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Abstract We review some basic properties of the Fractional Quantum Hall Effect and particularly
address the physics of the edge states. The chiral Luttinger liquid properties of the
edges are discussed and probed experimentally using transport measurements. Shot noise
measurements, which allow determination of the quasiparticle charge are also discussed.
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Effet Hall quantique, liquides de Luttinger et charges fractionnaires

Résumé Nous présentons une revue de quelques propriétés élémentaires de l’Effet Hall Quantique
Fractionnaire et plus particulièrement des états de bord. Les aspects liquides chiraux de
Luttinger des états de bords sont abordés et sondés expérimentalement par des mesures
de transport. Les expériences de bruit de grenaille qui permettent de sonder la charge des
quasiparticules sont aussi discutées.Pour citer cet article : P. Roche et al., C. R. Physique
3 (2002) 717–732.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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1. The quantum Hall effect

1.1. Introduction

The quantum Hall effect occurs in a two-dimensional electrons gas (2DEG) at low temperature in a high
perpendicular magnetic field. The strong quantization of the cyclotron motion makes the 2DEG similar
to a flat macroscopic atom made of 1011 electrons. Here, the magic quantum numbers are replaced with
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magic values of the filling factorν = ns/n� which measures the electron densityns in units of the density
n� of the flux quantumφ0 = h/e. Sweeping this parameter, by varying the magnetic field or the density,
reveals a series of new quantum fluids signaled by plateaus in the Hall resistance. The Hall plateaus take
the remarkable valuesq

p
h
e2 each timeν is close to an integer value ofp/q [1] (q = 1) or to a fraction

with odd denominator [2,3] (q = 2s + 1). For integer values the physical origin of the phenomenon is
the Fermi statistics and the cyclotron motion quantization in 2D, while for fractional values an additional
ingredient is needed: the Coulomb interaction. These ingredients are the simplest one can imagine. No
interaction with the host material is needed as in the case of superconductivity. It is remarkable that a so
simple system has completely renewed our knowledge of quantum excitations. Topological fractionally
charged excitations [3] with fractional anyonic or exclusonic quantum statistics [4–7], composite fermions
[8] or composite bosons [9–11], skyrmions [12,13], etc.,. . . are the natural elementary excitations required
to understand the quantum Hall effect. These concepts are not complicated nor difficult to understand. They
all suggest how rich is the physics of the quantum Hall effect [14–17].

In this contribution we present the basic physics of the Integer and Fractional Quantum Hall Effect
(FQHE) with more emphasis on the edge states properties. We show that the physics of the edges
is connected to the physics of Luttinger liquids. Then, we discuss recent theoretical predictions and
experimental investigations of the Luttinger liquid properties using transport measurements in the FQHE
regime. Finally, we show how transport properties of the edges combined with shot noise measurements
can be used to determine the charge of the fractional quasiparticle.

1.2. Realization of a clean 2D electron gas

A 2DEG is realized by confining electrons to a plane in a region free of positive compensating charges
(for a review see [18,19]). The positive background can be either static ionized donors, randomly distributed
in the host material far from the 2DEG, or the polarization charge of a positively biased metallic gate.
This is different from the 3D case where the ionized impurities scatter the electrons with a dramatic
decrease of the conductivity and electron–electron interactions effects. The electrostatics law requires
another force to maintain electrons far from the donor plane. This is provided by a hard wall potential using
a spatial conduction band discontinuity of the host material. The wall can be produced either using the
interface between a semiconductor and an insulator or using two semiconductors with different conduction
band energies. The first type, called a MOSFET, is found in silicon devices using Si/SiO2 interface. It
is used in the micro-electronic industry for micro-processors and random access memories. The second
type is a semiconductor heterojunction usually GaAs/GaxAl1−xAs, but other III–V materials are possible.
Heterojunctions find applications in high speed communication electronics. The purest systems need
Molecular Beam Epitaxy (MBE) growth while standard heterojunctions can be realized using Chemical
Vapor Deposition. Epitaxial growth provides atomically flat interface and a mean to modulate the doping.

In both systems, the conduction band is bent toward the potential wall in order to realize a triangular
potential confining the charges close to the interface. In MOSFET, the electric field which bends the
conduction band is provided by a positively polarized gate insulated by a dielectric oxyde layer. In
GaAs/Ga(Al)As heterojunctions, electrons are trapped in the GaAs side, the Ga(Al)As region with larger
gap provides the potential wall. The electric field is provided by donors situated in the Ga(Al)As region.
Fig. 1 shows schematically the two systems and the band structure.

1.3. The integer quantum Hall effect

In two dimensions, the transport coefficients take very simple and remarkable values. For example, the
conductivityσ (or resistivity) is expressed in conductance (resistance) units. In zero magnetic field, the
Drude conductivityσD = nse

2τ/m∗ can be rewritten asσD = (e2/h)kF l, wherekF is the Fermi wave
vector, l is the mean free path andns the density of the two-dimensional electron gas (2DEG). The
conductance quantume2/h appears as a natural unit. In this unit, the classical Drude conductivity is a
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Figure 1. Band structure and confinement of a 2DEG using Si-MOSFET and GaAs/GaAlAs heterojunctions.

dimensionless number carrying information on the microscopic details (the ratio of the mean free path over
the Fermi wavelength). Similar quantum units can be used for theclassical Hall conductance in 2D. The
Hall resistance isRH = B/ens . Expressing the magnetic fieldB in quantum units, i.e. by the density of
flux quanta,B = (h/e)n�, theclassical Hall conductance is:

σH = 1

RH
= e2

h

ns

n�
. (1)

In quantum units,σH is a measure ofthe filling factor ν = ns/n�.
Although, there was predictions that the longitudinal and Hall resistance in 2D was highly nontrivial [20,

21], the plateaus of the Hall resistance discovered by Klitzing, Dorda and Pepper [1] was not anticipated,
nor the accurate (metrological) quantization. They appear at remarkable values:

RH = h

e2

1

p
, (2)

wherep is an integer. This is the Integer Quantum Hall Effect (IQHE). Eq. (1) suggests that for some
range of magnetic field, the electrons participating to the Hall resistance have a densitypinned to a multiple
of the flux quantum density:ns = pn�. The incompressibility of the 2DEG in the quantum Hall regime
originates from the opening of an energy gap in the excitations which is directly manifested by a vanishing
longitudinal resistance: a dissipationless state. Fig. 2 shows typical transport measurements in this regime.
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Figure 2. Typical longitudinal and
Hall resistance observed at low
temperature in high mobility

samples. At low magnetic fields,
Hall plateaus ath/pe2 for ν � p are

well defined. Simultaneously the
longitudinal resistance vanishes. For
higher magnetic field, Hall plateaus

at ν = 2/3 andν = 1/3 with a
simultaneous vanishing longitudinal

resistance are also well defined.

Figure 3. Decomposition
of the electron motion
(x, y) into orbit

coordinates(ζ, η) and
coordinates of the center of
the cyclotron orbit(X,Y )

(left); Landau levels
(middle); chemical

potential versus filling
factorν (right).

In the following we explain the basic physics of the IQHE. The kinetic energyK = (p+eA)2/(2m∗) of
an electron moving freely in a plane perpendicular to a magnetic fieldB = Bẑ is quantized into Landau
levels:

En =
(
n+ 1

2

)
h̄ωc, (3)

whereωc = eB/m∗ is the cyclotron pulsation. As the energy depends on a single quantum numbern while
there are two degrees of freedom (the electron moves in 2D) there is a high degeneracy. Using the cylindrical
gaugeA = (−By/2,Bx/2,0), the meaning of the degeneracy appears clearly if one replaces the conjugate
pairs of electron coordinates

[
x,px

]
and

[
y,py

]
by a new set of conjugate pairs, see Fig. 3

(x, y)= (X+ ξ,Y + η), (4)

where

[ξ, η] = [vy/ωc,−vx/ωc] = −ih̄/eB and [X,Y ] = ih̄/eB. (5)

The Hamiltonian becomesH = 1
2mω

2
c (ξ

2 + η2) and does not depend on(X,Y ). The first pair of conjugate
coordinates represents the fast cyclotron motion whose radius:

rn = 〈
n|ξ2 + η2|n〉1/2 =

(
n+ 1

2

)1/2

lc (6)
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increases with the orbital Landau level indexn and scales aslc = (h̄/eB)1/2, the magnetic length. The
second pair is the center of the cyclotron orbitR = (X,Y ). This is precisely the freedom to choose the
center of cyclotron orbits which encodes the degeneracy of the Landau levels. The degeneracy (the number
of way to place cyclotron orbit centers in the plane) equals the numberN� = n�S = eBS/h of flux quanta
�0 = h/e in the surface S. This is a direct consequence of the noncommutation of coordinates(X,Y ). The
2D electron plane is analogous to the phase space[P,Q] of a one-dimensional system, where the area of a
flux quantumh/eB plays the role of the Planck constanth.

Assuming fully spin polarized electrons, it is easy to understand why there is a vanishing longitudinal
resistivity ρl and conductivity (σl = ρl/(ρ

2
l + ρ2

t )) when the Hall resistanceRH is preciselyh/pe2,
p integer. Because of the Pauli principle, a complete filling of thep lowest Landau levels occurs when the
number of electronsN = nsS is exactlypN� = pn�S, i.e. filling factorν = p. There is an energy gap̄hωc
to create an electron–hole pair excitation. The 2DEG becomes a perfect insulator for longitudinal currents
(σl = 0), while the current parallel to equipotential lines is exclusively made of dissipationless transverse
currents (ρl = 0) andσH = 1

RH
= pe2/h. At finite temperature, longitudinal transport and dissipation are

recovered via thermally activated inelastic processes with energy� h̄ωc . Regarding thermodynamics, there
is a jump h̄ωc of the chemical potential for the smallest change of the filling factor around the integer
valuep: removing a single flux quantum by lowering the field or adding a single electron. The system is
incompressible.

The striking QHE features are expected only for an infinitely small width of the parameterν around an
integer. However experiments show a remarkable and accurately quantized Hall plateauwith finite width.
This is because in a large sample the chemical potential can be pinned between Landau levels by disorder
which favors localized states. This can be understood by a quantum phase transition called localization. In
clean and narrow samples the chemical potential is pinned by gapless excitations, called edges states, which
will be discussed later.

1.4. The Fractional Quantum Hall Effect

We give here a very brief presentation of the FQHE. For simplicity electrons are assumed spin polarized
and the first orbital Landau level partially filled:ν < 1. Because of degeneracy, there is a large freedom to
occupy the quantum states, i.e. to fill the plane, with electrons. However the Coulomb repulsion reduces our
freedom to distribute electrons in the plane. This breaks the Landau level degeneracy and, for filling factors
with odd denominator fractions:ν = 1/3,1/5, 2/3, 2/5, 3/5, 2/7, . . . , a unique collective wavefunction
minimizes the energy.

The FQHE states form new types of quantum liquids with a ground state separated from a continuum
of excitations by a gap.. For ν = 1/(2s + 1), s integer, Laughlin proposed a trial wavefunction for the
ground state which was found very accurate. The wavefunction is built from single particle states in the
cylindrical vector potential gauge. Using a representation of electron coordinates asz = x + iy in unit of
magnetic lengthlc, the single particle states in the first Landau level are:

ϕm = 1√
2π2mm!z

m exp
(−|z|2). (7)

It is instructive to look first at the Slater determinant of electrons at filling factor 1 which is a Van der Monde
determinant. Its factorization gives the following wavefunction, up to a normalization constant:

21 =
∏

i<j�N
(zi − zj )exp

(
−

∑
i=1,N

|zi |2
)
. (8)

The polynomial part ensures a uniform distribution of electrons in the plane where on average each electron
occupies the area of a flux quantum (one quantum state). The zeros atzi = zj reflect the Pauli principle and
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their multiplicity 1 reflects the Fermi statistics. At filling factor 1/(2s+1) the polynomial for eachzi should
be of degree of(2s+1)(N−1) such that all electrons are also uniformly distributed on the(2s+1)N states
available. It should be symmetrical to ensures a uniform electron distribution in the plane. The Laughlin
wavefunction has the simple polynomial form [3]:

21/2s+1 =
∏

i<j�N
(zi − zj )2s+1 exp

(
−

∑
i=1,N

|zi |2
)
. (9)

The zeros of multiplicity 2s + 1 decreases the probability to find electrons close to each other and
efficiently minimizes the correlation energy. By exchanging two electrons the wavefunction is multiplied
by (−1)(2s+1) and satisfies the requirement that the bare electrons obey Fermi–Dirac statistics. But there
is more: the extra phase factor(−1)2s obtained when moving two electrons around each other can be
viewed as the Aharanov–Bohm flux of two fictive flux quanta bound to each electron. One can also say
that electrons obey a super exclusion principle where each particle occupies 2s+ 1 quantum states (i.e., the
area of 2s + 1 flux quanta) so minimizing the interaction (there are deep connections with the concepts of
exclusonic statistics and anyonic statistics [4–7]).

The excitations separated from the ground state by a gap carry fractional charge. The meaning of the
excitations is particularly clear for the best knownν = 1/3 state. The wavefunction cannot be continuously
deformed and the only way to decrease the density is to empty a single particle quantum state, i.e.
to create a hole having the area occupied by a single flux quantum (see Fig. 4). As the ground state
corresponds to a uniform distribution of electrons, one electron per area occupied by three flux quanta,
the hole carries afractional chargee∗ = −e/3. Theoretically, a hole excitation is built by multiplying the
Laughlin wavefunction by

∏
i=1,N (zi − zh) wherezh is the position of the hole. The energy cost.h

(the excitation gap) is approximately the energy required to create a disc of size�0/B and charge
e/3 : (4√

2/3π)(e/3)2/4πεε0lc. Similarly, quasi-electron excitations carrying chargee/3 correspond to
a local increase of the electronic density by removing a flux quantum. Quasi-electron or hole excitations
with charge±e/q can be generalized for other filling factorν = p/q with q odd. An interesting theoretical
issue is the statistics associated with the excitations. When moving adiabatically two quasi-holes around
each other and exchanging their positions, the collective wavefunction picks up a Berry’s phase factor
exp(iπ/(2s + 1)). The excitations are not bosons nor fermions but obey anyonic statistics, a concept first
introduced in the context of particle physics. While the observation of the fractionally charged excitations
has been recently performed, as discussed later, evidence for fractional statistics remains an experimental
challenge.

Figure 4. To create a hole having the
area of a single flux quantum is
equivalent to create a fractional
chargee/3 for theν = 1/3 FQH

state.
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1.5. Edge channels

Here, we address the physics of thegapless excitations which appear at the periphery of a finite size
quantum Hall conductor. The gapless excitations lead to the formation of chiral one-dimensional conduction
modes called edge states. For better understanding, we first consider the noninteracting electrons of the
IQHE regime. We will also neglect coupling between Landau levels, an assumption justified in most
experimental situations.

Within thenth Landau level, the dynamics of electrons is described by the projected Hamiltonian:

Hn =
(
n+ 1

2

)
h̄ωc + V (n)(X,Y ), (10)

whereV (n)(X,Y ) is the confining potentialV (X,Y ) at the edge averaged over the fast cyclotron motion of
thenth level and[X,Y ] = ih̄/eB. If the electric field due to confinement is along theŷ direction, electrons
drift along the boundary (̂x direction) with a velocityVx = (1/eB)∂V (n)/∂Y . When populated by electrons
the edge states give rise to a chiral persistent current concentrated at the edges, see Fig. 5. Because thenth
Landau level is bent by the confining potential, there is a line along which the Landau level energies cross
the Fermi energyEF . The line of gapless excitations defines a one dimensional chiral conduction mode
called an edge channel. At the opposite boundary, not shown in the figure, there are also similar gapless
excitations running in opposite direction as the confinement electric field is of reversed sign. Thus for a
filling factor ν = p, there arep pairs of opposite edge channels associated with thep filled Landau levels
in the bulk.

Edge channels are ideal one-dimensional (chiral) conductors: the physical separation between pairs of
opposite edge channels prevents backscattering and electrons propagate elastically over huge distances
(mm at low temperature) as phonon scattering is reduced. These properties have make them a convenient
tool to test the generalized Landauer-Büttiker relations [22] in the context of the mesoscopic quantum
transport [23]. In order to do that it is necessary to induce intentionally elastic backscattering in a
controllable way. The tool used is a Quantum Point Contact (QPC) as shown in Fig. 5. A negative
potential applied on a metallic gate evaporated on top of the sample depletes electrons to realize a narrow
constriction in the 2DEG. This allows a controllable modification of the boundaries of the sample. The
separation between opposite pairs of edges channels of a given Landau level can be made so small that
the overlap between wavefunctions leads to backscattering from one edge to the other. Indeed, the QPC
creates a saddle shape potential and when the potential at the saddle point is close but below the value
VF,n = EF − (n+ 1

2)h̄ωc , electrons emitted from the upper left edge channel start to be reflected into the
lower edge left channel with probabilityR� 1 but are still mostly transmitted with probabilityT = 1−R
(see Fig. 5c). When the saddle point potential is aboveVF,n electrons are mostly reflected and rarely

Figure 5. (a) Schematic
representation of edge states and of

(b) the Landau level bending;
(c) reflection of an edge state by a
controlled artificial impurity called

Quantum Point Contact; (d) analogy
with 1D semiclassical trajectories in

the phase space.
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transmittedT � 1. Fig. 5 shows the semi classical analogy between the real space coordinates(Y,X) of
the 2D Hall conductor and the(P,Q) phase space coordinate of a real 1D conductor, as suggested by the
noncommutation relations[Y,X] = ih̄/|e|B and[P,Q] = ih̄. The physics of tunneling between opposite
edge channels is clearly equivalent to that of the tunneling in a 1D system. However the chirality allows us
to inject or detect electronsat the four corners of the phase space, something impossible with 1D systems.

Measuring the conductance is a good tool to know how many edge channels are transmitted. According
to the Landauer formula, the conductanceG defined as the ratio of the currentI through the QPC when
applying a voltage differenceV between the upper left and lower right contacts isG= T e2/h if there is
only one channel partially transmitted.G= (e2/h)(N−1+T ) if there areN−1 channels fully transmitted
while theN th channel is partially transmitted.

1.6. Chiral Luttinger liquids

While the Landauer formula describes the conduction of the edge channels in the IQHE regime, this is
no longer the case in the fractional quantum Hall regime. A generalization of edge channels can be made
in the fractional regime where the gap. plays the role of̄hωc . For fractions 1/(2s+ 1) (Laughlin’s states)
there is a single fractional edge channel, while for fractionsν = p/(2ps±1) (Jain’s states) there arep edge
channels similar to the case ofp filled Landau levels in the IQHE [24–26]. However it has been predicted,
and confirmed by experiments, that the conduction of the chiral modes is highly nontrivial. Because
of interactions, 1D conductors are no longer Fermi liquids but Luttinger liquids [27]. In Fermi liquids
the excitations which carry the current are charged quasiparticles with properties similar to that of free
electrons. In Luttinger liquids, the elementary excitations are no longer quasiparticles but neutral collective
modes (1D plasmons). A transport experiment, which involves the transfer of charges (i.e. quasiparticles),
is now mediated by the collective modes. This leads to nonlinear current-voltage characteristics, a hallmark
of Luttinger liquids.

Wen [28–31] has first shown the deep connection between fractional edge channels and the concept
of Tomonaga–Luttinger liquids [32,33]. In a classical hydrodynamic approach and for aν = 1/(2s + 1)
Laughlin state, Wen has considered the periphery deformations of the 2D quantum Hall conductor which
preserves the total area (like a 2D droplet of an ordinary incompressible liquid) as shown schematically in
Fig. 6. If we denoteh(X, t) the deformation of the boundary which are respectively located at the radius
Y = YF , the time varying electron density is given by:

n(X,Y, t)= ns:
(
Y − YF − h(X, t)), (11)

Figure 6. Edge deformation of the incompressible
FQHE fluid following the hydrodynamic approach of

Wen.
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where ns = νeB/h and:(X) is the Heaviside function. To find the equations of motion forh we
have to remember that, within the first Landau level, the single particle motion is given by the reduced
HamiltionianH1 = (1/2)h̄ωc + V (1)(X,Y ) and that,X andY being conjugate, the classical Poisson’s
bracket is{X,Y } = h/eB. Using the equation of motion for the 2D density∂n/∂t + {H1, n} = 0 and
assuming translation invariance alongX, the propagation equation of the deformationh along the boundary
Y = YF is given by:

∂h

∂t
+ vD ∂h

∂X
= 0, (12)

wherevD = 1
eB

|∂V (1)/∂Y �Y=YF | is the drift or local Fermi velocity. The potential energy associated with
the deformation is

U = 1

2

∫
dXnsh

2∂V

∂Y
= h̄vD

νπ

∫
dX(πnsh)

2. (13)

If we defineφ̃ to be the charge variation integrated on the edge in units ofπ such that:nsh= ρ̃(X)= 1
π
∂φ̃
∂X

,

the action isS = − h̄
πν

∫
dXdt ∂φ̃

∂X
(∂φ̃/∂t + vD∂φ̃/∂X) and the HamiltonianH = U is:

H = hvD

2ν

∫
dX ρ̃2.

So far the model is purely classical. Defining the momentum conjugate toφ̃ as π̃ = h̄
πν
∂φ̃/∂X and

quantizing the bosonic field, we find:[
π̃(X), φ̃(X′)

] = ih̄δ(X−X′). (14)

The equations above describe the dynamics of the neutral bosonic modes of the periphery deformations.
The physics becomes nontrivial when considering the transfer of a bare electron or a Laughlin quasiparticle
to an edge. The electron creation operatorψ† must satisfy:[

ρ(X),ψ†(X′)
] = δ(X−X′)ψ†(X′). (15)

On the other hand, the 1D excess densityρ̃ is related to the conjugate of̃φ by π̃ = − h̄
v
ρ̃ and we have

[ρ̃(X), φ̃(X′)] = −iνh̄δ(X−X′), which immediately implies:

ψ† ∝ exp

(
iφ̃

ν

)
. (16)

ψ† creates a unit charge atX and is an electron operator if it satisfies Fermi statistics. Exchanging
two electrons at positionX andX′ givesψ†(X′)ψ†(X) = exp(−i π

ν
sgn(X − X′))ψ†(X)ψ†(X′). The

requirement that the bare particles are Fermions impliesν = 1/(2s + 1). The Laughlin filling factors
appear naturally as a consequence ofincompressibility and Fermi statistics. Following a similar procedure,
one can define the quasiparticle operator which creates a fractional charge 1/(2s + 1) on the edgeψ†

qp ∝
exp(iφ). It exhibits thefractional statisticsψ†

qp(X
′)ψ†

qp(X) = e(−iπν sgn(X−X′))ψ†
qp(X)ψ

†
qp(X

′) expected
for fractionally charged Laughlin quasiparticles.

The coupling betweenψ† (or ψ†
qp) and the bosonic modes is strongly nonlinear. It characterizes

a Luttinger liquid. The FQHE version is called aChiral Luttinger Liquid. The conductanceνe2/h

corresponds to the conductancege2/h of a Luttinger Liquid and usually one identifiesg = ν. As for
Luttinger liquids there is an algebraic decay of the correlation functions. One can show that the single
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particle Green’s function decreases as(X − vDt)
−1/ν . The Tunneling Density of State for an electron at

energyε is ∼ |ε − EF |(1/ν−1). This means that, for electrons tunneling between a Fermi liquid and a
chiral Luttinger fractional edge channel, the finite temperature conductanceG(T ) and the zero temperature
differential conductance dI/dV show power laws variations:G(T ) ∼ (T /TB)

γ and dI/dV ∼ (V /VB)
γ

with γ = 1/ν − 1 [34–38].TB andVB are related to the coupling energy of the tunnel barrier.

2. Transport and shot noise properties in FQHE chiral Luttinger liquids

2.1. Tunneling electrons to a fractional edge

In order to probe this physics two kind of experiments are possible. The first one is an experiment
where electrons tunnel from a metal to the fractional edge channel. The second type of experiment is an
artificial scatter (a QPC) which allows the quantum transfer of fractional quasiparticles from one fractional
edge to the corresponding counter-propagating fractional edge. Here, quasiparticle transfer is possible as
it occurs via the fractional fluid. This configuration is also used in the shot noise experiments described at
the end because it allows us to probe the quasiparticle charge. For the first kind of expriment, convincing
results have been obtained by the group of Chang [39–41]. The tunnel contact is realized using the cleaved
edge overgrowth technique. By epitaxial growth on the lateral side of a 2DEG, a large tunnel barrier is
first defined followed by a metallic contact realized using heavy doped semiconductor. Power laws of the
current with applied voltageI ∼ V α , α = γ + 1, are observed over several current decades forν = 1/3.
The exponentα found is 2.7–2.65 close to the valueα = 3 predicted by the theory. For other filling factors
similar algebraic variations are also observed but the exponents found differ from the predictions of simple
chiral Luttinger liquid models. This is discussed in the contribution of Chang in this volume, [42].

2.2. Tunneling between fractional edges through a weak artificial impurity

In the following, we discuss the physics related to the second type of experiment, and show recent
experimental results performed in this regime by our group. The transfer of electrons or of quasiparticles
betweeen two opposite fractional edges is done using anweak artificial impurity, a Quantum Point Contact.
We will not present any results for the case of a strong impurity leading to a high tunnel barrier between two
nearly disconnected FQHE regions. In this case the behavior is expected to be similar to that of Chang’s
experiments. However, because the dI/dV characteristics are proportional to the square of the TDOS,
the exponents for the conductance are doubled. A difficulty is that sample inhomogeneities around the
QPC leads to transmission resonances which are difficult to control. Exploiting Luttinger predictions for
tunneling through such a resonant state has been used in [43].

Before showing experimental results, we will discuss the predictions for the case of aweak impurity.
Without Luttinger liquid effects a weak impurity would lead to a weak coupling between upper and lower
edges. Practically, the QPC gently pushes the upper edge close to the lower edge to induce a quantum
transfer of particles from one edge to the other. Also the QPC potential is weak enough to not make
appreciable the change of the local filling factor. Nevertheless, the Luttinger liquid theory predicts that
in the limit of small energyε ( kBT or eV → 0) the strength of the weak artificial impurity isstrongly
renormalized by interactions. The system flows to an insulating state and the conductance displays the
same power law withT or V than the one expected for a strong impurity potential (tunnel barrier)

G∼ e2

3h

(
ε

TB

)2(1/ν−1)

→ 0 for ε� TB, (17)

whereTB is an energy scale related to the impurity potential. On the other hand, as the impurity is very
weak one expects that at high energy a conductance close to, but smaller than the quantum of conductance
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e2/(3h) is recovered. Indeed the Luttinger liquid theory predicts

G= e2

3h
−GB with GB = e2

3h

(
ε

TB

)2(ν−1)

→ 0 for ε� TB. (18)

GB is called the backscattering conductance (if we callI the forward current,I0 = (e2/(3h))V the current
without impurity, the current associated with particles backscattered by the impurity isIB = I0 − I from
which one can defineGB = IB/V ). The above formula corresponds tostrong andweak backscattering
limits. In the first case there is a weak tunneling of particles between the left and right side, while in the
second case there is a weak quantum transfer of particles between the upper edge and the lower edge. There
is an interestingduality with ν↔ 1/ν.

Recent work based on conformal field theory has shown that the problem of a Luttinger liquid with one
impurity is fully integrable for all energies [44,45]. The approach is described in a contribution by Saleur
in this volume, [46]. One can show that applying a voltage biasV between reservoirs emitting electrons
in the upper and lower edges is, in the convenient basis for interacting electrons, equivalent to sending
a regular flow of kinks which are randomly transformed into antikinks. Kink and antikink respectively
contribute to the forward and backscattered current. The Landauer formula adapted to this approach gives
the backscattering current which expresses simply as:

IB(V,TB)= evD

∫ A(V )

−∞
dαρ+(α)

∣∣S+−(α − αB)
∣∣2 and I = ν

e2

h
V − IB, (19)

whereρ+(α) is the density of incoming kink at energy parametrized byeα , and

∣∣S+−(α− αB)
∣∣2 = 1

1+ exp[2(1− ν)(α − αB)/ν] (20)

is the probability for kink to anti-kink conversion (the scattering probability) withαB related to the impurity
strengthTB .

For finite temperature, one can show that the conductance is a function of the reduced variableT/TB and
eV/2πkBT :

G(T ,V )= e2

3h
f

(
T

TB
,

eV

2πkBT

)
(21)

and measuringG(T ,0) fixes the only parameterTB . The V/T scaling law also can be tested very
accurately. Fig. 7 shows theoretical calculations of the differential conductance for various values of the
parameterTB (the results of [44,45] have been used). We can see that, increasing the energy (the voltage
or the temperature), leads to a progressive transition from the strong backscattering regime to the weak
backscattering regime.

Fig. 8, left graph, shows experimental measurements of the differential conductance versus bias voltage
for different values of the QPC gate voltage. An ncrease of the gate voltage corresponds to a decrease ofTB .
As one can see, the observed nonlinearities compare well with the theoretical curves of Fig. 7. Fig. 8, right
graph, shows recent data obtained in our group for the conductance in the strong backscattering regime for
ν = 1/3. Experiments are made in the intermediate regime (i.e.,G> 10−4e2/3h). The effective exponent
(power law fit for 0� eV/(2πkBT ) � 2) deduced from a series of dI/dV curves for different impurity
strength is compared with the effective one calculated using the finite temperature exact solution. The
agreement is rather good. The theoretical graph in inset of the figure shows that the asymptotic scaling
exponent 2(ν−1 − 1)= 4 is not expected except for conductance lower than 10−4, which is experimentally
difficult to obtain. It is noteworthy that there are no adjustable parameters.
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Figure 7. Theoretical curves for
the differential conductance versus

voltage calculated for values of
ln(T /TB) varying from−3 to

−0.6 in steps of 0.3. The
numerical exact solution of [44,45]

is used. The conductance is a
universal function of the variable

T/TB andeVds/2πkBT .

Figure 8. Differential resistance versus bias voltage for different values of the QPC gate voltage (left). Exponent of
the algebraic variation of the differential conductance with voltage measured in the strong backscattering regime

versus the zero bias conductance normalized toe2/3h. The solide line is a comparison with the FLS predictions. The
scaling exponentα = 2(ν−1 − 1)= 4 is only expected in a regime of extremely low conductance (10−4) (right).

There are still many open problems for a quantitative description of conductance measurements using the
Luttinger liquid model. Long range interactions are one of these. One can show that the dispersion relation
of bosonic chiral edges modes which usually vary linearly with the wavenumberk get a contributionk ln(k).
When the energy is low enough such that the wavelength is larger than the width of the sample, the Coulomb
interaction couples the edges. The power law of the TDOS is lost. Instead the TDOS is expected to vary
with energy like exp(const × (ln ε)3/2) [47–49].

2.3. Shot noise of fractional channels coupled by an artificial impurity: detection of fractional
charges

The study of shot noise in quantum conductors has been of increasing importance in mesoscopic physics.
This followed a series of theoretical papers [50] and experiments [51,52] showing that the quantum noise
of electrons in conductors is naturally sub-Poissonian. The reduction of noise comes from the statistical
interaction between electrons as the Pauli principle naturally regulates the electron flow. Another source of
reduction can arise because of correlations when the repulsive interaction between electrons is important.
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It was thus interesting to consider the noise properties of an interacting system such as a Luttinger liquid.
When considering the fractional quantum Hall effect, another motivation is that shot noise provides an
unambiguous evidence of the fractionally charged Laughlin excitations.

According to Schottky [53], the random transfer of chargeq across a conductor generates finite temporal
fluctuations of the current.I around the mean valueI when observed during a finite timeτ . The current
is related to the average number of transferred electronsN via I = qN/τ . If the statistics of transfer events
is Poissonian(.N)2 =N this gives the Schottky formula:

(.I)2 = 2qI.f = SI.f, (22)

where we have introduce the effective frequency bandwidth.f = 2/τ (Nyquist theorem) and the current
noise powerSI . The noise power is directly proportional to the carrier chargeq .

Theoretical predictions for shot noise taking into account the specific Luttinger liquid dynamics have
been given in [54]. An artificial impurity, as the one discussed in previous sections, couples the two
opposite fractional edges. It induces tunneling in the strong backscattering regime or quantum transfer of
quasiparticles in the weak backscattering regime. The results for both limits andν = 1/3 are respectively:

SI � 2eI coth(eV /2kBθ), I � I0 = 1

3

e2

h
V, (23)

SI � 2(e/3)IB coth
(
(e/3)V /2kBθ

)
, IB = I0 − I � I0. (24)

Here, the Johnson–Nyquist thermal noise contribution 4GkBT has been subtracted for clarity. The zero
temperature limit of expressions (23) and (24) have been also derived in [55] using Luttinger liquid models
in the perturbative limit. For strong backscattering, low conductance (I � I0), the rate of tunneling of
charges is small compared to that of incoming charges. The statistics are Poissonian and one recovers
the (finite temperature) Schottky formula. The charge found is that of electrons as intuitively expected.
The system being insulating, correlations between the left and the right side of the conductor are lost
and fractional excitations cannot survive. For weak backscattering, conductance close toe2/3h, the
backscattering current is now small compared to the incoming current and the statistics of quantum transfer
of charge from the upper to the lower edge is Poissonian. The Schottky formula is again recovered butIB
replacesI and the effective charge ise/3. Here, fractional excitations are expected inside the fractional
region virtually not perturbed by the weak impurity. In this limit, noise provides adirect way to measure
the fractional Laughlin chargee/3.

A fractional charge is also found in the argument of the coth function although its meaning is different.
The cross-over from thermal to shot noise occurs when the electro-chemical potential difference.µ =
eV/3 is comparable tokBθ . This is not a measure of the fractional quasiparticle charge but a measure of
the fractional filling of the quantum state at equilibrium, like the conductanceνe2/h is. Only the shot noise
SI � 2(e/3)IB really measures the quasiparticle charge. Nevertheless the observation of a three times larger
voltage for the thermal cross-over in noise experiments has been an important confirmation of Eq. (24).

Beyond the perturbative limit, the impurity problem has an exact solution. The FLS model presented in
the previous section allows not only to calculate the current in all regime but also to calculate the noise [44].
To obtain the noise, one can mimic the wavepacket approach used by Martin and Landauer for the noise of
noninteracting Fermions [56,57]. The incoming kinks correspond to a regular flow of charged solitons. The
regular flow is noiseless but the random scattering of kinks into anti-kinks produces noise in the outgoing
current. When|S+−(α − αB)|2 � 1 this a Poissonian processus while if|S+−(α − αB)|2 is not negligible,
the statistics is binomial and the fluctuations are proportional to|S+−(α−αB)|2(1−|S+−(α−αB)|2). The
expression for the noise at zero temperature is thus:

SI (V )= 2e2v

∫ A(Vds)

−∞
dα ρ+(α)

∣∣S+−(α − αB)
∣∣2(1− ∣∣S+−(α − αB)

∣∣2). (25)
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Figure 9. Experimental Poissonian noise of the fractionally charged excitations of the FQHE, from [58] (left) and [59]
(right).

Exact expression and technical mathematical details can be found in [44]. The special simple form of
|S+−(α − αB)| leads to a relation between current and noise where

SI = v

1− v
(
V

dI

dV
− I

)
= v

1− v
(
IB − V dIB

dV

)
.

Whence, using the weak and strong backscattering limits of the Luttinger theory, we can easily check that
SI → 2(νeIB) and 2eI respectively in agreement with the zero temperature limit of Eqs. (23) and (24).
Finite temperature predictions can also be found in [45].

Shot noise measurements in this regime have been performed by two groups [58,59]. A difficulty of shot
noise measurements in the FQH effect is that shot noise levels are extremely small both due to the smaller
charge and the small available current. The latter is restricted by the fact that the FQH effect breaks down
when the applied voltage is larger than the excitation gap. It is of the order of a few 100 µeV, leading to
shot noise levels in the 10−29 A2/Hz range.

A QPC is used in order to realize a local and controllable coupling between twoν = 1/3 fractional
edges to partially reflect the incoming current. The experiments are designed to have an optimal sensitivity
for the weak coupling limit where Poissonian noise of thee/3 Laughlin quasiparticles is expected. In the
experiment of Ref. [58], a cross correlation technique detects, at low frequency, the anticorrelated noise
of the transmitted currentI and the reflected currentIB , i.e. SI,IB = 〈.I.IB〉/.f � −2(e/3)IB . The
magnetic field corresponds to a filling factor 2/3 in the bulk of the sample and a small region of filling factor
1/3 is created close to the QPC using the depletion effect of the gates. The size of the 1/3 region is estimated
to be about 150φ0, sufficient to establish FQHE correlations. The advantage of this technique is that the
coupling between edges occurs on a shorter scale and the controllable QPC potential is larger than the
potential fluctuations inherent in sample fabrication. In the two samples measured, the combination of QPC
and random potential lead to two dominant paths for backscattering. The coherent interference between
paths gives rise to nearly perfect resonant tunneling peaks in the conductance. Careful measurements
of the conductance resonance showed that tunneling was coherent. This was an important check for the
quasiparticle charge measurement because this ruled out the possibility of noise suppression due to multiple
uncorrelated steps, similar to the 1/3 noise reduction factor in zero field diffusive conductors. Also the
resonant conductance showed nonlinear dependence on bias voltage consistent with Luttinger liquid model
provided the filling factor of the bulk is used. The other group [59] used a high frequency technique in
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order to increase the signal bandwidth and measured the autocorrelation of the transmitted current. Here
the magnetic field corresponded to a filling factor 1/3 throughout the sample. They found few nonlinearities
in the conductance, in contrast with the Luttinger liquid predictions, and this allowed them to define a bias
voltage independent transmission.

In the Poissonian limitIB � I0, the two experiments give the same conclusion (see Fig. 9) that near
filling factor 1/3, shot noise is threefold suppressed. This is the most direct evidence that the current can be
carried by a quasiparticle with a fraction ofe and that the Laughlin conjecture was correct. In addition, the
data showed a cross-over from thermal noise to shot noise when the applied voltage satisfies the inequality
eV/3> 2kθ (rather thaneV > 2kθ ), indicating that the potential energy of the quasiparticles is threefold
smaller as well as predicted in Eq. (11).This experiment has been now reproduced many times with different
sample and measurement conditions in both laboratories.

Is it possible to go further and probe different fractional charges for less simple filling factor? Recently
measurements close toν = 2/5 have given indications that thee/5 quasiparticles are the relevant excitations
in this regime [60]. This last result has been analyzed in a model of noninteracting composite Fermions
where Luttinger effects are neglected [61]. More experiments and a better theoretical understanding of the
noise for Jain’s filing factors are certainly needed and will be done in the future.

Acnowledgements.The authors would like to thank Yong Jin and Bernard Etienne who provide high quality
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