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Abstract We review statistical-mechanical theories of single-molecule micromanipulation experi-
ments on nucleic acids. Firstly, models for describing polymer elasticity are introduced.
We then review how these models are used to interpret single-molecule force-extension
experiments on single-stranded and double-stranded DNA. Depending on the force and
the molecules used, both smooth elastic behavior and abrupt structural transitions are ob-
served. Thirdly, we show how combining the elasticity of two single nucleic acid strands
with a description of the base-pairing interactions between them explains much of the phe-
nomenology and kinetics of RNA and DNA ‘unzipping’ experiments.To cite this article:
S. Cocco et al., C. R. Physique 3 (2002) 569–584.  2002 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS
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Modélisation théorique des expériences de molécules uniques sur
l’ADN et l’ARN : de l’élasticité au dégraffage des bases

Résumé Les travaux théoriques portant sur les expériences sur molécules uniques sont ici passés
en revue. Tout d’abord, nous introduisons les modèles simples de polymères élastiques.
Ensuite, nous expliquons comment ces modèles peuvent être utilisés pour interpréter
les mesures de force-extension effectuées sur une molécule unique d’ADN (simple
brin ou double brin), mesures qui mettent en évidence tantôt le caractère élastique de
cette molécule, tantôt des transitions structurelles brutales. Dans une troisième partie,
nous montrons qu’en associant les propriétes élastiques des brins d’acides nucléiques
à une description de leurs interactions d’appariement, l’essentiel de la phénomènologie
et de la cinétique de dégraffage de l’ARN et l’ADN peut être expliqué.Pour citer
cet article : S. Cocco et al., C. R. Physique 3 (2002) 569–584.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Single-molecule studies that provide information on properties of one or a few interacting biomolecules
are becoming increasingly important in biophysics. The precision of control and quantitative measurement,
and simple interpretation of these experiments, make detailed theoretical analyses appropriate. The
theory of single molecule micromanipulation experiments is a new development of polymer physics,
emphasizing the structural richness of biopolymers (inhomogeneity of sequence, sequence-specific
monomer interactions, transformations of secondary structure,. . . ). Both equilibrium and non-equilibrium
aspects of single-molecule experiments reveal new basic physical problems.

This review presents some of the theoretical ideas that have been useful for the description of single-
molecule micromanipulation studies of nucleic acids. Firstly, models useful for describing biopolymer
elasticity will be presented. We will then review how these models are used to interpret single-molecule
DNA force-extension experiments, which show both smooth elastic behaviors and abrupt structural
transitions. Thirdly, we will show how combining the elasticity of two single nucleic acid strands with
a description of the base-pairing interactions between them explains much of the phenomenology of RNA
and DNA ‘unzipping’ experiments.

The theoretical studies that we review use a wide range of tools and concepts from statistical
mechanics and quantum mechanics. Single molecules are composed of a large number of elementary
units (monomers). The nearest-neighbour character of the interactions between monomers often leads to
partition functions with the form of path integrals (the curvilinear coordinate plays the role of time) which
can be analyzed using the tools of quantum mechanics. Ideas from the theory of phase transitions are also
extensively employed, for example, to describe the abrupt, first-order-like structural changes frequently
observed in stretching experiments. The kinetics of such transitions are thus related to problems from non-
equilibrium statistical mechanics.

2. Theoretical models of flexible polymers

A number of polymer models have been used to model single-molecule experiments. Here we focus on
applications relevant to double-stranded DNA, which is important biologically and also nearly ideal as an
object for theoretical study.

2.1. Gaussian model

The simplest description of a polymer is the Gaussian polymer (GP) model [1,2], which essentially
considers a polymer to be a series of particles joined by Hookean springs (Fig. 1). Let us callrn =
(xn, yn, zn) the location of monomern. The vector leading from monomern − 1 to monomern, rn − rn−1,
obeys a Gaussian distribution of average zero and variance〈(rn − rn−1)2〉 = b2,

D(rn − rn−1) =
(

3

2πb2

)3/2

exp

(
−3(rn − rn−1)2

2b2

)
, (1)

where the indexn runs from 0 toN .
When submitted to a forcef along thez direction, the Hamiltonian thus has a Gaussian elastic term, and

a force-distance term,

HGP=
N∑

n=0

3kBT

2b2 (rn − rn−1)2 − f (zN − z0), (2)
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Figure 1. Mathematical representations of polymeric chains.
GP: the Gaussian polymer is made ofN monomers

represented by harmonic springs. FJC: the Freely Jointed
Chain is composed ofN bonds of fixed lengthb, with no
correlation between the orientation of adjacent segments.

WLC: the Worm-Like Chain is a continuous model,
characterized by a persistence lengthA; the orientation of the

chain tangentt(s) is changing appreciably over contour
lengths greater thanA. WLRC: the Worm-Like Rod Chain is
described by a rotating three-dimensional coordinate system,

with local triedron (t,n1,n2), along the curvilinear
coordinates.

where the force is taken to act in thez direction. The statistics of thez component of the end-to-end vector
are easily computed; for example, the average end-to-end distance as a function of the force is

〈z〉GP = Nb2

3kBT
f. (3)

The Gaussian polymer as a whole behaves as a Hookean spring of zero rest length and stiffnessC =
3kBT /Nb2 proportional to the temperature and inversely proportional to the lengthN . This effective
elasticity is a model for the entropic elasticity resulting from the decrease in the number of a polymer’s
configurations as is it extended. This basic picture of flexible polymer elasticity is the basis of rubber
elasticity and a starting point for polymer physics [2].

2.2. Freely Jointed Chain model

The GP has the unphysical feature that it can be indefinitely extended, and is therefore useful only for
weakly stretched polymers, and even then only when physio-chemical details of the monomers are not of
interest. A model which corrects the indefinite extensibility problem but which is still elementary and in
wide use is the Freely Jointed Chain model [1,2], which consists ofN bonds of fixed lengthb (the Kuhn
length), allowed to point in any direction independently of each other (see Fig. 1). When under zero force,
the mean-squared end-to-end distance isR2 = Nb2, the familiar result for a random walk ofN steps.

When this chain is subjected to a forcef , the bonds tends to align along the force, as dipoles in an
electric field, with an energy

HFJC= −f b

N∑
n=1

cosθn, (4)

whereθn is the angle between the force and thenth bond directions. Since the segment orientations are
decoupled, the partition function is easily calculated. The mean average end-to-end distance when a force
f is applied is

〈z〉FJC= Nb〈cosθ〉 = Nb

[
coth

(
f b

kBT

)
− kBT

f b

]
. (5)

The small force behavior coincides with that of the GP expression (3). However, (5) departs from the GP
at large forces, since the FJC model properly takes into account that the extension of the molecule cannot
exceed the total contour lengthNb. For largef , 〈z〉FJC/[Nb] ≈ 1− kBT /[bf ].
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2.3. Worm-like chain

The Worm-Like Chain (WLC) [1] is a continuous model without the sharp bends of the FJC. The chain
is described by its unit tangent vectort(s), as a function of contour lengths along the chain. If no forces
are applied, the tangent vector is presumed to undergo Gaussian fluctuations with zero mean and variance
〈(dt/ds)2〉 = 1/A (Fig. 1). The energy for this model in presence of a forcef , is given by

HWLC = kBT
A

2

∫ L

0
ds

(
∂t

∂s

)2

− f

∫ L

0

(
z · t(s)

)
ds. (6)

The first term is curvature energy that accounts for the resistance of the chain to bending, and the second
term is the stretching energy due to application of the external forcef . The partition function of a chain of
lengthL, with tangent vectors at extremitiest(s = 0) = t0, t(s = L) = t1, can be written as a path integral,

Z(L,f, t0, t1) =
∫

Dt e−HWLC/kBT . (7)

The significance of the parameterA is made clear by the expression of average scalar product between
tangent vectors at coordinatess ands′ at zero force,

〈
t(s) · t(s′)

〉 = exp
(−|s − s′|/A

)
. (8)

ThereforeA represents the characteristic distance above which tangent vectors decorrelate;A is called the
persistence length.

For a long chain under zero tension the WLC mean-squared end-to-end distance isR2 = 2AL for L � A

(the formula for generalL is often useful, see [2]). Therefore the unperturbed random coil properties of the
WLC are equivalent to those of the FJC and GP if we make the identification 2A = b andL = Nb. The
unstretched WLC on large scales becomes a random walk ofN = L/(2A) steps each of lengthb = 2A.

From a physical point of view, the FJC representsN uncorrelated dipoles in an electrical field, and the
average orientation of one dipole at equilibrium is obtained by classical statistical mechanics (Eqs. (4)
and (5)). By contrast, the WLC describes, the ‘time’ evolution of a dipole with moment of inertiaA in an
electric field, with the role of time played by the contour length coordinates. The introduction of the time
dimension makes WLC equivalent to a quantum mechanical problem. The Schrödinger equation for the
associated wave function can be analytically solved for small and large force limits, and can be numerically
solved for general force [3,4].

At small forces
 kBT /A the Hookean behavior (3) is recovered (i.e. withb → 2A andN → L/b) while
for large forces〈z〉WLC/L ≈ 1− √

kBT /(4Af ).

3. Elasticity of double- and single-stranded DNAs: experiments and theory

3.1. Double-stranded DNA (dsDNA) under tension

Reviews of experiments and theory on dsDNA elasticity can be found in [5–8]. In Fig. 2 we report
the force extension curve of a single dsDNA. Experimental data obtained by [9,10] forλ-DNA of length
48 502 bp, orL = 16.4 µ are shown, with fits of the GP, FJC, and WLC models withA = b/2 = 53 nm
in 10 mM Na+ buffer. For dsDNA, the Kuhn lengthb = 106 nm is much larger than the natural base pair
spacing of 3.4 Å. DsDNA is not naturally described by the FJC model because consecutive bases, stacked
onto each other, are not free to reorient independently of each other. The success of the WLC shows that
dsDNA behaves as a semiflexible polymer, with a bending modulusAkBT .

Several analytical interpolation formulae for the WLC, and modifications of the FJC introduced to fit
accurately the data are discussed and compared in [7,11]. Marko and Siggia proposed a simple interpolation
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Figure 2. Force-extension
curve for aλ-dsDNA with
equilibrium contour length

L = 16.4 µm in 10 mM
Na+ buffer. Experimental
data(×) are from [24] and
(+) from [14]. The plateau
at f � 70 pN indicates the

cooperative transition
to SDNA. The extensible

WLC model with
persistence length
A = 53 nm, Young

modulusγ ≈ 1000 pN, and
two states dsDNA–SDNA
reproduces accurately the

experimental behavior [23].
Marko and Siggia’s

interpolation formula [3]
(9) is very accurate up to

forces of 10 pN. Predictions
from the GP and FJC

(b = 2A = 106 nm) models
are plotted in the inset.

formula that is close to the exact numerical solution of the force-extension response of the WLC [3,4],

fWLC(z) � kBT

A

[
1

4(1− z/L)2 − 1

4
+ z

L

]
. (9)

This expression reduces to the exact solution as eitherz → 0 or z → L, but differs from the exact solution
by up to≈ 10% nearf = 0.1 pN (Fig. 2). Bouchiat et al. [11] have introduced correction terms to Eq. (9),
in the form of a seventh order polynomial inz/L. The resulting approximation forfWLC(z) is accurate
to 0.1%. According to formula (3), a forcef0 = 3kBT /b is required to extend dsDNA by a fraction of its
contour length; fromb � 100 nm we see that the characteristic force associated with the entropic elasticity
of dsDNA isf0 ≈ 0.1 pN.

The insert to Fig. 2 shows that experimental data are well fitted by the FJC model for forcesf < 0.1 pN,
and by the WLC up tof < 5 pN. Various experiments analyzed in terms of the WLC giveA = 50± 5 nm
in 10 mM Na+ [7,12]. The persistence length of DNA is reduced in high salt concentrations by electrostatic
screening of the repulsive charge along the backbone; electrostatic effects have been taken into account in
the WLC model by Barrat and Joanny through Debye–Huckel interactions [4,7,13,14].

Fitting larger-force experimental data demands the introduction of the stretching elastic modulus of the
molecule,γ � 1000± 200 pN, quantitatively consistent with the relation between the bending modulus,
AkBT and the Young modulusY = γ /(πR2) � 300 MPa (R = 10 Å is the double helix radius) for an
elastic rod,

A = π

4kBT
Y R4 ≡ γ R2

4kBT
. (10)

The value of the elastic modulus of DNA indicates that thermal fluctuations of the axial base pair
distanceh of the order of〈(h − 〈h〉)2〉 � kBT /(γ 〈h〉) � 0.14 Å. This order of magnitude is in agreement
with molecular dynamics simulations, providing a consistent picture of the elasticity at the atomic and
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mesoscopic scale [15]. Axial vibrational modes have been studied in [16] and compared to Raman
spectroscopy measurements.

When dsDNA molecule is subjected to a force off = 65 pN it undergoes a structural transition to
another conformation, S-DNA, with a contour length 1.7 times larger than its B-DNA counterpart [9,12,
17]. Numerical investigations of the structure of S-DNA have been performed by Lavery et al. [9,18]. The
force plateau aroundf = 65 pN corresponds to a highly cooperative transition, reminiscent of a first-order
phase transition. A two-state model proposed by Cluzel et al. [9,19], inspired from models introduced in
the context of thermally-induced denaturation [20–22], is able to reproduce the B-to-S transition. A recent
study has suggested that the extended S state is actually strand-separated with the S phase described as
stretched ssDNAs [23].

In the simplest two-state model of the B-to-S transition, the molecule is described as a chain ofN

elements (base pairs), which can be in states B (energyEB, lengthlB) or S (energyES, lengthlS > lB).
Each element is associated a spin variable,s = 1 and−1 for the B and S state, respectively. The energy of
the chain can be written

H =
N∑

i=1

(Esi − f lsi ) + ω

2

N−1∑
i=1

(1− sisi+1), (11)

ω represents a ‘domain wall’ energetic cost of a B-S frontier. Up to an additive constant,

H = −ω

2

N−1∑
i=1

sisi+1 − 1

2
($E − f $l)

N∑
i=1

si, (12)

where $E = ES − EB and $l = lS − lB. Notice that Eq. (12) is simply the Hamiltonian of a one-
dimensional Ising model with magnetic fieldh = $E − f $l. The extension is obtained from the
derivative of the free energy with respect to the forcef . Comparison with experiments allows to determine
quantitatively the domain wall energy,ω � 4kBT [19]. The extensible WLC including nonlinearities which
define two states of extension provides a way to fit the force-extension curve over a wide range of forces
0.01< f < 100 pN [24].

3.2. Supercoiled DNA under tension

DsDNA differs from simpler polymers because it exhibits torsional and bending stiffness. Try to impose
a twist to an elastic rod while keeping it extended and fixed at one end. Then, if you relieve the tension,
an interwound structure called a plectoneme will appear, Fig. 3 (twisted telephone cords often form
plectonemic supercoils). Similarly, dsDNAs under sufficient torsional stress interwinds to form plectonemic
supercoils. Formally, the over- or underwinding of DNA is measured by the change in double-helical
linking number. This is often expressed asσ , the fractional change in linking number relative to that
of relaxed dsDNA (one right-handed, or positive link per 10.5 base pairs). Supercoiling of DNA is of
tremendous importance to eubacteria. For example, in E. coli all the DNA is held under torsional stress and
is topologically constrained withσ ≈ −0.06.

Figure 3. Phase coexistence in a supercoiled DNA under tension. A fractionx of
the length is plectonemic supercoil with radiusR and pitchP , while the remaining

fraction 1− x is in an extended conformation.

574



To cite this article: S. Cocco et al., C. R. Physique 3 (2002) 569–584

The elasticity of a single supercoiled DNA molecule has been experimentally measured by Strick et al.
[10,25] and by Léger et al. [26]. A rich behavior was observed. At small forces the molecule responds to
increasing positive or negative supercoiling by first having its conformations slightly chirally perturbed,
and then by forming plectonemes with appreciable shortening of its length. At forcesf > 0.5 pN,
negative supercoiling is released through the opening of the double helix into denaturation bubbles. At
forcesf > 3 pN, positive supercoiling induces the formation of regions exhibiting a new conformation
called P-DNA. The structure of P-DNA has been deduced by molecular modeling [27]; it is essentially
characterized by its exposed bases. P-DNA can be thought of as two tightly interwound ssDNAs.

The theory of stretched supercoiled DNA was initiated by Marko and Siggia [28,29], who considered
phase coexistence of linear, plectonemic, and denatured DNA in different regions of a supercoiled molecule.
The relative extensions of these portions are determined by the degree of supercoilingσ and the stretching
forcef .

At small forces, a fractionx of the molecule is in the plectonemic (p) regime, whereas the remaining
1− x fraction is extended (s) (Fig. 3). The free energy per unit of lengthF = F/L can be written:

F(σ, z/L) = xFp(σp) + (1− x)Fs(f,σs). (13)

σ = $Lk/L0
k is the excess of density of supercoiling with respect to the rest configuration (dsDNA making

a double helix turn in 10.4 bases,L0
k = L/10.4); σ is partitioned into extended and plectonemic regions:

σ = x σs + (1− x)σp. The free energy of the extended phase equals the WLC free energy plus the twisting
energy,Fs(f,σs) = FWLC(f ) + kBT CL2

k/(2L2)(2πσs)
2. C is the twist persistence length known from

experiment to beC = 75± 30 nm.
The free energy of the plectonemes is thus considered to be the sum of elastic (bending and twisting),

electrostatic and entropic contributions, minimized over plectonemic parameters, e.g., the pitchP and
radiusR (Fig. 3). The entropic term represents the entropy lost by confining the DNA in the superhelix
formation. The total free energy is obtained by minimization with respect to the plectonemic portionx.

At large forces the structural transition to denatured DNA is also included in the model by allowing the
plectonemic phase to be a mixture of denatured and normal plectonemic DNA. The theoretical force-
extension curve at fixed supercoiling reproduces the experimental behavior [25,29].

A semi-microscopic model has been used to describe thermal- and torque-induced denaturation in one
phase diagram [30]. This work described the formation of denaturation bubbles when DNA is stretched at
f > 0.5 pN and negatively supercoiled. The critical torque at room temperature( ≈ −2kBT is in good
agreement with the value inferred from the experiments by Strick et al. [10].

A generalization of the two-state Ising description (12) of the overstretching transition has been
introduced by Sarkar et al. [31] to model the structural transition of a twisted and stretched DNA molecule
observed in [26]. For each site five possible state are introduced: dsDNA, S-DNA, P-DNA, sc-PDNA
(a supercoiled P state), and a left handed double helix Z-DNA. This last state, with a supercoiling degree
σZ = −1.3, is proposed as an alternative to denatured ssDNA (σ = −1). A force-torque diagram is derived
that agrees with the experiments on the critical unwinding torque at zero force,� −2kBT , and the torque
to drive DNA into the P structure,� 7kBT .

The elasticity of supercoiled DNA has also been studied at a more microscopic level. Twisting
and bending deformations can be described by extending the WLC to include description of base-pair
orientation using a triad of unit vectors (WLRC) (Fig. 1) [32]. Moroz and Nelson [33], and Bouchiat and
Mézard [34] have written the partition function of this model as a path integral in the space of the Euler
angles parametrizing the orientations, limiting the integration measure to the paths with a fixed linking
numberLk . The free energy is obtained from the ground state energy of a Schrödinger equation describing
a particle moving on a unit sphere in the presence of electric and magnetic fields.

The WLRC model does not take into account self avoidance: the WLRC chain is a phantom chain that
can pass through itself. The result is that linking number fluctuations are not well-defined in the continuum
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limit. This problem is reflected in a divergence of the ground state energy. This is strictly a technical problem
since real DNA has self-avoidance interactions. To avoid this problem, Moroz and Nelson considered the
unambiguous infinite force situation (fully stretched molecule), and obtained finite force results by means
of perturbation theory. Bouchiat and Mezard have introduced a short distance cutoff (discretization of the
chain) to suppress the singularity. Fitting the theory to experimental data [25], the twist persistence length
C can be determined but is largely dependent on the theoretical scheme followed:C = 120 nm is obtained
by Moroz and Nelson, whileC = 82 nm is obtained by Bouchiat and Mezard for a cutoff length of 7 nm.

3.3. Single-stranded DNA under tension

Single-stranded DNA (ssDNA) is more flexible and can reach a larger extension per base pair than
dsDNA. A sensible simple model of ssDNA is, at first sight, a FJC with a Kuhn length equal to the sugar-
phosphate monomer backbone lengthb = 7 Å. However the ssDNA elasticity is complicated by nucleotide
interactions, and as a result simple polymer models do not describe ssDNA elasticity over a wide range of
forces.

For forcesf < 20 pN the experimental force extension curve for a 48 502 baseλ ss-DNA in 150 mM
Na+ has been fitted with a FJC-like (FJCL) model by Smith et al. [12] with two effective parameters:
a Kuhn lengthd = 15 Å and a contour length per base pairlss = 5.6 Å that differs from the backbone
distance (see Fig. 4). Note that due to the higher flexibility, the characteristic entropic force of the single
strand,f0 = 3kBT /

√
blss≈ 10 pN (3), is much higher than for dsDNA. At forcesf > 15 pN the fit requires

the introduction of a stretching modulusγ = 800 pN (Section 3.1).
SsDNA elasticity depends strongly on salt concentration. At low salt (1 mM Na+, self-avoidance

interactions due to electrostatic self-repulsion along the charged sugar–phosphate backbone occurs. The
experimentally observed logarithmic-like dependence of the extension upon force is well reproduced by
Monte Carlo simulations [35,36]. Electrostatic self-avoiding effects can be taken analytically into account
using the Barrat and Joanny formalism [37], or with a Hartree–Fock calculation from the WLC models [38].

At higher salt concentration (> 100 mM Na+, or in presence of Mg++) formation of secondary structure
(‘hairpins’) by hydrogen bonding between complementary bases on the same strand strongly influences
elastic properties. Experiments show that the force-extension behavior curve depends on the strand GC

Figure 4. Top: force extension
curve for aλ-ssDNA with
equilibrium contour length
Lss= lssN ≡ 0.56 nm×

48502 bp= 27 µm in 150 mM
Na+. Experimental data(+),

dashed line: FJCL with
b = 1.5 nm; dotted line:
extensible FJCL with

γ = 800 pN, from [11]. Bottom:
force extension curve for a
charomid ssDNA in 10 mM

phosphate buffer, 5 mM Mg++
buffer, data are from [38], the fits

are with the FJCL with
b = 1.9 nm andγ = 800 pN

(dotted line) and with the hairpin
model (full line) of [41].
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versus AT content, and can be modulated using denaturing chemical agents that suppress hydrogen
bonding [35,39]. A theoretical analysis of the elasticity of a polymer with hairpin secondary structure has
been developed by Montanari and Mezard [40]. Conformations of hairpins taken into account are such that
any two pairs of paired bases (i < j , k < l) are independent (i < j < k < l), or nested (i < k < l < j ) [41,
42]. This representation do not include pseudoknots [43] but leads to a solvable recursion relation relating
the partition functions of successively larger sequences [41], under the simplifying hypothesis that any two
bases, e.g., AT, GC, AG, . . . , have the same pairing free-energy. For an infinite molecule, a phase transition
takes place between a folded (zero extension,f < fs) and an extended phase (f > fs) with fs of the order
of 1 pN, given reasonable choices of parameters (see Fig. 4).

3.4. Elasticity of DNA in presence of DNA-folding proteins

In eukaryote cells, DNA is wrapped around octamers of histone proteins to form a more compact structure
called a nucleosome. The long chromosomal DNAs of eukaryote cells are thus organized into long strings
of nucleosomes, or ‘chromatin fibers’. A single eukaryote chromosome may contain more than 108 base
pairs of DNA and roughly 106 nucleosomes.

The elasticity of chromatin fiber has been experimentally studied by Cui and Bustamante [44]. The
experimental curves can be fitted with polymer models composed of units which, independently of each
other, can be in a folded (short) or unfolded (long) state [37,45]. These states are taken to correspond to
stacked and unstacked nucleosomes. The elastic response of whole mitotic chromosomes can be related
back to this fiber elastic response [37].

Very roughly, models of DNA folding by proteins will generally show a characteristic force at which
the proteins will dissociate in equilibrium [45]. Given a free energy difference between the folded and
unfolded states ofg per fold, and given an end-to-end length reduction ofd , this characteristic force will
be aboutg/d . Note that for large values ofd (e.g. by formation of large DNA loops, a common feature
of gene-regulatory proteins) this implies low on-off equilibrium forces. It must be kept in mind that if
the enthalpic component of the binding free energy is large, there may be large barriers for such loops to
open and close, making equilibrium difficult to reach. Such situations should show theoretically interesting
many-body thermal barrier-crossing kinetic phenomena.

4. DNA and RNA unzipping

Essevaz-Roulet et al. have shown that the two strands of a dsDNA can be pulled apart by a force≈ 12 pN
[46] (Fig. 5). Variations of the ‘unzipping’ force correspond to the DNA sequence, through the known
relationship between DNA sequence and base-pair interaction strengths [47]. Higher forces were shown
to correspond to DNA regions with higher GC densities, which in general have stronger base-pairing
interactions than AT-rich sequences. Experimental unzipping force traces show a series of sawtooth signals
attributed to stick–slip motion, with the sticking generated by DNA regions with higher GC content. This
kind of experiment amounts to ‘feeling’ DNA sequence.

Current techniques are able to observe GC-content over long stretches of DNA (≈ 10 kb) with about 10
base-pair resolution. It should be noted that it has been demonstrated that unzipping is sensitive to at least
some single-base substitutions [48]. We now discuss some equilibrium and dynamical aspects of DNA and
RNA unzipping.

4.1. Thermodynamics of DNA–RNA unzipping

Control parameters for unzipping vary from experiment to experiment. Roughly speaking, either the
force or the distance between strand extremities may be kept fixed (Fig. 5).
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Figure 5. Sketch of a DNA molecule withn
base pairs unzipped, as a result of a

mechanical stress (applied forcef ). The
distance between the two ssDNA ends is

defined to be 2r .

4.1.1. Fixed pulling force

With a fixed forcef on the molecule ends, the free energyG of the molecule withn base pairs opened
is the difference between the free energy of the two extended single strands ofn bases each, and the free
energy lost in unpairing then first base pairs (i = 1, . . . , n):

G(f,n) = 2nFss(f ) −
n∑

i=1

gds(i). (14)

As discussed above, the free energy per base pair of stretched ssDNA,Fss(f ), can be expressed using
the FJCL model for forcesf � 10 pN [17]. At this high tension, nucleotide hairpin-formation effects are
absent. Quadratic expansion ofFss(f ) aroundf = 10 pN gives the free energy of a Gaussian polymer,
FGP

ss (f ) = −f 2b2/(6kBT ) with an effective Kuhn lengthb = 7 Å.
We start by considering an homogeneous sequence, where all base pairs have pairing free energy

gds= −g0. The unzipping critical forcefu is simply given by the condition

G(f,n) ≡ ng(f ) = [
2Fss(f ) + g0

]
n = 0. (15)

Forf < fu, dsDNA is stable, and iff > fu, the double helix unzips as in a first order phase transition. Using
the Gaussian model for the ssDNA, we obtainf GP

u = √
3kBT g0/b. The unzipping force of a homogeneous

sequence is therefore directly related to the pairing free energy.
Rief et al. measured the unzipping forcesfu for DNAss of various repeated sequences [49]. It was

found thatfu(poly-dA–dT) = 9 ± 3 pN andfu(poly-dG–dC) = 20± 3 pN, givinggGC
0 (A–T) = 0.8 kBT ,

gFJCL
0 (A–T) = 1.1 kBT , gGC

0 (G–C) = 4.2 kBT , andgFJCL
0 (G–C) = 3.5 kBT , respectively. These values of

the free energies of denaturation are compatible with thermodynamic data based on DNA melting [47]. It
is to be noted that unzipping experiments give the only direct measurement of the relative free energies of
ss and dsDNA at equal temperatures.

Unzipping has been discussed in the language of continuous phase transitions by Lubensky and
Nelson [50,51]. The unzipping free energy per base pair,g(f ), vanishes asfu − f with a discontinuous
slope, as in a first-order phase transition. However (as in interfacial wetting) as the unzipping transition
is approached from below, i.e.,f → f −

u , the molecule the average number〈n〉 of open base pairs
undergoes a continuous power-law divergence. From the probability to haven open base pairs,P (n) =
g(f )/(kBT ) exp[−(ng(f ))/(kBT )], one obtains

〈n〉 = kBT

g(f )
� 1

fu − f
. (16)
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Figure 6. DNA unzipping phase diagram as
a function of torque( in units ofkBT and forcef
in pN, from [54]. The solid line shows the results
for the FJCL model of ssDNA elasticity, while the
dashed line shows the result within the Gaussian

approximation. At zero torque, the unzipping force
is fu � 12 pN; positive torque increasefu,

negative torques reducefu until it vanishes at
( = −2.4kBT .

(a) (b)

Figure 7. (a) Free energy (inkBT ) and probability distribution of the opening fork at the critical forcef = 15 pN for
the P5ab molecule (middle) from [59]. (b) Schematic representation of the free energy landscape for a displacement of
4970 nm (left, corresponding to slip phase in the force) and of 5050 nm (right, corresponding to the stick phase in the

force) during the unzipping of aλ-DNA (from [58]).

When the DNA molecule is subjected to a torque(, a torque-angle work contribution occurs in the
unzipping free energy,

g(f,() = 2Fss(f ) + g0 − .0(. (17)

.0 = 2π/10.4 is the change in twist angle during conversion of dsDNA to separated strands [52]. The
phase diagram for the unzipping transition in the force, torque plane is shown in Fig. 6.

Along heterogeneous sequences, the free energy to open the firstn base pairs,G(f,n) (14), can be
calculated using the sequence dependent pairing free energygds(i) (e.g. from the Mfold server [53]). In
Fig. 7, we showG(f,n) for the RNA molecule called P5ab, mechanically unzipped by Liphardt et al.
[54] with a force maintained fixed at the extremity through a feedback mechanism. The critical force is
defined by the condition that the closed and open state have equal minimal free energies. Contrary to the
homogeneous case, the free energy landscape at the critical force is not flat. It is characterized by high-
energy barriersG∗ ≈ 10kBT . The probability to haven open base pairs is essentially zero ifn differs from
the open and the closed configuration (Fig. 7). Indeed, experiments show [54] that at the critical force the
molecule essentially hops between open and closed configurations.

Lubensky and Nelson [50,51] have shown that the critical behavior aroundfu changes for a large random
sequence with respect to homogeneous sequences. Instead of the divergence 1/(fu − f ) for the averaged
number〈n〉 of base pairs, a stronger singularity〈n〉 ≈ 1/(fu − f )2 appears.
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4.1.2. Fixed distance between extremities

If the ssDNA ends are held apart at some distance 2r (Fig. 5), some average number of basesn will
open. In the ideal case of a rigid opening device, the free energy cost to openn base pairs is a sum of chain
stretching and denaturation contributions,

Hd(r, n) = Wss(2r,2n) −
n∑

i=1

gds(i). (18)

Wss(2r,2n) is the work done by the force to stretch 2n base pairs of ssDNA at a distance 2r. For simplicity
we consider the GP free energy (3), considering as in the previous section the effective Kuhn length
b = 7 Å, from the interpolation formula (9) [55], or from numerical inversion of the FJC extension versus
force (5) [56]. Thus, unzipping at fixed extension can be described using

WGP
ss (2r,2n) = 3kBT

r2

nb2 . (19)

The most probable value of the number of opened base pairsn̄ is obtained by minimization of the free
energy (18), (19) with respect ton. The number of unzipped based pairs is found to scale linearly with the
distance,n̄(r) = r/du wheredu = √

g0/3kBT d = 5 Å is the projection of the monomer length along the
force direction. The resulting free energy can be written:

F(r) = 2
√

3kBT g0 r/b = 2n̄(r)g0. (20)

The tensionf̄ in the chain is simply the derivative ofF with respect to 2r, f̄ = √
3kB T g0/b = 12 pN.

This simple calculation shows that as unzipping proceeds quasi-statically, the ssDNA tension is a constant,
just fu. Note that the excess free energy per unpaired base for fixed extension is double the free energy
of denaturation because the work done extending the ssDNAs adds to the work done when opening the
molecule. This indicates a strategy to determinegds unambiguously from unzipping force data.

The analysis of the fluctuations around the minimum free energy gives〈f − fu〉 = O(1/r2). Note that in
the constant-force ensemble result,f − fu ≈ 1/〈r〉 [51]. The fixed-distance and fixed-force ensembles are
equivalent only in the thermodynamic limitr → ∞.

The unzipping force at small distance between extremities is sensitive to the detailed structure of the
pairing potential as a function of the interbase distance. The semimicroscopic model introduced in [52,57]
predicts a force barrier of� 300 pN at a distance 2r � 21 Å, at which the hydrogen bond are broken but
the bases are still stacked in the double helix configuration. This force barrier might be directly observable
in an AFM experiment.

To take into account the experimental apparatus, Bockelmann et al. have included in their theory the
effects of the two dsDNA linker arms ofNds base pairs and extensionrds), and the cantilever stiffness [48,
56]. The free energy (18) is then

H c
d(r, rss, rds, n) = Wss(2rss,2n) + Wds(rds,Nds) −

n∑
i=1

gds(i) − klever(r − 2rss− rds). (21)

The partition function is obtained by summing over all possibles value ofn, rss, rds. The free energygds(i)

can be computed using, e.g., the Mfold program for base-pair interactions [53]. The ssDNA, dsDNA and the
lever can be considered as three springs in series, with an effective stiffness isk−1

tot = k−1
ss +k−1

ds +k−1
lever. The

spring constant of dsDNA,kds� 0.03 pN/nm for a dsDNA total length of 15 000 bases in the experiment
of Bockelmann et al., is obtained from the derivative off WLC (including the Young modulus) calculated
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at a force of 12 pN. The ssDNA stiffness iskss� 6kBT /(b2n) � 50/n pN/nm, and the cantilever stiffness
equalsklever= 0.25 pN/nm. For less than≈ 1500 unzipped base pairs,ktot essentially reduces to the dsDNA
linker stiffness. When more bases are unzipped, the dominant contribution comes from the ssDNA stiffness.

The DNA sequence dependence results in a complicated free energy landscape that generates a ‘stick–
slip’ variation of the force during unzipping [48]. The stick phase corresponds to the presence of one
deep minimum, and the slip phase to a flat free energy landscape see Fig. 6. The analytical description of
Bockelmann et al. predicts that the heighth of the potential barrier increases ash ≈ δ2 with the fluctuations
δ of the pairing free energy, and decreasesh ≈ k−1

tot with the effective stiffness.

4.2. Kinetics of unzipping

The kinetics of unzipping at short length scales is affected by the presence of barriers with various
physical origins, which makes it an activated process.

4.2.1. Homogeneous sequences and unzipping initiation barriers

Unzipping of homogeneous DNA requires the crossing of a barrier whose physical origin is the following.
We imaginer, the half distance between the two bases of one pair to be a reaction coordinate indicating
whether the pair is bonded (r � 10 Å) or open (r > 11–12 Å due to the very short range of H-bond).
The effective free energyV (r) of the base pair as a function ofr is shown in Fig. 8. It is low for both
small (pairing energy) and large (entropy gain) values ofr, and exhibits a maximum aroundr � 10.5 Å
where the H-bond is broken but bases are still stacked in the double helix conformation and are not free
to move [52]. The set of half distancesr(n) between the two strands defines an abstract polymer (Fig. 8).
At low enough forces this polymer is confined to the potential well (closed state). When a forcef larger
thanfu is applied at one extremity, the polymer escapes from the well (unzipping). As in a first-order phase
transition, nucleation theory can be employed to understand the opening kinetics [58].

The kinetics are slowed because of the activated crossing of the free energy barrier. A saddle-
point calculation provides the optimal configuration of the polymer for crossing the barrier [52]. This
configuration is made of a transition ‘bubble’ of a few� 4 bases long, and free energy costG∗(f ). The time
of unzipping initiation grows exponentially with the activation free energyG∗(f ), t (f ) = t0 exp(G∗/kBT ).
The elementary timet0 corresponds to the time necessary for the polymer to escape from the saddle-point
configuration along the unstable direction in the free energy landscape [58]. When the applied force is
smaller thanfu, the molecule may still unzip. The opening time, which still depends on the barrier free
energy, is now exponentially large in the equilibrium free energyNg(f ) whereN is the number of base
pairs.

Figure 8. Schematic representation of the saddle-point polymer
conformationr∗(n) which crosses the barrier ofV (r); ri andrf

are the radii of the edges of the nucleation bubble.
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The determination of the opening timet (f ) at fixed force provides in turn the distribution of unzipping
forces when the molecule is loaded with a fixed rate [59]. The most probable unzipping force exhibits a
rich pattern depending on the loading rate and on the length of the sequence [52,57].

4.2.2. Sequence-dependent barriers

The above mechanism is mostly relevant in the kinetics of initiation of opening of the double helix.
During unzipping of a long double helix, the sequence dependent free energy landscape of Fig. 7 with
barriers of≈ 10kBT is responsible for a slow hopping dynamics between the open and closed states, i.e.,
the slip–stick behavior observed by Bockelmann et al. [46,48].

In experiments by Liphardt et al. [54], small helix-loop RNA structures (essentially short regions of
double-helical RNA terminated with a short loop) were held in such a way that equilibrium fluctuation
between open and closed states occurred. The timescale observed was close to 1 s [54], remarkably long for
a few nm long molecule. In [60] a dynamical model was introduced for the motion of the ‘fork’ separating
the base paired and opened regions of the molecule, allowing computation of the opening and closing rate
as a function of the force. The model, which describes the experimental data well, is based on the following
elementary rates of opening and closing base pairn:

ro(n) = r e−g0(n)/kBT , rc(f,n) = r e−2Fss(f,n). (22)

The opening rate is taken to depend only on the pairing free energy since the short range hydrogen bond
is broken before the force-length work over the longer≈ 0.7 nm distance can be done. Conversely, to
close the base pair, work must be first done against the applied force, and so the closing rate is taken to be
depend only on the force. The separation of length scales of the range of base pair interaction and base pair
extension after unzipping is thus used to justify placing most of the force-dependence in the zipping rate,
with most of the interaction dependence in the unzipping rate. More sophisticated rate models will require
further experiments to determine their form.

5. Conclusion

We have presented a very brief overview of the theory used to think about single-molecule nucleic acid
micromanipulation experiments. The field of single-molecule experiments is evolving so rapidly at present
that we have been forced to omit many exciting topics. Here we present a few general comments about
what has been learned and suggest some directions that might be particularly interesting for study in the
near future.

A feature common to all the studies described above, and to the theory of other types of single-
biomolecule experiments, is the central role of statistical mechanics. The interaction of this field with
statistical mechanics is fundamental: the understanding (in some cases, even the primary data analysis)
of single-molecule DNA experiments requires statistical mechanics. Additionally, previously unimagined
statistical-mechanical problems are resulting from the huge range of experimental possibilities for DNA
and DNA–protein micromechanical experiments.

The first phase of single-DNA experiments involved basic characterization of dsDNA and ssDNA, and
from the theoretical side involved development and solution of statistical-mechanical theories for the
molecules subjected to stresses. The studies reviewed above essentially fall into this first class, and are
characterized by a degree of quantitative success, thanks both to the efforts of experimentalists and theorists,
which is unprecedented in soft condensed matter physics.

The second phase, which we are in at present, involves the study of modifications of the basic molecules,
e.g. by unzipping, or by action of proteins acting on DNAs under mechanical control. The statistical
mechanics of this second class of problems is less well developed, and includes problems far from thermal
equilibrium such as DNAs acted on by processive, ATP-powered motor-like enzymes. The diversity of
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challenging and new statistical physics problems in this second class is mind-boggling. The second phase is
also forcing theorists to confront the information content of nucleic acids since sequence plays an essential
role in targeted nucleic acid–protein interactions.

The third class of problems involves applications of the lessons learned, to the description of cell
machinery in vivo, or at least under in-vivo-like conditions. Such experiments are in their infancy, and
extension of theoretical physics into this domain is still in a dark age. However, we can look forward to
a time when we understand processes such as cell division and growth, gene regulation, and other cell
biological functions in statistical-mechanistic terms. The lessons being learned now about the importance
of statistical mechanical ideas to biochemical–micromechanical experiments on nucleic acids will thus
become an important component of future quantitative understanding of cell biology.
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