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Abstract Small systems, notably clusters of tens or hundreds of atoms or molecules, exhibit forms
almost precisely analogous to the phases of bulk systems. However their small sizes
make these systems behave in ways quite different from their bulk counterparts. These
differences can be elucidated and related to the behavior of bulk systems. Understanding
these relationships gives us new insights into the traditional, classical bulk phase transitions,
and shows us some unique properties of phases and phase equilibrium of nanoscale systems.
To cite this article: R.S. Berry, C. R. Physique 3 (2002) 319–326.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

nanoscale systems / phase equilibrium

Les phases surprenantes des petits systèmes

Résumé Les petits systèmes, et plus particulièrement les agrégats de quelques dizaines ou de
quelques centaines d’atomes ou de molécules, présentent des formes sensiblement proches
des celles que l’on rencontrent dans les systèmes macroscopiques. Cependant leur petite
taille confèrent à ces systèmes des comportements tout à fait différents de ceux du solide
massif correspondant. Ces différences peuvent être comprises et reliées au comportement de
ce solide. La compréhension de ces liens donne un nouvel éclairage sur les traditionnelles
transitions de phase dans les solides et montre bien les propriétés uniques des phases et
de l’équilibre entre phases dans ces systèmes nanoscopiques.Pour citer cet article : R.S.
Berry, C. R. Physique 3 (2002) 319–326.  2002 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

systm̀es nanoscopiques / équilibre entre phases

1. Introduction

Phases of bulk matter became a central subject of thermodynamics during the nineteenth century, perhaps
culminating with the famous Phase Rule of J.W. Gibbs: the numberf of degrees of (macroscopic) degrees
of freedom for a system in equilibrium is determined by the numberc of components and the numberp of
phases that are present in equilibrium:f = c−p+2, where the deepest part of the insight in this equation is
the number 2! Each component provides a variable, and each phase requires its own equation of state, which
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acts as a constraint. Hence a pure substance, withc = 1, may exist in states controlled by two independent
variables, e.g. pressure and temperature, but if we require two phases to be in equilibrium, then only one
of those variables can be independent. We can thus represent the region of stability of a single phase as a
region in a plane, e.g. inp−T space, but the region of coexistence of two phases must be only a curve in that
space. The phases of bulk matter are homogeneous, macroscopic regions with uniform physical properties
satisfying an equation of state. Moreover they are essentially static, permanent constituents of the overall
system, so long as the conditions are constant. The description of bulk phases in equilibrium can be said
to be one of the completed parts of classical thermodynamics. (The kinetics of nucleation and changes of
phase are, of course, only partly understood [1,2].)

Here we review a closely related but remarkably different kind of phase behavior, that of very small
systems, nanoscale particles composed of tens, hundreds or thousands of atoms or molecules. We shall see
that many of these systems exhibit forms we can readily identify with well-known phases of bulk matter, but
that they undergo changes from one phase to another in ways different from those described by the Gibbs
phase rule. Small particles can exhibit two or more phases in equilibrium over ranges of temperature and
pressure; distinctions between first-order and second-order transitions blur; and small systems can exhibit
phases—in equilibrium—that cannot possibly be observed for macroscopic systems. We shall see how all
these phenomena come about and how they are closely related to phase behavior of bulk matter. (A recent
review related to this work is available [3], and contains extensive references to original material.)

2. Dynamics and thermodynamics of phase equilibrium

The essential condition underlyinglocal stability of any form of matter, however small or large its stage
of aggregation, is the occurence of a local minimum in the free energy, for fixed external variables, usually
intensive, with respect to some suitable order parameter. A local minimum not only assures the stability
of the global minimum state, that state with the lowest free energy for those conditions; it also assures the
possibility of other kinds of stability, such as the metastability of superheated or supercooled (undercooled)
water. This condition applies for stability of forms of clusters just as it does for bulk matter.

The other essential relationship on which we call is the one that determines the relative proportions of
locally stable forms with different free energies. This is the ubiquitous relationship that governs the relative
amounts of different chemical isomersA andB, for example, the expression for the equilibrium constant
K(T ): K(T ) = [A]/[B] = exp(−�F(T )/kBT ), where�F(T ) is the difference in free energy of speciesA

andB at temperatureT . The free energy can be written in terms of the mean chemical potential difference
�µ(T ) and the numberN of particles in the system,�F(T ) = N�µ(T ).

Suppose thatphases A and B are locally stable forms of a macroscopic sample of material. Then
in an ensemble of such samples, the ratio one would observe of the two forms would be precisely
[A]/[B] = exp(−N�µ(T )/kBT ). Let us measure the free energy and mean chemical potential in units
of kBT . Traditional thermodynamics tells us that these two phases may coexist in equilibrium only when
�µ = 0. Why? Suppose that the difference�µ is nonzero but very tiny in these units, e.g.±10−10.
This might suggest that we could find observable amounts of both the more stable, favored form and the
unfavored form in the ensemble. However we must remember thatN is a number of order 1020, so that the
equilibrium ratio[A]/[B] is of order exp(±1010)! Even a tiny difference in free energies is enough to make
the favored phase so much more favored than the unfavored phase that the latter is simply unobservable.
Hence the only conditions under which we can expect to see phase coexistence is the condition of equal
chemical potentials.

When we deal with systems of tens, hundreds or thousands of particles, the situation is completely
different. There, withN of order 10 to 1000 or even 100 000, the equilibrium ratio of the two species may
well lie within a range of perhaps 10−4 to 104 over a temperature range of a controllable fraction of a
degree, or even over several degreesK, at a fixed pressure. This means that we can expect to observe both
phases in our ensemble ofnanoscale particles over a range of temperatures, not just at a single temperature!
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What sets the limits within which such coexistence is possible? It is simply the range within which the
first condition, of the occurrence of a local minimum in the free energy for the phase. Consider, for example,
the situation of a single solid phaseA and a liquid phaseB. At sufficiently low temperatures, the system has
too low a mean energy to have any minimum in the free energy except that determined by the low enthalpy
of the solid phase, when regarded as a function of the order parameterγ measuring the rigidity of the
system. However, the density of states of the higher-energy liquid form increases with energy considerably
faster than the density of solid-like states. This density of states naturally contributes to the entropy of the
liquid form, so that at some temperatureTf , which we call the ‘freezing limit,’ a point appears in the curve
of F(T ,γ ) versusγ (at fixedT , of course) where the slope is zero andγ is well in the liquid range. At
temperatures aboveTf , the curve ofF(T ,γ ) has two minima, not just one. These two minima persist up to
a temperatureTm, the ‘melting limit,’ at which the minimum in the solid-like region ofγ turns into a single
point where the slope is zero. AboveTm, the free energy has only a single minimum, in the liquid range,
so only the liquid phase is stable there. Coexistence in equilibrium occurs at all temperatures betweenTf
andTm. These two temperatures are of course functions of pressure, but the coexistence is possible so long
as the two minima appear in the free energy. Incidentally, because of the difference between the behavior of
bulk and small systems, and the long tradition and vast literature on phase transformations of bulk matter,
we choose to reserve the term ‘phase transition’ for bulk matter, and the term ‘phase change’ for the more
general behavior of small systems as well as bulk phase transitions. The way size affects the coexistence of
two phases has been discussed by Wales and Doye [4].

The behavior of systems of three sizes—a small number of particles per cluster, an intermediate number
and a large number—are illustrated schematically in Fig. 1, (a)–(c). These are expressed in terms not of the
equilibrium ratioK = [A]/[B], which may vary between zero and infinity, but in terms of a more convenient
transformation ofK. We define the distributionD = (K − 1)/(K + 1) = ([A] − [B])/([A] + [B]), the
fractional difference between the two concentrations. For example, ifA is the liquid phase andB is a solid
phase, thenD is the amount of liquid minus the amount of solid, divided by the total amount of material.
Consequently the distributionD varies from−1 for a system consisting only of phaseB to +1 to a phase
consisting entirely of phaseA. The figures show that belowTf , D = −1 corresponding to the system being
entirely solid; likewise, aboveTm, D = +1, corresponding to a pure liquid. At the transition temperatures,
we can expect discontinuities inD. However, these discontinuities become smaller and smaller as the
number of particles comprising the clusters increases.

For large clusters, above the discontinuity atTf and below that atTm, the values ofD remain very
close to−1 and+1, respectively, up to very close to the point whereD = 0. There, the change of value
of D becomes more and more abrupt as the size of the clusters increases. For macroscopic systems, that
(continuous but abrupt) change is, in effect, the discontinuity we associate with a first-order phase transition.

It is possible to estimate the conditions for solid–liquid phase changes and phase coexistence of
clusters, using two essential and fairly general properties of clusters. Both are rooted in examining the
configurational behavior associated with these two forms. In the solid, most particles have the maximum
number of nearest neighbors associated with the solid’s structure. In the liquid phase, there are defects that
reduce the number of neighbors and hence reduce the binding energy. At the same time, the density of
configurational states with defects increases with the number of defects. Thus the binding energy decreases
as the configurational entropy increases. Combinatorics provides the tool to estimate these, and hence to
provide an approximate description of the phase behavior of clusters [5].

The difference between small systems and bulk matter is simply a consequence of the magnitude ofN .
But there are other important consequences of this difference, beyond just the existence of finite bands of
conditions for coexistence of two phases of small systems, instead of a single, sharp curve. Because only
hundreds or thousands of particles interact to determine the phase of a small system, the time scale for its
ergodic exploration of its available phase space is vastly shorter than the time scale for the macroscopic
system to do its counterpart exploration [6,7]. The latter time scales are so long that we consider phases of
bulk matter as static, permanent forms; clusters of tens or hundreds of particles may pass from one phase to
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(a) (b)

(c)

Figure 1. Three examples of the coexistence of
two phases of small systems: (a) a quite small

system, with large discontinuities at the freezing
limit Tf and the melting limitTm; (b) an

intermediate case; and (c) a system large enough
to begin to show behavior mimicking the

behavior of bulk systems, with only very small
discontinuities atTf andTm and a very abrupt

change inD as it goes through the point of equal
free energies, whereD = 0.

another on a time scale of picoseconds or hundreds of picoseconds, just as molecules of tens or hundreds
of atoms can pass from one isomeric form to another on such a time scale. In fact, we see herethe loss
of the distinction between components and phases when we consider matter at the nanoscale. This loss of
distinction means that the Gibbs Phase Rule loses its significance for particles so small that components
and phases can transform themselves on roughly the same time scale. One of the fascinating open questions
regarding the phases of nanoscale matter is “At approximately what size of particle does a phase of a
nanoscale particle endure long enough to make it significantly more persistent and ‘permanent’ than an
isomerizing component?” This is very likely the kind of question that can only be answered by specifying
the kind of observation one would use, and the time scale for such a measurement.

Because small clusters do pass rapidly between phases, it is important to recognize that what we observe
of their behavior may depend very much on the time scale of the observation we use. If our measurement is
slow, e.g. requiring hundreds of nanoseconds, and the passage between phases of our clusters occurs on a
scale of hundreds of picoseconds, we can observe only the average behavior of our ensemble or our single
system moving through time. If, however, our observation takes only tens of picoseconds, then we can
observe distinct phases. That is, we can observe distinct phases provided another time-scale consideration
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is met. The systems must remain in each phase long enough to develop the properties we associate with
that phase in equilibrium properties such as a well-defined mean square displacement as a function of time
(whose slope is essentially the diffusion coefficient), a well-defined relative root-mean-square deviation
of the particle displacements or interparticle distances (the ‘Lindemann criterion’), a well-defined pair
distribution function, the properties we use to determine existence of a specific phase. Many clusters, even
as small as six or seven particles, do appear, from simulations, to show such persistence. However other
clusters, typically in a size range of tens of particles, pass too rapidly between a solid-like region of their
multidimensional potential surface and a liquid-like region on the same surface to develop those equilibrium
properties. This behavior is very dependent on the specific number of particles comprising the cluster, and
is not simply monotonic withN . For example, Ar7, Ar13 and Ar19 show persistent solid and liquid forms,
while Ar15 and Ar17 pass too rapidly between solid and liquid to develop those equilibrium properties [8].

Still another important difference between phase behavior of bulk matter and small systems is a
consequence of the coexistence phenomenon and the loss of distinction between component and phase.
There is nothing that prevents the free energy of a small system (or a bulk system, for that matter) from
having several local minima as a function of a single order parameter or of two or more order parameters.
The influence of a very largeN for bulk systems dictates that only the most favored of these phases is
stable in observable amounts, unless the free energies of two phases are equal, as we have seen; thatthree
phases (of a system of a single component) could have equal free energies can be expected only at a single
point, the well-knowntriple point. Small systems, in contrast, with equilibrium concentration ratios lying in
observable ranges over bands of temperature and pressure, may exhibit any number of coexisting phases in
observable quantities [9]. There is nothing to prevent three or more phases of a homogeneous cluster from
being present in observable quantities over some finite band of conditions. An example is the Ar55 cluster,
for which simulations predict that the solid phase, the liquid phase and an intermediate ‘surface-melted’
phase should all coexist over a narrow range of conditions. Just outside that range, on the low-temperature
side, the solid and ‘surface-melted’ forms should coexist, and on the high-temperature side, the liquid and
‘surface-melted’ forms should coexist [10,11]. At still lower and higher temperatures, of course only the
solid and liquid forms should be stable.

The last of the special phase properties of small systems that we point out here is the possibility for a
phase of a nanoscale particle to be quite stable and observable in equilibrium and yet have no counterpart
in bulk matter. This may happen for at least two reasons. One is simply the structural consideration; a
system with a large fraction of its particles at its surface may have very different structures than one that is
essentially infinite, insofar as so few of its particles are on its surface that they cannot affect the energetic
considerations that determine what structure is stable. The best known examples of this behavior are of
course the polyhedral rare gas clusters, mostly icosahedral or based on icosahedral structures, that are more
stable than their close-packed counterparts that characterize the bulk solids of these substances. The other
reason for a phase to be observable at the nanoscale but not in bulk matter is that it corresponds to a local
minimum in the free energy that isunder no conditions the lowest free energy minimum of the system. An
ensemble of nanoscale particles may be prepared so that it exhibits such a phase in equilibrium but the same
phase becomes so unfavored, thermodynamically, in bulk systems that it is simply never observable except
as a metastable form, at best.

While researchers have found a variety of sufficient conditions for coexistence of two or more phases,
only one demonstration ofnecessary conditions has been given [12]. As yet, there has been no statement of
necessary and sufficient conditions.

3. Phase changes of differing order

Up to this point, the discussion has focused on phase changes that involve passage of a system from one
locally stable state to another. Small systems accomplish this passage as a gradual shift in the equilibrium
populations from one state to another, a passage we express as a shift of population from one local free
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energy minimum to another. Bulk systems exhibit the same kind of shift but, as we have seen, the shift
is extremely abrupt because of the leverage of a very large value ofN on the equilibrium ratio. This
is precisely the traditional first-order or discontinuous phase transition of bulk matter. Now we turn our
attention to the small-system analogues of second-order or continuous phase transitions.

The classic second-order phase transition has no energy or enthalpy associated with the phase change
but does have a discontinuity in the derivative of the energy with respect to the variable, usually intensive,
whose change reveals the transition. Hence heat capacities show discontinuities at second-order transitions.
A more microscopic characterization of second-order transitions associated them with a shift in the value of
an order parameter that fixes the stable state of minimum free energy. The free energy of a system showing
a continuous transition has only one minimum, but that minimum falls at different values of the order
parameter on the two sides of the transition.

How do small systems behave as they go through their counterparts of second-order transitions? This
question has not been studied nearly as much as the small-system counterparts of first-order transitions, and
the subject is currently only partly explored. Structural phase changes of molecular clusters have now been
investigated, but, for example, very little has been done on small-system analogues of magnetic transitions.
Hence we shall concentrate here on what has been learned about structural phase changes and what the
implications of these results are for second-order phase changes of small and bulk systems.

The most-studied structural phase changes of molecular clusters appear to be those of clusters of
octahedral hexafluoride molecules, particularly of SF6 and TeF6. These have been subjects of both
experimental [13,14] and theoretical investigations [15–19]. The tellurium compound appeared for a long
time to exhibit more complex phase behavior than did sulfur hexafluoride, but that picture has changed
recently, and they do seem to be very similar, as one might expect.

At sufficiently high temperatures, of course, clusters of TeF6 molecules are liquid. Cooled, they
form a solid with body-centered cubic structure, and with the molecular orientations completely
disordered. Cooled further, the clusters take on a monoclinic structure with ordering of the molecular
orientations around only one axis. Cooled still further, they remain monoclinic but change to a completely
orientationally ordered phase. Experiments have demonstrated the existence of these three phases for
clusters of various sizes, but the only information now available about phase changes and coexistence
of these phases comes from simulations and analytic theory. Bulk TeF6 exhibits a transition thought to be
second-order, between disordered body-centered cubic and ordered monoclinic.

Careful simulations, isoergic and isothermal molecular dynamics and isothermal Monte Carlo, have
shown that there is a narrow band of temperature (at constant pressure of zero) in which the body-centered
cubic and partially ordered monoclinic phases of clusters of 59 or more TeF6 molecules coexist. This is a
demonstration that such a system behaves as the analogue of afirst-order transition of the bulk material.
However, the coexistence range for these two forms becomes narrower as the number of molecules in
the cluster increases. These results indicate that the two minima of the free energy, corresponding to the
two phases, either approach one another or that temperature bounds for existence of the intermediate phase
approach each other, or both. In any case, here is an example of a system whose second-order bulk transition,
if one exists, emerges from a small-system phase change that has the character of an analogue of a bulk
first-order transition.

The lower-temperature phase change is different. There is no indication at all that the partially
orientationally ordered and completely ordered phases ever coexist. This phase change appears to be one
involving a single minimum in the free energy, with respect to the order parameter, and is thus precisely
like its bulk second-order counterpart.

These two results imply that there are two kinds of bulk second-order phase transitions: those whose
small-system counterparts have only a single minimum in free energy, and those whose small-system
counterparts have two minima that converge as the clusters become larger. This also suggests that weak
first-order transitions are like the second variety, but for them, the convergence is not complete, but that the
two minima still just barely remain, when the cluster size reaches macroscopic dimensions.
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In the case of the tellurium hexafluoride clusters, the distinction between the two kinds of phase changes
has proved amenable to an analytic, symmetry-based interpretation [19]. The higher-temperature structural
change involves a symmetry change that requires coupling vibrational and rotational motion, and a breaking
of lattice symmetry. The lower-temperature phase change requires only couplings of molecular rotation, and
no change of lattice symmetry.

Experiments with clusters of sulfur hexafluoride molecules have not shown the intermediate, partially
ordered phase. However recent simulations have demonstrated the presence of this phase and its coexistence
with the body-centered cubic phase. This coexistence lies only within a very narrow temperature band, a
fraction of a degree K for clusters in the range of 50 to several hundred particles. The reason for such a
fragile coexistence is that the intermolecular potential for SF6 clusters is considerably weaker and softer
than that for TeF6 clusters.

An interesting set of questions still very open ask how the convergence of the two minima occur for
phase changes such as the higher-temperature structural change of these molecular clusters. Do the minima
converge at some finiteN , or asN goes to infinity, or, perhaps, do they only come to some small finite
separation asN becomes arbitrarily large? Or do all three cases occur with different systems? This is by no
means a completed subject.

4. Phase diagrams for small systems

A common and powerful device to represent the phase transitions and phase behavior of bulk materials
has long been the phase diagram, essentially a map of the curves of coexistence of phases in a space of
convenient variables, most commonly pressurep and temperatureT . Another useful representation is the
locus of extremal values of the partition function as a function of one or more order parameters and one
thermodynamic variable, e.g. temperature, for a system at constant pressure. Both of these phase diagrams
can be extended to small systems, at least to show some of the essential characteristics of these systems
[3,10,11]. Here, we shall illustrate only the former, the extension of the conventional phase diagram.

The traditional phase diagram is inadequate for small systems because two or more phases may coexist
over bands of temperature and pressure. Hence a phase diagram, even for just two coexisting phases of
clusters, must reveal both the bounds of such a region, and the relative amounts of the two phases. This can
be done by adding a single dimension to the traditionalp−T plot. One might think of using the equilibrium
ratio K = [A]/[B], but because this varies between zero and infinity, it is far more convenient to return to
the distributionD = (K − 1)/(K + 1) that we introduced previously.

A large system can be described by a traditional phase diagram because every state on one side of the
coexistence curve lies essentially in the plane ofD = −1 and every state on the other side of that curve
lies in the plane ofD = +1. The dimension associated withD is superfluous for such systems, as Fig. 2(a)
indicates. However a smaller system exhibits intermediate values ofD at temperatures betweenTf andTm.
This situation is shown schematically in Fig. 2(b).

Actual phase diagrams for clusters are only now being constructed from simulations. We have yet to see
libraries of these to guide our preparation of nanoscale materials, but we can expect that they will become
as standard in that field as traditional phase diagrams have been for preparation of desired forms of bulk
matter.

5. Conclusion and future directions

We have outlined the current state of understanding of how and why the phase changes of small systems
differ from traditional phase transitions of bulk matter. These are, in a sense, all traceable to the leverage of
the numberN of particles comprising each system in a Gibbsian thermodynamic ensemble. However they
range from essentially thermodynamic considerations to time-scale issues.

Some of the open questions have been stated, e.g. the question of how the two minima may converge (or
not) for a system that has two minima in its free energy if the clusters are small, but apparently only one if
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(a) Very large system (b) Medium-size cluster

Figure 2. Two examples of the extension of the traditionalp−T phase diagram to describe small systems, for which
D may take on intermediate values between−1 and+1 in the coexistence range: (a) schematic representation of the
extended phase diagram for a very large system, so all points not on the coexistence curve are virtually in either the
plane ofD = −1 or the plane ofD = +1; (b) schematic representation of a smaller system, for which intermediate

values ofD would be observable over a measurable range of pressure and temperature.

the system is very large. Other questions have been indicated only in passing, e.g. there is no fundamental
understanding of the nucleation and kinetics of phase changes of small systems, although one can see the
process occurring in simulations. Finally, there are larger questions that we have not discussed here because
we have very little understanding of them. Perhaps the most prominent are questions about precisely how
size and nature of the system governs the conditions under which phase changes and phase coexistence
may occur. We do not, for example, understand how the change of stable structures with size occurs even
in rare-gas nanoparticles: how does the change of stability happen, that makes small clusters of most sizes
icosahedral and larger systems face-centered, close-packed cubic? The subject remains full of challenges.
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