metallic-like nature of small silicon clusters [50] and may explain the fact that calculated values
are above the bulk one. Values are less regular than in simple metals because the averaged coordination
number depends on size and for a given size on the structure. It is known that several isomers may coexist
in a molecular beam [53] and this renders more difficult the comparison with the experiment. Nevertheless,
experimental and theoretical trends are not in agreement. The precision in the experimental values is not
very high, typically ±20%. We believe that this precision must be improved before a definitive conclusion
can be made. The question of the electric polarizability in small silicon clusters remains open, as well as
the electronic structure of these clusters.

The polarizability of other semi-conductor clusters like GaNAsM (N close to M) has been measured
as a function of N +M in the size range 5 < N + M < 30 [14]. The results illustrate the importance
of donor-like or acceptor-like defect states in the band gap. For odd values of the total number of atoms
N +M , defect states exist in the band gap and lead to high values of the polarizability, while for even
values of N +M , there are no defect states and the polarizability is much smaller. This results in a nice
odd-even alternation in the polarizability values as a function of the cluster size. GeNTeM clusters have
also been studied [14]. In this case, a strong temperature dependence is observed. This may be related to the
ferroelectric character of GeTe bulk. It would be very interesting to study this system more systematically
as a function of temperature to investigate the influence of the paraelectric-ferroelectric transition and of
the melting point in these small systems.

4.2.2. Fullerenes

The experimental polarizability of small carbon clusters is not available. Therefore we will discuss only
the case of C60 and C70 fullerenes for which measurements have been recently performed [15–17]. For these
new systems, the Clausius Mossoti relation cannot be used to deduce the polarizability per atom from the
dielectric constant of graphite or diamond, because the bonding and the structure are completely different
(new forms of carbon). However the Clausius Mossotti relation may be used to deduce the polarizability of
C60 and C70 from fullerites (C60 and C70 bulk).

The measured values of static polarizability for C60 and C70 are 76.5±8 Å3 and 102±14 Å3 respectively
[15,16]. In Table 1, these values are compared to other measurements deduced from the bulk (C60 and
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Table 1.Experimental and theoretical results for the averaged static polarizability of C60 and C70. For C60 and C70
films, the polarizability value is extracted from the experimental dielectric function by using the Clausius–Mossotti

relation.

Method α(C60) (Å3) α(C70) (Å3) α(C70)/α(C60)

Experiment

Gas phase

Molecular Beam Deviation [16] 76.5 ± 8 102 ± 14 1.33 ± 0.03

C60 and C70 films

Optical measurements: ellipsometry and reflection/transmission [69]1 79.0 97.0 1.23

Electron Energy-Loss Spectroscopy [70] 83.0 103.5 1.25

Theory

Iterative coupled Hartree–Fock (STO-3G basis set) [71] 45.6 57.0 1.25

Pariser–Parr–Pople Hamiltonian [72] 49.4 63.8 1.29

Atom Monopole–Dipole Interaction [73] 60.8 73.8 1.21

Semi empirical calculation (MNDO/PM3) [74] 63.9 79.0 1.24

Ab initio SCF (6-31++G basis set) [54] 75.1 89.8 1.20

Tight binding – Linear response [16] 77.0 91.6 1.19

Bond polarizability model [75] 89.2 109.2 1.22

Valence effective Hamiltonian [76] 154.0 214.3 1.39

Model

Additivity model 1.17

Conducting shell model 1.22
1 In the Clausius–Mossotti relation, we used a lattice constant a = 14.17 Å for C60 and a = 15.01 Å for C70.

C70 films) and to theoretical calculations including ab initio methods, tight binding and rough models. In
Table 1, we limit the comparison to calculations performed for both C60 and C70. The agreement between
values obtained by beam deviation and from C60 and C70 films is very good. The theoretical values show
large variations from 45 to 154 Å3 for C60 and 57 to 214.3 Å3 for C70. The best theoretical results are
obtained by ab initio methods [54] and tight binding linear response [16]. The rough model of conducting
shell taking into account the thickness of the electronic cloud also leads to good results, 77 and 94 Å3

for C60 and C70 respectively [16].
Due to the difficulty of absolute calibration, the ratio αC60/αC70 is known with a better precision than

αC60 and αC70 separately (Table 1). The experimental value is larger than the simple additivity of atomic
contribution which gives 1.17 (7/6) for this ratio. This is expected but the experimental value of 1.33 is also
larger than the best theoretical predictions (typically 1.2–1.22). On the experimental side, the isomerization
of C70 and the finite temperature (300 K) of the experiment may be evoked to explain these differences.
Further experimental and theoretical investigations including larger and smaller fullerenes are necessary to
permit a conclusion. Nevertheless, in fullerenes, due to the cage structure, the polarizability per atom tends
to increase as a function of size. A similar behavior is expected for carbon chains. This is very different from
metal clusters where the electron delocalization tends to induce compact structures having polarizabilities
per atom that decrease as the cluster size increases (the relative contribution of the spill-out decreasing with
size).
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Finally the optical polarizability of C60 has been measured by beam deviation with a light standing
wave at 1064 nm [17]. The obtained value (αopt = 79 ± 4 Å3) is slightly higher than the static one
(αsta = 76.5 ± 8 Å3), in agreement with most recent ab initio calculations [55] giving 76.4 and 75.1 Å3,
respectively. Measurements at other wavelengths, typically 532 nm would be very interesting to have a
good picture of the frequency evolution of the C60 polarizability.

5. Mixed clusters

First experiments on mixed clusters [14] were performed on 3–5 and 2–6 semiconductor clusters. These
experiments have already been discussed in the atomic clusters section because they are really characteristic
of semiconductor behavior and the results are strongly connected to silicon results.

5.1. Metal fullerene clusters

In metal–C60 molecules, a charge transfer from the metal atom to the fullerene induces a strong perma-
nent electric dipole. This charge transfer was first observed in photoelectron spectroscopy experiments [56,
57] and plays a key role in the electrical conductivity and superconductivity properties of fullerites doped
by alkali metal atoms [58,59]. The first molecular deflection experiments were performed in our group two
years ago [22,60]. Fig. 8 shows experimental profiles measured with and without an electric field for KC60
at room temperature. A strong deviation without broadening is observed. This is a text book example of
nonrigid cluster. At room temperature, the alkali atom, and then the direction of the electric dipole moment,
can move freely on the surface of the cage. Without the electric field, the average value of the dipole is
zero. In a static electric field, the dipole is statistically oriented toward the direction of the electric field

Figure 8. (a) Experimental beam profiles of KC60
molecules, with and without electric field in the
deflector (0 kV and 25 kV); (b) Susceptibility of
KC60 plotted as a function of the inverse of the

temperature. The line corresponds to a linear fit of
the data. The temperature of the nozzle has been

varied from 300 K to 483 K [22].
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Figure 9. Beam profiles of RbC60
molecules measured at 3 different

temperatures: � experimental profiles
without deviation (V = 0 kV);
� experimental profiles with
V = 24 kV across the deviator;
(—) results of simulation for

V = 0 kV and V = 24 kV for a dipole
moment of 20.6D [23].

and its average value is given by Eq. (10). Fig. 8(b) shows that above room temperature the experimental
susceptibility is inversely proportional to the temperature as predicted by Eq. (10).

Fig. 9 shows experimental profiles measured below room temperature. As the temperature decreases, the
hopping or fluctuation frequency of the alkali atom decreases and the value of the average dipole does not
follow the Langevin formula (Eq. (10)). The deviation is not the same for all the clusters: all the clusters do
not have the same average dipole. In this particular case of an atom on C60, the evolution of the polarizability
with temperature is perfectly reproduced with a very simple statistical model of relaxation which takes into
account the rotational motion of the molecule [23]. This model allows a precise determination of the dipole
of the cluster at equilibrium and of the barrier of energy to hop from one equilibrium site to another.
Permanent dipole moments measured for LiC60, NaC60, KC60, and CsC60 [61] are listed in Table 2. The
dipole moment increases with the size of the alkali atom, from 12.4D for LiC60 to 21.5D for CsC60. This
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Table 2.Experimental permanent dipole moment obtained from deviation
measurements for alkali metal-C60 clusters [61].

LiC60 NaC60 KC60 RbC60 CsC60

µexp(D) 12.4 ± 2.0 16.3 ± 1.6 21.5 ± 2.2 20.6 ± 2.1 21.5 ± 2.2

Figure 10.Susceptibility of
NaNC60 clusters as a function of
the number of sodium atoms. The

dark squares correspond to
experimental values [62]. The full

line corresponds to values
calculated assuming that the

sodium atoms form a metal shell
around the fullerene. The dashed

line corresponds to the values
calculated assuming the formation
of a metal droplet on the surface of

the fullerene (see [62]).

evolution is mainly due to the decrease in the ionization potential of the alkali atom and is well reproduced
by a simple analytical polarizable-ion model [61].

The same measurements were extended to clusters with several alkali atoms (NanC60 clusters) [62]. The
results are given in Fig. 10 for n = 1 to 34. Comparison of these results with two simple models shows
that the sodium does not wet the C60 but clusters on its surface to form a small metal droplet. This result
is different from the interpretation of mass spectrometry [63], or photoelectron spectroscopy experiments
performed on ionic systems [57]. This may reflect that a change in the charge state can drive a complete
reorganization of the cluster geometry.

5.2. Alkali halide clusters

The very first electric beam deviation experiments with polar molecules were performed in 1927 [64] on
alkali halide molecules which have a large permanent electric dipole due to the ionic nature of the bond.
Alkali halide clusters are ionic and tend to form small cubic nanocrystals with a lattice structure similar to
the NaCl structure. For clusters, the first deviation experiments were performed in 2000 on cesium bromide
clusters with one excess electron [65]. The experimental results are plotted in Fig. 11; they strongly depend
on the cluster size. However, no direct correlation between deflection results and the ionization potential
pattern or the families defined in previous experiments [66–68] is observed.

A study of the beam deflection as a function of the temperature for Cs18Br17 shows that its susceptibility
follows Eq. (10) with a main contribution due to its permanent dipole. Using Eq. (10), experimental
results are in qualitative agreement with the permanent dipoles expected for structures that were previously
determined for sodium fluoride clusters [67,68]. For example, the structure of Na18F17 is a 4 × 3 × 3
parallelepiped with a F center. To first approximation, this cluster is made of an even number of layers
alternatively positively and negatively charged leading to a large permanent dipole. In the same way,
a similar dipole is expected for Cs30Br29 and a dipole two times smaller for Cs9Br8. The large values
observed for Cs14Br13 may be due to the localization of the excess electron on a corner [68]. Despite the
simplicity of ionic bonding, the interpretation of the results obtained for cesium bromide clusters is not
complete and further experimental and theoretical studies are needed.
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Figure 11.Susceptibility of CsnBrn−1
clusters [65]. Data are missing for certain
sizes. The line has been plotted to guide

the eyes. The precision in the experimental
measurements is ±10%.

6. Conclusions

The measurement of electric polarizability of small atomic clusters is a powerful way to probe
their electronic structure and the type of bonding between atoms, including metal bonding (electron
delocalization), covalent bonding, ionic bonding, existence of states inside the gap for semiconductors,
etc. Comparison between precise measurements and high level theoretical calculations is the key for a deep
understanding of these electronic properties. This comparison is well achieved in alkali clusters where the
main features are well understood and the next step for these systems would be an extended study of the
temperature dependence. For other metal clusters, the experimental results are not very numerous and the
theoretical calculations are quite hard. Nevertheless the different behaviour between alkali and other metal
clusters (Al, Ni) is striking and this should probably require more attention in the future. For example,
correlation in transition metal clusters between strong size effects in electric polarizabilities and chemical
reactivity is probably very interesting.

For covalent and semiconductor clusters, the polarizability is also an important and key property.
In silicon, the structure of small clusters is very complicated, with a large number of isomers. If the
polarizability measurements do not bring new insight, they need probably to be improved in parallel to
progresses in theory. In GaNAsM clusters, the high value of the electric polarizability for some sizes has
been shown to be a clear signature of defect states inside the gap.

Fullerenes are prototypes to study the relation between structure and electric polarizability, and the
recently obtained results for C60 and C70 are a first step in this direction. For the future, measurements on
larger or smaller fullerenes are necessary to have a complete description of these cage molecules. Moreover,
at least for C60, it becomes now possible to describe the behavior of the electric polarizability as a function
of the frequency up to the optical regime.

For these atomic clusters, measurements of the polarizability as a function of the temperature could open
a new field, for example liquid–solid transitions for most systems or paraelectric–ferroelectric transitions
in some specific cases. For liquid–solid transitions the polarizability may be a direct manifestation of the
evolution of interatomic distance during such a transition.

In mixed clusters, using beam deviation techniques, it becomes possible to measure dipole moment
through broadening of the beam (rigid molecules), or dipole susceptibility (nonrigid molecules). This is
clearly illustrated for the metal-fullerene system where charge transfer as well as metal segregation have
been measured. This technique, developed for studying clusters, may be used for any complex molecule
where the electric dipole is very often a key parameter directly related to the geometric arrangement
and conformation. Biologic molecules in the gas phase are good candidates. For example, polypeptides
may form helices with large electric dipole or more compact structures with small dipole. The beam
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deviation technique may give a signature of different isomers, opening the road for a two-dimensional
mass spectrometry: the mass number being obtained by time of flight and the dipole by beam deviation.
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