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Abstract The direct detection of the statistics of the quasiparticles in the quantum Hall effect has
so far eluded experimental discovery. Here a quantum transport geometry is analyzed,
which could provide a link to the fractional statistics via the measurement of low frequency
noise correlations. The proposal constitutes an analog of the Hanbury-Brown and Twiss
experiment, this time for three chiral edges – one injector edge and two collectors. Luttinger
liquid theory reveals that the real time correlator decays much slower than in the case of
fermions, and exhibits oscillations with a frequency scale corresponding to the applied bias
multiplied by the quasiparticle charge. The zero frequency noise correlations are negative
at filling factor 1/3 as for bare electrons (anti-bunching). However they are strongly
reduced in amplitude, which constitutes a first evidence of unusual correlations. The noise
correlations become positive (suggesting bunching) forν � 1/5, however with a much
reduced amplitude, when one computes the noise assuming that only the most relevant
operators contribute.To cite this article: R. Guyon et al., C. R. Physique 3 (2002) 697–
707.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

noise correlations / fractional statistics / edge states / quasiparticles / quantum Hall
effect

Statistiques fractionnaires, corrélations de Hanbury-Brown et Twiss
et effet Hall quantique

Résumé Jusqu’à présent, la statistique des quasiparticules de l’effet Hall quantique n’a pu être
directement mise en évidence expérimentalement. Ici, une géometrie qui procure une
connexion à la statistique fractionnaire par la mesure des corrélations de bruit est proposée.
Celle ci constitue un analogue de l’expérience de Hanbury-Brown et Twiss, adaptée à
trois états de bord chiraux – un bord injecteur et deux détecteurs. La théorie des liquides
de Luttinger révèle que le corrélateur en temps réel décroît plus lentement que pour des
fermions, et oscille à la fréquence spécifiée par le voltage source–drain, multipliée par la
charge effective des quasiparticules. Pour un facteur de remplissage 1/3, les corrélations
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de bruit à fréquence nulle sont négatives comme pour les électrons, mais leur amplitude est
fortement réduite : une manifestation d’une statistique inhabituelle. Les corrélations de bruit
deviennent positives pourν � 1/5, suggérant un comportement bosonique, toutefois avec
une amplitude très réduite. Cependant le calcul présenté ne tient compte que des opérateurs
les plus pertinents.Pour citer cet article : R. Guyon et al., C. R. Physique 3 (2002) 697–
707.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

corrélations de bruit / statistique fractionnaire / effet Hall quantique / états de bord /
quasiparticules

1. Introduction

In condensed matter physics, the interactions between the constituents of the system are typically known,
and have been since the nineteenth century. This contrasts strongly with the field of high energy physics
where the search for elementary interaction processes constitutes a dominant theme. Although the building
blocks of condensed matter systems are mere electrons, protons and neutrons, their collective behavior has
been shown to lead to a variety of astonishing phenomena. Classic examples of such quantum correlated
systems are superconductivity [1,2], superfluidity [3] and the fractional quantum Hall effect [4,5]. In these
instances, the departure from usual behavior is often symptomatic of the presence of a non trivial ground
state: a ground state which cannot be described by a systematic application of perturbation theory on the
non interacting system.

Investigations of such ground states naturally lead to that of the elementary excitations of the system. One
typically probes the system with an external interaction which triggers the population of excited states. The
subsequent measurement of the thermodynamical properties then provides some crucial information. From
a different angle, transport measurements deal with open systems connected to reservoirs. In the last two
decades, mesoscopic physics has been concerned with the analysis of open electron systems using current
and noise measurements.

In the fractional quantum Hall effect (FQHE), quasiparticle excitations and quasiparticle exchange
properties were first discussed theoretically in bulk systems using the Laughlin wave function [6]. The
elementary excitations – such as quasi-holes – bear a fractional charge and under exchange a fractional
statistical phase±iνπ is generated (ν is the electron filling factor, here chosen to be the inverse of an odd
integer).

The above results were generated for an infinite disc-shaped geometry. Transport measurements typically
involve two dimensional electron gas samples with boundaries, connected to current and voltage contacts.
In the integer quantum Hall effect (IQHE), the chiral waves which propagate along the sample are
the quantized version of the classical skipping electron orbits. In fractional quantum Hall fluids with
boundaries, the excitations are not electron-like as in the IQHE, yet they also propagate as chiral edge
waves which carry the current. Long wave length edge excitations can be described by a Luttinger
liquid, as described by the hydrodynamic model of [7,8]. In a Hall bar, backscattering can be induced
by bringing together two counter-propagating edges using a point contact. The prediction of such a system
is that in the absence of impurities or backscattering, the maximal edge current isIM = νe2/h, while
for weak backscattering, the current voltage characteristic is highly non linear for Laughlin fractions, i.e.
〈IB〉 ∼ V 2ν−1 (〈IB〉 is the average backscattering current andV is the voltage bias between the two edges).
However, the current alone does not provide direct information about the charge and the statistics of the
elementary excitations.

It was suggested [9,10] that a two terminal noise measurement performed on a gated mesoscopic device
in the weak backscattering regime provides a direct link to the quasiparticle charge. If quasiparticles are
scattered from one edge to the other one by one, the usual Shottky formulaSB = 2e∗〈IB〉 which relates
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the zero frequency backscattering noise (see Eq. (1) below) to the average current flowing between the two
edges applies [11], except that the effective carrier chargee∗ = νe contains the electron filling factor. This
fractional charge was measured recently by several groups [12,13]. These results constitute a successful test
of the Luttinger liquid models [9,10] based on chiral edge Lagrangians [7,8]. On the theoretical side, these
perturbative calculations of the noise have now been supplemented [14] by exact results using the Bethe
ansatz solution of the boundary sine-Gordon model. This allows us to describe the whole parameter range
from weak to strong backscattering at the point contact.

As noted above, the discussion of the physics of fractional Hall transport has been centered on the charge
of the quasiparticles, rather than the statistics. Signatures of the statistics should be explicit in the noise
characteristics of a two terminal (or two edge) sample, as long as one goes beyond the Poissonian noise.
In Fermi systems, the Pauli principle leads to a quantum shot noise formulaS = 2e〈I 〉(1 − T ) (T is the
transmission probability) where the Shottky result is reduced at high transmission [15–19]. This reduction
was observed in two experiments [20,21]. So far in the FQHE, the analog of the measurement of the noise
reduction factor for fermions has not been conclusive [12]. Here [22], it is suggested that the statistics
can be monitored via a Hanbury-Brown and Twiss experiment [23] – similar to the case of photons and
electrons. Quasiparticles are emitted from one edge and tunnel through the correlated Hall fluid in order
to be collected into two receiving edges (see Fig. 2). This constitutes a mesoscopic analogue of a collision
process which involves many (2 or more) quasi-particles. A central result is that the noise correlations are
negative, but strongly reduced in amplitude atν = 1/3 compared to the fermionic result. Below this filling
factor, the noise correlations become positive but have a small amplitude.

2. Hanbury-Brown and Twiss correlations

Particularly interesting is the role of electronic correlations in quantum transport. Correlations can have
several causes. First, they may originate from the interactions between the particles themselves. Second,
correlations are generated by a measurement which involves two or more particles. In the latter case, non-
classical correlations may occur solely because of the bosonic or fermionic statistics of particles, with or
without interactions. The measurement of noise – the Fourier transform of the current–current correlation
function – constitutes a two particle measurement, as implied in the average of the two current operators:

Sαβ(ω = 0)=
∫

dt
(〈
Iα(t)Iβ(0)+ Iβ(0)Iα(t)

〉− 2〈Iα〉〈Iβ 〉). (1)

HereIα is the current operator in reservoirα, and the time arguments on the average currents have been
dropped, assuming a stationary regime.

Consider the case of photons propagating in vacuum: the archetype of a weakly interacting boson system.
It was shown [23] that when a photon beam is extracted from a thermal source such as a mercury arc lamp,
the intensity correlations measured in two separated photo-multipliers are always positive. On average, each
photon scattering state emanating from the source can be populated by several photons at a time – due to
the bunching property of bosons. As a result when a photon is detected in one of the photo-multipliers, it
is likely to be correlated with another detection in the other photo-tube. The positive correlations can be
considered as a diagnosis of the statistics of the carriers performed with a quantum transport experiment.

What should be the equivalent test for electrons? A beam of electrons can be viewed as a train of
wave packets, each of which is populated at most by two electrons with opposite spins. If the beam
is fully occupied, negative correlations are expected because the measurement of an electron in one
detector is accompanied by the absence of a detection in the other one, as depicted in Fig. 1(a). The
discovery of Hanbury-Brown and Twiss prompted a proposal to repeat the measurement using electron
beams propagating in vacuum [24]. However, it was never possible to achieve the occupation (close to
full occupancy of the scattering states) necessary to obtain a measurable anticorrelation signal. It was
understood later [17–19] that if the electrons propagate in a quantum wire with few lateral modes, near
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(a) (b)

Figure 1. (a) Hanbury-Brown and Twiss geometry in a
normal metal fork with electrons injected from 3 and
collected in reservoirs 1 and 2. Occupied and empty

electron wave packet states are identified as black and
white dots, respectively. (b) Hanbury-Brown and Twiss

geometry in a superconductor–normal metal fork.
Cooper pairs are emitted from the superconductor, and
the two constituent electrons can either propagate in the

same lead, or propagate in an entangled state in both
leads.

maximal occupancy could be reached, and the anticorrelation signal would then be substantial, and possibly
measurable. Consider the device drawn in Fig. 1(a): electrons emanating from reservoir 3 have a probability
T1(2) to end up in reservoir 1(2). The scattering theory of electron transport then specifies the noise
correlations between the two branches in the presence of a symmetric voltage bias between 3 and 1,2:

S12(ω= 0)= −4
(
e3|V |/h)T1T2. (2)

These electronic noise correlations were measured recently [25,26] by two groups working either in the
IQHE regime or in the ballistic regime, with beam splitters designed with metallic gates. These challenging
experiments confirmed that the Pauli principle is at work in forked sample geometries. Here, the negative
correlations are used as a reference for comparison with the result for fractional quantum Hall edge
transport.

Negative correlations for fermionic systems are most natural, yet there exist situations where they can be
positive. If the reservoir which injects electrons in the fork is a superconductor as in Fig. 1(b), both positive
and negative correlations are possible [27]. Charge transfer between the injector and the two collectors 1
and 2 is then specified by the Andreev scattering process, where an electron is reflected as a hole. Positive
correlations are linked to the proximity effect, as superconducting correlations (Cooper pairs) leak in the
two normal leads. Depending on the nature of the junction in Fig. 1(b), it may be more favorable for a pair to
be distributed between the two arms than for a pair to enter a lead as a whole. The detection of an electron in
1 is then accompanied by the detection of an electron in 2, giving a positive correlation signal. Applying spin
or energy filters to the normal arms 1 and 2, it is possible to generate positive correlations only [28]. As an
illustration, energy filters with resonant energies symmetric above and below the superconductor chemical
potential can select electrons (holes) in leads 1(2). The positive correlation signal then can be written:

S12(ω = 0)= 2
(
e2/h

) ∑
σ=↑,↓

∫ e|V |

0
dεRe1σ,h2−σ (ε)

[
1−Re1σ,h2−σ (ε)

]
, (3)

whereRe1σ,h2−σ is the Andreev reflection probability for a hole incoming from 2 to be scattered as an
electron in 1. Negative bias voltageeV < 0 insures that the constituent electrons of a Cooper pair from the
superconductor are emitted into the leads. The propagation of a Cooper pair in a given lead is blocked by the
filters because of energy requirements. Note the similarity with the quantum noise suppression mentioned
above. This is no accident: by adding constraints to our system, it has become a two terminal device, such
that the noise correlations between the two arms are identical to the noise in one arm. In fact, the device
of Fig. 1(b) with additional filters constitutes a source of entangled electrons, allowing us to probe the non
local nature of quantum mechanics [29]. Bell inequalities [30] have been shown to be maximally violated
in this stationary transport situation [31].

Negative and positive correlations are in principle possible in mesoscopic devices (with the latter effect
tied to a pairing mechanism). Here, our goal is to extend these considerations to the FQHE. One could in
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principle start from an approach where the three reservoirs are filled with ‘particles’ which obey fractional
statistics. A decade ago, exclusion statistics – a form of statistics which is intermediate between fermions
and bosons – was proposed by Haldane [32]. A recent work where a one body scattering matrix specified
the transmission of such particles showed that the shot/thermal noise crossover is indeed affected by the
exclusion statistics [33]. However the zero frequency noise cross correlations were found to be similar to
that of fermions [27].

Quite generally, in a physical system where many body interactions are present, the scattering properties
of quasiparticles should be addressed from first principles. The quest for the signatures of unconventional
statistics in noise correlations experiments has to be approached from the point of view of a microscopic
model, using a non-equilibrium thermodynamics approach to describe transport.

3. Model Hamiltonian

The suggested geometry of our proposed experiment [22] requiresthree edges with two tunneling paths
between them. Tunneling occurs through the quantum Hall fluid. It is drawn schematically with two point
contacts in Fig. 2(a). Note that previous noise correlation measurements in the quantum Hall effect [12,
25,26] dealt with a single constriction and with tunneling between two edge states. It can be shown using
current conservation that this latter geometry does not allow a direct probe of fractional correlations. Here,
edge 3 injects quasiparticles in the system, which can subsequently tunnel through the fluid at the two
possible locations.

When a quasiparticle tunnels to edge 1, it leaves a quasiparticle hole on edge 3. Removing another
quasiparticle later on will be affected by the first tunneling event. In the case of fermions, the Pauli principle
will prevent this second removal, leading to negative noise correlations. Clearly the present geometry is well
adapted to address the same issue for fractional excitations. Alternatively, this setup can be considered as a
detector of partition noise between edge 1 and 3, but in the presence of a ‘noisy’ injecting current (due to
backscattering between 2 and 3).

The edge modes running along each gate, characterized by chiral bosonic fieldsφl (l = 1,2,3) are
described by a Hamiltonian:

H0 = (vFh̄/4π)
∑

l=1,2,3

∫
ds (∂sφl)2, (4)

with s the curvilinear abscissa andvF is the Fermi velocity. Theφl satisfy the commutation relation
[φl(s),φl′(s′)] = iπδll′ sgn(s− s′) [7,8]. The quasiparticle annihilation operators are written in a bosonized
formψl(s)= (2πα)−1/2e−i

√
νφl (s) with α a short distance cutoff.

Because we are dealing with a non equilibrium thermodynamics problem, the noise will be computed
below using the Keldysh technique. The elementary building blocks of perturbation theory are the Keldysh
ordered Green’s functions for the bosonic fields.

Figure 2. (a) Hanbury-Brown and Twiss geometry in the
FQHE: 3 metallic gates (black) define 3 edge states, with
2 tunneling paths and with tunneling amplitudes�1 and
�2. Voltage sourcesV1,2,3 are attached to each edges.
The outgoing currents are measured on edges 1 and 2.
(b) Same geometry, except that the edges are linked

together in order to specify the commutation relations
between the quasiparticle fields.

(a) (b)
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Tunneling between edge 3 and the other edges is described by the time dependent hopping Hamilto-
nian [10]:

Ht(t)=
2∑
l=1

∑
ε=±

�l e−iεe∗χl(t)/h̄cT (ε)
l whereTl = T

(+)
l =ψ

†
3(sl )ψl

(
s′l
)= T

(−)†
l . (5)

ψ
†
l creates a quasiparticle excitation with chargee∗ = νe on edgel.�l is a quasiparticle hopping amplitude.

A voltage bias can be imposed using the Peierls substitution, i.e.e∗χl(t) = h̄ω0ct for a constant DC bias
V3 − Vl = h̄ω0/e

∗ imposed between edges 3 andl. The two receiving edges are assumed to be decoupled.

4. Fractional statistics

Fractional statistics is a consequence of the Laughlin correlated state describing the FQHE. The
commutation relations for theψl ’s should originate from the derivation of the Chern–Simons boundary
action. For the present problem, the procedure for taking fractional statistics into account has been described
in detail in [34]. With the above definition of the quasiparticle fields, fractional statistics on a given edge is
enforced with the help of the commutation relation [35]:

ψl(s)ψl(s
′)= e±i

√
νπ sgn(s−s ′)ψl(s′)ψl(s). (6)

On the other hand, no similar commutation relations are available for fields withl �= l′. A reasonable guess
would be to include a phase factor e±iπν when two such fields are commuted. Yet the choice of the sign of
this phase has to be justified by the topology of our experiment. Here, we conjecture that the commutation
relations are similar to those for a system of connected edges.

Klein factors [34,36,37] are introduced, which means that each quasiparticle operatorψl is changed to
Flψl . The requirement of unitarity,F †

l Fl = FlF
†
l = 1, is consistent with the fermionic case (ν = 1).

Consider the closed system (Fig. 2(b)) where edges are connected with an open contour which brings
all the edges into one. Klein factors are not necessary in this system because the commutation relations
of tunneling operators are enforced by a single chiral bosonic fieldφ. Yet, by looking at the commutation
relations of different tunneling operators we show below that for a system with the same topology but where
edges are disconnected, the Klein factors can be computed. The operator describing tunneling from edge ‘3’
(locationsl) to edge ‘l’ (location s′l ) can be writtenTl = (2πα)−1 ei

√
νφ(sl) e−i

√
νφ(s ′

l
). If the two tunneling

paths do not cross, one can show that[T1, T2] = 0 using the Baker–Campbell–Hausdorff formula together
with sgn(s2 − s1)= −sgn(s′1 − s′2) which is imposed by chirality.

We turn to the same system depicted in Fig. 2 but where all edges are disconnected. In order to en-
force fractional statistics, Klein factors are introduced in such a way that the tunneling operators become
Tl = ψ

†
3(sl)ψl(s

′
l )F3F

†
l . We require that the commutator of the tunneling operators of this disconnected

system give the same results as the connected one. The Klein factors thus have to satisfy the relation:(
F3F

†
2

)(
F3F

†
1

)= eiνπ sgn(s2−s1)(F3F
†
1

)(
F3F

†
2

)
. (7)

Equation (7) is compatible with fractional statistics:FlFl′ = e−iπνpll′Fl′Fl , wherepll′ are the elements
of an antisymmetric 3× 3 matrix with elements which are tied to the topology. The connection between
the elementspll′ and the sign of the algebraic distance reads: sgn(sl′ − sl ) = pl′3 + p3l + pll′ . If, for in-
stance,l′ = 2 andl = 1 with sgn(s2 − s1) = 1, we can choose:p31 = −1 = −p32 = −p12. In particular,
this insures that the fieldsψj anti-commute forν = 1 and commute forν → 0. It is then most convenient
to compute the time ordered Klein factor product using a bosonization formulation similar to that used for
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the quasiparticle fields:

F3F
†
l ≡ e−i

√
νθl . (8)

Introducing the fact that sgn(s2−s1)= 1 in Eq. (7), we find (using the Hausdorff formula) that[θ1, θ2] = iπ .
From the fieldsθl , annihilation and creation operatorsb andb† can then be defined asb ≡ (θ1 + iθ2)/

√
2π ,

with the usual property that〈b†b〉0 = 0 (‘ground’ state) and〈bb†〉0 = 1.
The ground state expectation value of products of the bosonic fields reads:〈θ1θ2〉0 = −〈θ2θ1〉0 = iπ/2

and〈θ1θ1〉0 = 〈θ2θ2〉0 = π/2.
Because we are dealing with a non-equilibrium transport situation, a Keldysh matrix is introduced for

the bosonic fields of Eq. (8):

g
η1η2
12 (t)≡ 〈TK{θ1(t

η1)θ2(0η2)
}〉= i

π

2

{η1 + η2

2
sgn(t)− η1 − η2

2

}
. (9)

For the same tunneling events one findsg
η1η2
ll (t)= π/2.

5. Non equilibrium current cross correlations

The dynamics of the free fields brought together with the above statistical constraints are now applied
to compute the transport properties of the three terminal device of Fig. 2. The perturbative computation
of the correlator of Eq. (1) with currents in the Heisenberg representation is achieved by going to the
interaction representation and expressing the noise in terms of time ordered products along the Keldysh
contour. The lowest non-vanishing contribution to the noise in a given lead are the autocorrelationsS11
andS22: the noise in a given terminal, which to order O(�2

l ) (l = 1,2) gives the Poisson result. The lowest
non-vanishing contribution to the noise cross correlator between terminals 1 and 2 is of order 4 (O(�2

1�
2
2))

in the tunneling amplitudes [22]:

S12(t, t
′)= −2e∗2

h̄2

(−i

h̄

)2 ∑
ηη1η2

∑
εε′ε1ε2

εε′|�1�2|2η1η2

×
∫

dt1

∫
dt2
〈
TKT

(ε)
1 (tη)T

(ε′)
2

(
t
′−η)T (ε1)

1

(
t
η1
1

)
T
(ε2)
2

(
t
η2
2

)〉
× exp

[
iεχ1(t)+ iε′χ2(t

′)+ i
∑
l=1,2

εlχl(tl)

]
, (10)

whereη, η1 andη2 label the contours(±) to which the times are assigned. Note that in this real time noise
correlator, the product of the current averages – as they appear in Eq. (1) – have not yet been subtracted. To
this order, the Keldysh ordered product in Eq. (10) contains the product of two contributions. The first one
originates from the computation of the average of the bosonic fields associated with each edge: it contains
the dynamical aspect of these fields, and gives rise to exponentiated chiral Green functions. The contraction
of these chiral fields leads to quasiparticle conservation lawsε = −ε1 andε′ = −ε2. The other factor has
no dynamics other than that specified by time ordering; it contains the Klein factors.

Exploiting the symmetry property of the Green’s function of the chiral bosonic fieldsG−η,−η′ (s, t) =
[Gη,η′(s, t)]∗, one obtains:

S12(t)= 4
|e∗τ0�1�2|2

(hα)4
Re
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∑
ε,η1,η2=±

εη1η2 cos
(
ω0(t1 + εt2)

)
e2ν[G+,η1(0,t1)+G−,η2(0,t2)]

× eνε[G̃+η2(−a,t+t2)+G̃η1,−(−a,t−t1)] e−νε[G̃+−(−a,t)+G̃η1η2(−a,t+t2−t1)], (11)
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whereε represents the product of the two charge transfer processes:ε = −/+ when the quasiparticles
tunnel in the same/opposite direction. In Eq. (11), the Green’s function for edge 3 has been translated due
to the Klein factors, which are given at zero temperature:

G̃ηη′(−a, t)=Gηη′(−a, t)+ g
ηη′
12 (t)= − ln

(
t

τ0
+ a

τ0vF
+ iητ0

)
,

Gηη′(−a, t)= − ln

[
1+ i

2

(
t

τ0
+ a

τ0vF

)(
(η+ η′)sgn(t)+ (η− η′)

)]
, (12)

where the times have been rescaled by the short time cutoffτ0 � α/vF andgηη
′

12 (t) is defined in Eq. (9). The
integrand in the double integral in Eq. (11) forν < 1 decays slowly with both time arguments. Absolute
convergence is obtained forν > 1/2 from the power law decay in time. Forν < 1/2 convergence is due
to the oscillatory terms. The real time correlator is computed with the assumptionsa = 0 and the biases
between 1 and 3 (2 and 3) are chosen to be symmetric and equal toω0. Fora �= 0, the real time correlator
is obtained using the property:

S12(t)≡ S12(t,−a)= S12(t + a/vF, a = 0). (13)

The configurationη1 = −;η2 = + is retained because first it provides the large time behavior and second, it
corresponds to the contribution of the zero frequency noise correlations (to be computed later on). A leading
contribution toS−+

12 (t) is plotted in Fig. 3, as well as the excess noise atν = 1 for comparison. The
latter oscillates with a frequencyω0, and decays ast−2. S−+

12 (t) scales as|ω0|4ν−2f (ω0t), with f (x) an
oscillatory function which decays at least asx−2ν , thus a slower decay than that of electrons. At large times,
the frequency of the oscillations stabilizes asω0 = e∗V/h̄.

The result in Eq. (11) is now integrated overt after subtracting the average current products. The sign
and magnitude of theω = 0 correlations tell us the tendency for the quasiparticle to exhibit bunching or
antibunching. At zero temperature onlyε = −1 in S̃12(0) contributes, which gives the information that an
‘exclusion principle’ prohibits the excitations to be transferred from the collectors to the emitter. The zero

Figure 3. Contribution to the real time correlatorS−+
12 (t), for bias

ω0 = e∗V/h̄, normalized to|τ0�1�2|2|ω0|4ν−2 for a filling factor
ν = 1/3 (dashed line). 2〈I1〉〈I2〉 has been subtracted. The exact

excess noise atν = 1: Sex
12(t)∝ sin2(ω0t/2)/t

2 (full line), keeping
all η configurations, is plotted for comparison.

Figure 4. Normalizedω= 0 correlations
R(ν), plotted with the analytic expression of
Eq. (16) for arbitraryν, and compared to the
direct numerical calculation for 0.7 � ν � 1

(lozenges).
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frequency noise correlations have the general form:

S̃12(ω= 0)= (e∗2|ω0|/π
)
T r

1 T
r
2R(ν), (14)

where the renormalized transmission probabilities areT r
l = (τ0|ω0|)2ν−2[τ0�l/h̄α]2/�(2ν), and the

dimensionless functionR(ν) characterizes the statistical correlations. Note the similarity with the non-
interacting noise formula of Eq. (2), which has an extra factor 2 because of spin degeneracy. Atν = 1, the
cutoff dependence drops out of Eq. (14) and it is shown explicitly thatR(1)= −1 using contour integration,
so thatS̃12 coincides exactly with the scattering theory result [17–19]. This issue represents a crucial test
of the implementation of the Klein factors.

Moreover, for arbitraryν,R(ν) could in principle be directly measured in an experiment. Indeed one can
rescale the noise correlatioñS12 by the individual shot noises̃Sl � 2e∗〈Il〉 or equivalently (at this order) by
the individual currents:

R(ν)= |ω0|S̃12/
[
4π〈I1〉〈I2〉

]
. (15)

An analytical expression for the functionR(ν) in Eq. (14) is obtained for the filling factor range 1/2<
ν � 1:

R(ν)= −sin(πν)�2(2ν)

2
√
π�(2ν − 1)�(2ν − 1/2)�(−ν)

∞∑
n=0

�(n− ν)�(n+ 1− ν)�(ν + n− 1/2)

n!�(n+ ν)�(n+ 3/2− ν)
, (16)

which converges asn−ν−2. Here,ν has a physical meaning only when it is a Laughlin fraction 1/m (m odd).
At first glance the only physical filling factor which one can reach with this series isν = 1. Yet, it has been
shown [22] thatR(ν) can be analytically continued to the interval[0,1/2]. Indeed, the terms of the series
of Eq. (16) are still well defined forν < 1/2.

Forν � 1, a check is obtained (Fig. 4) by direct numerical integration ofS12(t). The comparison between
the series solution of Eq. (16) and the numerical data shows a fair agreement for 0.7� ν � 1.

Starting from the IQHE and decreasingν (Fig. 4), the noise correlations between the two collector edges
are reduced in amplitude at anyν = 1/m. When a quasi-particle is detected, in edge 1, one is less likely to
observe a depletion of quasi-particles in edge 2 than in the case of noninteracting fermions. The reduction
of the (normalized) noise correlations constitutes a direct prediction of the statistical features associated
with fractional quasiparticles in transport experiments, and should be detectable atν = 1/3.
S̃12 vanishes atν = 1/4 and becomes positive for lower physical filling factors (1/5,1/7, . . .), which

is reminiscent of bosons bunching up together [23], or alternatively, of the positive noise correlations of
a normal metal–superconductor Y-shaped junction [27].

The continuation procedure could be jeopardized if other tunneling operators generated by the
renormalization group (RG) procedure happened to be more relevant atν = 1/2. Below the general
expression for the Hamiltonian which describes multiple tunneling is specified together with the RG flow
associated with each term:

H̃t ≡
∑

�n
V�n ei

√
ν�n· �φ, dV�n

dl
=
(

1− ν

2

3∑
l=1

n2
l

)
V�n, (17)

where �n = (n1, n2, n3) (nl integer) satisfies quasiparticle conservationn1 + n2 + n3 = 0 and �φ =
(φ1, φ2, φ3) contains the fields of the three edges. The bare tunneling terms of Eq. (5) are relevant atν < 1,
and always dominates all otherV�n, which become relevant belowν = 1/3 at most. Note that here the noise
correlations were computed while taking into account the most relevant tunneling operators. Situations
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where less relevant or marginally relevant operators contribute have been encountered [38], and here such
additional tunneling operators could modify the predictions forν < 1/3.

6. Conclusions

To summarize, Hanbury-Brown and Twiss geometries provide a physical test of mesoscopic transport.
They can be used to check the bosonic/fermionic statistics of the carriers, or alternatively to generate
entangled streams of particles. Here we have argued that they provide direct information about fractional
statistics in the FQHE. Edge states in the fractional quantum Hall effect constitute an ideal ground to probe
the nature of quasiparticles excitations in transport measurements. The role of electronic correlations in
transport has been emphasized by experimentalists and theorists alike in the measurement/prediction of
the effective charge of quasiparticles, when the latter are scattered one by one – the Poissonian limit. The
effect of the tunneling of one quasiparticle on another tunneling event has not been considered so far.
Such information should be implicit in the Bethe ansatz formulations of the problem [14]. So far these
approaches have not been adapted to deal with Hanbury-Brown and Twiss geometries. The present work
has addressed the role of statistics in two quasiparticle scattering for a correlated one dimensional system
using an intuitive, tunneling approach. Quite generally, information about statistics is necessarily contained
in quantum measurements which involve two particles or more: here the zero frequency noise correlations
play the role of the intensity correlator in the early quantum optics experiment of [23].

The noise correlations are found to be reduced in amplitude when compared to the fermionic case, a
prediction which could be directly tested in experiments. At filling factorν = 1/3, they are negative,
suggesting antibunching behavior. In our previous work [22], the assumption of an arbitrary small
separation between the two tunneling locations was made. Clearly, this imposes drastic constraints on
possible experimental implementations of this proposal: the two point contact shown in Fig. 2 have to
lie closer than the relevant lengthscales describing the edge excitations. We have shown elsewhere [39] that
this assumption is unnecessary when computing the zero frequency noise correlations, thus allowing more
freedom in designing an experimental setup similar to Fig. 2, with two separated point contacts, within a
phase coherence length.

A starting result is the positive correlations found for filling factorsν � 1/5. Here, such correlations
can be either attributed to the fact that the fractional statistics are bosonic nearν → 0, as suggested by
the commutation relations, or can be linked to the eventual presence of composite bosons resulting from
attachment of an odd number of flux tubes [40,41]. On the one hand, one is dealing with a fermionic system
wherelarge negative correlations are the norm. On the other hand, the presence of an external magnetic
field and the (resulting) collective modes of the edge excitations favor correlations which can be positive for
small enoughν, but which are always reduced in amplitude. In fact, the analysis of the charge probability
distribution in a simple, two edge system [42] has confirmed that this distribution tends to a classical one
when the limitν → 0 is taken, which is in qualitative agreement with the present findings on the HBT
geometry. The competition between these two tendencies yields a statistical signature which is close to
zero – analogous to the noise correlations of ‘classical’ particles.

The tendency for the noise correlation ratio to be reduced compared to its non interacting value is
consistent with the existing data for two-terminal devices [12], as a connection exists between the two
types of measurements [17–19,27]. There, shot noise suppression was observed to be weaker than that of
bare electrons, which then multiplies the shot noise by 1− T [17–21], the reflection amplitude. However, a
qualitative analysis of noise reduction in this situation is rendered difficult because of the nonlinear current–
voltage characteristics. In contrast, Hanbury-Brown and Twiss experiments constitute a direct and crucial
test of the Luttinger liquid models used to describe the edge excitations in the FQHE, as it addresses the role
of fractional statistics in transport experiments. Similar analysis could be employed to deal with hierarchical
fractions of the Hall effect, or alternatively to nonchiral Luttinger liquids, such as carbon nanotubes.
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