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Abstract We present experimental evidence from electron tunneling measurements that the chiral
Luttinger liquid power-law exponent,α, for tunneling into the fractional quantum Hall edge
deviates substantially from the universal behavior predicted by theory. Our results suggest
that the existing standard analyses based on effective Chern–Simon field theories deserve
careful reexamination when applied to the dynamics at the Hall fluid edge.To cite this
article: A.M. Chang, C. R. Physique 3 (2002) 677–684.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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L’exposant du liquide chiral de Luttinger est-il universel ?

Résumé A partir de mesures d’effet tunnel, nous présentons l’évidence expérimentale que l’exposant
α du liquide de Luttinger chiral décrivant la loi de puissance pour l’effet tunnel d’électrons
dans le bord de l’état Hall fractionnaire s’écarte de manière notable du comportement
universel prédit par la théorie. Nos résultats suggèrent que les analyses éxistantes standard
basées sur les théories de champ type Chern–Simon méritent d’être revues quand elles
s’appliquent au bord du fluide Hall.Pour citer cet article : A.M. Chang, C. R. Physique 3
(2002) 677–684.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

The strongly interacting, 1-dimensional (1d) chiral Luttinger liquid (CLL) at the fractional quantum Hall
(FQH) edge is emerging as a prototypical non-Fermi liquid system [1–13]. It offers advantages over other
1d systems, such as carbon nanotubes [14,15], quantum wires [16–18], quasi-1d organic conductors, or
blue-bronze 1d conductors, for the investigation of the unusual power-law energy dependence in the single-
particle tunneling-density-of-states as evidenced by the unsurpassed large dynamic range and high quality
of power-law tunneling current–voltage (I–V) characteristics.I–V characteristics containing a power-law
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region with dynamic range in excess of 4 decades inI and 1.5 decades inV have been obtained which,
when plotted on a log–log scale yields a nearly perfect straight line [12,13].

New and exotic conductors such as highTc (normal state) conductors, dimensional conductors, as well
as composite Fermion systems are pushing beyond the familiar Fermi-liquid scenario. The need to better
understand non-Fermi liquid behavior has stimulated numerous investigations of the Luttinger liquid (LL)
[19–22], which is believed to describe an interacting electron system in one dimension. Unlike the familiar
Fermi liquid in which quasi-particles constitute the low energy excitations, this unusual 1d many body
quantum system supports elementary excitations best described as phonon-like gapless modes, while at the
same time possessing an unusual power law tunneling density of states for the tunneling of electrons. This
power-law density gives rise to the power-law dependence of the tunnelingI–V observable in experiment
which represents a hallmark signature of LL behavior.

Historically, experiments to observe LL behavior atB = 0 have proven to be challenging due to the
fact that residual backscattering of electrons from either disorder or from non-ideality of 1-dimensionality
produce localization effects which readily obscure the LL characteristics [16,17], although significant
progress is now being made in nanowires [18] and carbon nanotubes [14,15]. However in the fractional
quantum Hall (FQH) effect, leading theorist such as Wen [1–4], Kane and Fisher [5–7], Moon et al. [9],
and Fendley et al. [8] have shown in the past decade that the edge should behave as a chiral LL, where
the chirality arises from the presence of the magnetic field. The quasi-1-dimensionality occurs naturally at
the boundary of the 2DEG and imperfections only cause the boundary to meander while back-scattering is
minimal. As a result, the chiral LL is much more robust. Moreover, tunneling exponent in the edge of the
Laughlin Hall fluids is determined simply by the quantized reduce Hall conductanceg = ν.

2. Universalα?

The basis for our current understanding starts with the analysis of Wen [1–4] using a hydrodynamic
approach as well as other equivalent but more powerful approaches such as the effective chiral boson theory
approach. The 1-d effective theory can be derived from the bulk 2d Chern–Simon effective theories [23–
27], which in principle capture all the essential 2d physics at low energies and becomes more exact as
the electron–electron interaction approaches the idealized,δ′′(r̃) potential. Resulting from such analysis,
the CLL power-law tunneling exponent,α, appears as a topological quantum number [1–4] which can be
used to label and differentiate different, strongly-correlated states. Due to the topological nature, it is often
argued that the edge properties should be directly tied to the bulk properties and should be insensitive to the
details of the form of the interaction. A major consequence is the prediction ofuniversality in the exponent
value. For instance, betweenν = 1/3 to 1/2, equivalently 1/ν = 2 to 3 (but more precisely the reduced Hall
resistance,ρxy/(h/e2), between 2 to 3), the exponent for electron tunneling is predicted to take the value
of exactly 3 [28,29,5–7,1–4]. For other filling fractions, e.g.ν = 1/2 to 1, residual disorder is expected to
also drive the exponent to universal values yielding a linear dependence on 1/ν (ρxy/(h/e2)) [5–7].

Cumulative experimental evidence to date, however, point to substantial deviations from universality.
For instance, the exponent in the vicinity ofν = 1/3 appears to exhibit a plateau nearα ≈ 2.7 below 3.
Furthermore, the exponent value does not appear to be tied to the Hall conductance (resistance) in the
2d bulk, but rather is sensitive to surface reconstruction at the edge arising from the long-range Coulomb
potential, which results from a chemical potential imbalance across the tunnel barrier. This imbalance leads
to charge distribution across the barrier and an edge electron density as well as a corresponding filling factor
which can differ substantially from the 2d bulk values. Most notably, the predicted [28,29,5–7,1–4] step-
like behavior in theα versus 1/ν dependence – more precisely versusρxy/(h/e

2) dependence – with linear
regions between steps, is not observed. (Note that the distinction between 1/ν andρxy/(h/e2) becomes
significant nearν = 1/3 whereρxy remains quantized over a finite range ofν.) This conclusion is reached
based on the sensible premise that onceα exceeds the value 3, the reduced Hall resistance must also have
exceeded the value 3. Instead, experiment clearly indicates the tendency toward a behavior ofα ∝ 1/ν,
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where the proportionality constant is in the range of 1–1.4, rather than the theoretical behavior whereα

reaches the value 3 at 1/ν = 2 and in between steps the slope takes the value 2. These experimental results
raise questions regarding our fundamental understanding of the connection between the edge dynamics and
the topological characterization of the bulk fluids, even though the basic Hallmark feature of the Luttinger
liquid, i.e. power-law tunneling, is unequivocally established. Indeed, recent finite size calculations are
already beginning to indicate a possibility for the strong renormalization of the edge tunneling exponent
due to the long-range Coulomb interaction and deviations from universality [30,31]. In spite of the fact that
finite-size results cannot be taken as a definitive proof in the thermodynamic limit of an infinite number of
particles, the combined experimental and computational evidence should stimulate a reexamination of the
detailed properties of the rich and novel physics at the edge of the fractional quantum Hall fluids.

3. Experimental investigations

Our experiments make use of a novel tunneling geometry made possible by the CEO growth tech-
nique [32,33]. In this unique geometry, tunneling takes place from a bulkn+ doped GaAs metal overgrown
on the(0 1 1) plane into the edge of a fractional quantum Hall fluid confined within a quantum well in the
(1 0 0) plane; see inset to Fig. 1. Using this technique we are able to produce devices in which a tall, thin
Al0.1Ga0.9As barrier separates the structurally atomically sharp edge of the 2DEG, confined within a quan-
tum well, from a heavily dopedn+ GaAs bulk metal layer. The sharp edge is created by in-situ cleaving
along the(0 1 1) direction followed by a regrowth of the thin barrier, a 150 Å region of undoped GaAs, and
the heavily dopedn+ GaAs metal on this(0 1 1) plane perpendicular to the conventional(1 0 0) growth
plane. The barrier thickness is of order 50–125 Å while its height rises 70 meV above the 2DEG chemical
potential far exceeding the 2DEG Fermi energy of< 3.6 meV. This tall, thin barrier has proven essential by
enabling access to a significant range of dynamic range in the tunneling bias voltage without concomitant
distortions of the barrier shape, and is opening up new possibilities for studying the chiral Luttinger liquid.
Then+ GaAs is doped to 1.4–2· 1018 cm−3 carrier density yielding a chemical potential of 65–83 meV
from the GaAs band bottom. This leads to an imbalance with the 2d electron gas. Charge redistribution
can take place across the barrier due to this chemical potential imbalance. The actual density profile will in

Figure 1. Magnetic field traces of (a) longitudinal
resistance (Rxx ) and Hall resistance (Rxy ),

(b) tunneling conductance (Gtun), at low bias for
sample 1. The temperature is 50 mK.
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addition depend on to what extent residual silicon dopants penetrate into the 150 Å undoped GaAs buffer
layer separating the barrier from the heavily doped GaAsn+ metal during the regrowth process.

In Fig. 1(a) we show the sample geometry for a CEO grown device in the inset and the longitudinal and
Hall resistances, and in Fig. 1(b) the tunneling conductance at low voltage bias at 50 mK temperature. The
1/3 fractional quantum Hall effect is clearly visible centered at 13.4 T in magnetic field. Figure 2 contains a
log–log plot of the first results on electron tunneling current between then+ GaAs bulk metal and the edge
of the 1/3 fractional quantum Hall fluid as a function of the applied voltage bias. Data for two samples
are included. At low voltage bias, the accessible energy scale in the tunneling process is determined by
the thermal energy∼ kT (T = 25 mK) and theI–V characteristics are linear. At a higher voltage bias
corresponding toeV = 2πkT , theI–V crosses over to a power law dependence. These first data already
showed the extraordinary quality of the power law behavior. The power law region exceeds 3 decades in
current and 1.4 decades in bias. The large dynamic range enables us to rule out other competing functional
forms. This power law represents the clearest evidence for Luttinger liquid behavior to date. In this Fig. 2
the solid curves represent fits to the Kane–Fisher universal scaling functional formI ∝ T α[x + xα], where
x = eV/(2πkT ) [5–7]. Whereas in the theory, the exponentα = 3 exactly [1–9], our curve fitting was
achieved by allowingα to vary as a free parameter with the proportionality constant betweenI andV as a
second parameter. We findα = 2.7± 0.06 and 2.65± 0.06, respectively, for the two samples (crosses, and
dots), close to the theoretically predicted value of 3 [10].

In the bulk region of the 2-dimensionalν = 1/3 fractional quantum Hall fluid, the excitation spectrum
is well known to contain a gap above the ground state and there are no zero energy excitations. The edge
of the fluid and its low energy excitations decoupled from the bulk at low temperatures and the edge can
rigorously be treated as a one-dimensional system. The formation of a Luttinger liquid is then a natural
consequence of the strong electron–electron interaction. On the other hand, the edge of a compressible
fractional quantum Hall fluid such as the composite Fermion fluid at filling factor,ν = 1/2, which does not

Figure 2. Current–voltage (I–V ) characteristics for tunneling
from the bulk-dopedn+ GaAs into the edge of aν = 1/3

fractional quantum Hall effect for two samples 1 and 2 (crosses
and solid circles, respectively) in a log–log plot. The solid

curves represent fits to the theoretical universal form [5] for
α = 2.7 and 2.65, respectively.

Figure 3. Current–voltage (I–V ) characteristics
for tunneling from the bulk-dopedn+ GaAs into

the edge of aν = 1/2 composite Fermion liquid for
sample 3 in a log–log plot atB = 9.28 T. The solid
curve represent a fit to theory [5,34] forα = 1.80.
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Figure 4. (Top) Log–logI–V for sample 2 at 11.0 T,
ν = 1/3. Theory of Chamon and Fradkin (dotted line)
and simple series resistance model (dashed line) are
overlaid for comparison. (Bottom) Log–logI–V for

sample 2 at different values ofB from 7.0 to 15.0 T in
0.5 T steps.

Figure 5. Power law exponentα versus 1/ν, the
reciprocal of the filling factor, for four samples. (Inset)
TS versus 1/ν for three samples whose traces spanned

high excitations.

contain a bulk excitation gap is more complicated. The absence of a bulk excitation gap in a compressible
fluid enables the edge dynamics to couple to the bulk excitations and a Luttinger liquid description may
not be appropriate. It was far from clear that the tunneling of electrons into a composite Fermi system
would necessarily entail a suppression of the tunneling density of states at low energies. In Fig. 3 we
present power law tunneling behavior in the the edge of theν = 1/2 fluid. The exponent,α ≈ 1.8, was an
early indication from this particular sample that deviations from universality may be occurring. Subsequent
detail experiment at continuous values of 1/ν revealed power law behavior at all accessibleν ’s as is shown
in Fig. 4.

A systematic extraction of the exponents were performed by fitting the entireI–V curve for several
devices to the Chamon–Fradkin scaling expression for the tunnel current,I , at voltage bias,V [34], with
the notationβ = α− 1, r = 2πT /TS :

I =
∫ V

0
ν
e2

h

(
1− e−1/2rβ

[(V ′/rTS)β(1− e−βrβ/2)/�2(α+ 1)/2+ 1]α/β
)

dV ′ (1)

with the resultant exponent values plotted in Fig. 5. What is strikingly clear is the absence of step-like
features. Instead for several devices, the exponent,α, behaves roughly as 1/ν, with a proportionality
constant in the range of 1.1–1.25. The observed behavior stands in direct contrast to theoretical expectations
of step-like plateau features inα versus 1/ν [5–7,28,29] (more precisely Hall resistivity,ρxy ) and has
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presented a significant puzzle. Because theν = 1/3 FQH fluid possesses the largest gap and is robust,
evidence for plateauing in the exponent is of critical importance.

Further detail experiment on the highest quality devices revealed the presence of a plateau feature for the
α versus 1/ν dependence with anα value close to 3. Characterizing theα versus 1/ν plot by the slope,
S ≡ dα/d(1/ν), in the first set of samplesS exhibits an abrupt change from 1.15± 0.3 reflecting a roughly
α ∼ 1/ν dependence to 0.15± 0.15 as 1/ν increases beyond 2.76, constituting a reduction of more than
a factor of 7 inS. This plateau region of reduced slope extends from 1/ν = 2.76 to 3.33 before reverting
to a value of∼ 1.05 above 1/ν = 3.33. Similarly in a second setS abruptly reduces from 0.33± 0.3 for
1/ν < 4.12 to−0.14± 0.18 for 4.12< 1/ν < 4.76 before increasing rapidly, e.g.S > 1.5 for 1/ν > 4.76.
In both sets of data the plateau region is centered about a value forα of 2.7, slightly below 3.

In Fig. 6 we presents log–log plots of the tunnelingI–V characteristics. Successive curves are shifted in
the positive direction on the horizontal axis by 0.3 units (a factor of 2) for clarity and curves for which
sufficient dynamic range is available to yield a meaningful exponent are included. The dashed curves
represent best fits to data described below. To establish the presence of a plateau feature in the exponent,α,

Figure 6. Log–log plot of theI–V
characteristics (solid lines) for electron

tunneling from the FQH edge into the bulk
dopedn+ GaAs in sample 1 at various magnetic
fields from 12 to 19 T in steps of 0.5 T, 18 and
18.5 T excluded. Corresponding filling factors
vary from 2.69 to 4.26. Dashed lines represent

best fits to Eq. (1) with an additional series
resistance,Rs . (Please see text.) Successive

curves are shifted by 0.3 units (a factor of 2) in
thex-direction for clarity.

Figure 7. The power
law exponent,α, for

sample 1 and 1′, versus
1/ν, in (a), for sample 5

in (c). Representative
error bars are as shown
and solid curves are as
labeled. The parameters

TS andRs are
summarized in panels

(b) and (d).
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we again extractα by fitting the entireI–V range containing the three bias regimes to the Chamon–Fradkin
expression in conjunction with the constraint thatVa = V + IRs whereVa is the voltage applied on the
device across contacts andRs a 2DEG series resistance. Since the temperature is known, 3 parameters are
needed:α, TS , and a 2DEG series resistanceRs . The inclusion ofRs significantly improves the fits for
traces taken at lowerB fields.

Figure 7 summarizes the fitting parametersα, TS , andRs deduced for two sets of samples versus 1/ν.
Results for samples 1 and 1′ containing identical 2DEG are presented together, since they contain the
identical 2DEG. We focus our attention onα in panels (a) and (c). To establish unequivocally the presence
of a plateau feature we first fit our data to curves containing: (i) three line segments where the middle
exhibits a reduced slope; (ii) two line segments; and (iii) a single straight lines, indexed by 3, 2, and 1,
respectively. We next apply the statistical F-test on the resultingχ2’s. We find the 3-segment fit to be
superior and are able to reject the competing 1- and 2-segment fits with a confidence exceeding 99%. The
plateau occurs at a value ofα near 2.7 close to the theoretical value of exactly 3. At the same time the 1/ν

positions are shifted to higher values than the theoretical prediction based on the bulk 2d electron density
and filling factor. Let us remark that due to the chemical potential imbalance between the 2DEG and the
3dn+ doped GaAs, charge transfer must take place across the tunnel barrier. For the devices studied, this
is expected to lead to an enhanced edge density which exhibits an inhomogeneous density profile near the
tunneling edge. In the absence of a direct method to independently determine the edge density, we propose
the following method to estimate the edge density which we argue should be accurate to 5–10%. Since
by all reasonable analysis and sensible argument the exponent must remain nearly constant when the Hall
resistanceρxy is approximately quantized at 3(h/e2) (noteρxx � ρxy always), and at the same timeα
can exceed 3 only whenρxy exceeds 3, we can determine theνedge= 1/3 position by the 1/νbulk value
whereα first exceeds 3, less the half-width of a typical 1/3 Hall plateau (roughly 5% ofν = 1/3). For
samples 1 and 2, this yields an edge density roughly equal to 1.05 the bulk density. Accordingly the plateau
feature inα is more likely ascribable to the finite width of the Hall plateau rather than to a step of the
type predicted by existing theories. In any case, the exponent atνedge= 1/2 is highly unlikely to reach the
value 3.

4. Discussion

What possibilities or non-ideality could lead to the discrepancy with theory? Two issues come to mind:
(i) long range nature of the Coulomb interaction; and (ii) a non-constant density profile near the tunneling
edge. Based on effective field theories, long range Coulomb interaction leads to a log(V ) correction in the
power law relation, with an increase in the exponent at low energies [35,1–4,28,29]. However, no evidence
of this type is observable in the tunneling data despite the large dynamic range in theI–V . Furthermore,
based on the dynamic range, a log(V ) increase in the propagation velocity of the charged mode above the
neutral modes is also not likely to sufficiently separate out the respective energy scales and lead to the
apparent absence of a contribution from the neutral modes [36]. Regarding the density profile, even if the
tunneling reflects an averaging over a strip of electron gas of non-constant density, anα of 3 should still be
observable due to the width of the predictedα = 3 step which spans!ρxy/(h/e2)= 1 ≈!(1/ν).

In view of the evidence, one possibility which goes beyond the standard analysis deserving in depth
investigation is a renormalization of the exponent from its universal value due to the long range nature
of the Coulomb interaction. As mentioned above recent exact numerical diagonalization [30] as well
as calculations based on composite Fermion edge-state wavefunctions [31] are indicating that for a 3d
Coulomb interactions the exponent is no longer universal and takes on a value in the 2.5–2.75 range.
These new developments suggest that the edge dynamics in the fractional quantum Hall regime may be
more complex than previously thought and potentially will lead to further discoveries of more novel and
interesting physics.
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