
roblem.
cale to the
ensional
w recent

ues)
e grandes
autre part,
du Higgs
nts récents

l questions
les mass
these can

amental
the Higgs
C. R. Physique 4 (2003) 363–370

Extra dimensions in physics and astrophysics/ Dimensions supplémentaires
en physique et astrophysique

The Higgs in large extra dimensions

Karim Benaklia,b,c, Mariano Quirósd

a Institut de physique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
b Theory Division, CERN, 1211 Geneva 23, Switzerland

c LPTHE, Universités de Paris VI et VII, UMR du CNRS 7589, France
d Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid, Spain

Presented by Guy Laval

Abstract

Transverse (submillimeter) and longitudinal (TeV) extra dimensions can help in dealing with the Higgs hierarchy p
On the one hand large transverse dimensions can lower the fundamental scale of quantum gravity from the Planck s
TeV range. On the other hand longitudinal dimensions can provide genuine extra-dimensional symmetries (higher dim
gauge symmetry and/or supersymmetry) to protect the Higgs mass against ultraviolet sensitivity. In this article we revie
developments along these directions.To cite this article: K. Benakli, M. Quirós, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Le Higgs avec de grandes dimensions supplementaires. Des dimensions supplémentaires transverses (submillimetriq
et longitudinales (TeV) peuvent aider à adresser « le problème de hiérarchie » pour la masse du Higgs. D’une part, d
dimensions transverses permettent d’avoir une échelle fondamentale de la gravité quantique aux énergies du TeV. D’
les dimensions longitudinales fournissent de nouvelles symétries (jauge/supersymétrie) qui protègent le potentiel
d’une sensibilité aux détails de la théorie ultraviolette. Dans cet article nous passons en revue quelques développeme
de ces idées.Pour citer cet article : K. Benakli, M. Quirós, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. The problem

Despite extraordinary achievements made in understanding the physics of elementary particles, many fundamenta
still remain unanswered. For instance, we do not have a fundamental understanding of the origin of the known partic
spectrum. In particular, no fundamental reasons are known for the observed hierarchy and values of masses although
be reproduced (fitted) in specific models. The renormalizability of the interactions of the Standard Model (SM) of fund
particles requires these masses to originate from the vacuum expectation value (VEV) of one or many scalar fields,
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reserved.
doi:10.1016/S1631-0705(03)00033-1
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fields. The fermion mass problem is then formulated as the problem of understanding the structure (texture) of Yukawa c
between the Higgs field and chiral fermions. On the other hand, theW andZ gauge boson masses originate as a result o
spontaneous breaking of the electroweak symmetry by the Higgs VEV. The latter is then required to bev ∼ 246 GeV in order
to reproduce the experimental values of theW andZ boson masses. In trying to reproduce this VEV one faces the problem
the scalar field potential is generically sensitive to the ultraviolet (UV) structure of the theory, i.e., to the physics bey
Standard Model that governs phenomena at energies higher than the UV cutoffΛ. In the minimal scenario which consists
the SM degrees of freedom the Higgs mass is quadratically divergent and is then predicted to be of orderΛ while on the other
hand it was expected to be of the order of its VEVv. Three different cases can then be given:

(i) The case where there is no new physics belowΛ, whose expected value is then of the order of the four dimensional P
scale (where gravitational interactions become important). A fine-tuning is needed in order to keep the Higgs mass
MW . That is the situation in the pure Standard Model.

(ii) The case where new physics belowΛ leads to cancellation (or absence) of the quadratic divergences. This is for in
what happens in the minimal supersymmetric extension of the standard model (MSSM), or in technicolor theories

(iii) The case of theories with a low UV cutoff in the TeV region. This is so in the presence of large extra dimensions [
we will discuss in this article.

It is important to stress that the theoretical computation of the Higgs mass, as we discuss it here, faces two separate
The first problem concerns the hierarchy existing between the electroweak symmetry breaking scale and the UV cut
For example in case (ii) the two scales can be decoupled by supersymmetry. In this case this problem can be reform
why is the scale of supersymmetry breaking so low as compared to the Planck scale? In case (iii) the previous hie
replaced by one between the UV cutoff and the Planck scale. The second problem is that quadratic divergences in
sensitivity to the unknown UV physics at the scaleΛ and then destroy the predictivity power of the theory for the Higgs se
In the absence of new symmetries, lowering the UV cutoff as in case (iii) does not solve the problem. This is in contr
the case of supersymmetric extensions, for example, where at most a small logarithmic sensitivity remains at one-loop
discuss these issues in some detail below.

2. New physics at the TeV scale

There have been many proposals for new physics at the TeV scale, mainly motivated by the gauge hierarchy prob
Large Hadron Collider (LHC) experiments will be able to confirm or dismiss any of these extensions. In this section
review how a particular kind of new physics, super-large transverse extra dimensions where non-SM fields propagate
in solving the hierarchy problem.

2.1. Extra dimensions

A possible way to achieve small radiative corrections is to lower the fundamental scale [7,8], for instance the stri
Ms down to energies of order TeV [6]. This can be achieved in the presence of very large extra dimensions. In fact,
dimensional Planck massMP is related to the string scaleMs through the relation:

M2
P = M2+D

s VD

g2
s

, (1)

wheregs is the string coupling constant andVD the volume of an internalD-dimensional space where the known (Stand
Model) light states do not propagate. It is then possible to reconcile the experimentally measured value ofMP with a low value
for Ms by either making the internal volumeVD big, or makinggs small [9–11] (or combining both). Here we will focus o
the case whereVD is responsible for the hierarchy betweenMs andMP .

2.2. Submillimeter size extra dimensions

Among the 4+ D internal dimensions, 4+ d‖ are felt by Standard Model interactions, i.e., they have excitations
propagate in these dimensions. The remainingd⊥ are only felt by gravitons and other experimentaly yet unknown interact
if any. Experimental bounds allow thed⊥ dimensions to be as large as the submillimeter, the only theoretical constraint
thatV‖V⊥MD

s ∼M2
P /M

2
s , whereV⊥ andV‖ denote the volumes spanned by thed⊥ andd‖ dimensions respectively.
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2.3. TeV−1 size extra dimensions

In contrast to thed⊥ directions, thed‖ are constrained by experimental data to be smaller than the electroweak l
Computing these bounds can be done in a precise scenario which involve a choice of the precise embedding of the
Model states, as:

(1) All the Standard Model particles feel all thed‖ dimensions of the ‘bulk’. In that case the KK modes of gauge bosons
only be pair produced and present experimental bounds are rather loose, typically 1/R � 500 GeV.

(2) Only the gauge bosons feel the extra dimensions, while all the fermions of the Standard Model are localized o
dimensional subspace, a ‘boundary’. In that case the KK modes can be single produced and present bounds fr
production and indirect precision measurements are stronger than in the previous case, 1/R � 4 TeV [12,13].

(3) Intermediate situations where part of the Standard Model states are localized on subspaces with one or m
dimensions less than the other states. In this case present bounds would be model dependent and align along
previous situations.

Moreover, for either of these cases, one needs also to specify the precise geometry of the extra dimensions.

3. Dealing with UV sensitivity

In the previous section we have seen how one could alleviate the hierarchy problem by lowering the SM cutoff in the
of large transverse extra dimensions. In this section we will summarize possible solutions to the problem of UV sensiti
respect to the cutoffΛ. Since the core of the hierarchy problem resides in the Higgs mass we will start this section with
general considerations concerning the Higgs field scalar potential.

3.1. The Higgs scalar potential parameters

Let us consider the case of a single scalar fieldφ with a potential of the form:

V (φ)= −1

2
µ2φ2 + 1

4
λφ4 + · · · . (2)

Forµ2> 0, this potential has a minimum at〈φ〉 ≡ v = µ/
√
λ and the Higgs mass at this point ism2

φ = 2µ2. The field theory
computation leads to quadratically divergent contributions to the scalar mass at one-loop

µ2|FT = µ2
0 + c(1)FTg

2Λ2 + c(2)FTg
4Λ2 + · · · (3)

and unless the details of the UV theory aboveΛ are known, it is not possible to make any quantitative prediction. In partic
we would like to stress that a string computation does not lead to a numerical identification ofMs with Λ but instead

µ2|ST = µ2
0 + c(1)ST g

2M2
s + c(2)ST g

4M2
s + · · · , (4)

and matching (3) and (4) toO(g2) leads toc(1)FTg
2Λ2 = c

(1)
ST g

2M2
s with the coefficientc(1)ST = c

(1)
FT containing a priori a

contribution from the model dependent spectrum of massive string modes [14]. It is then interesting to look for theorie
the leading scalar mass parameter is computable in the effective field theory.

Before addressing some specific examples of such theories, we would like to point out the necessity of a further su
of the Higgs parameters. From the relationv = µ/√λ one expects

µ

Ms
=

√
λv

Ms
∼

√
λ

4

T eV

Ms
(5)

which for a small quartic Higgs coupling implies a hierarchy between the Higgs potential mass parameter and the stri
For instance in many (string) models, the Higgs fields originate as spin zero components of a would-beN = 4 supersymmetry
multiplet, some of the other components being projected away by the compactification. In such cases, the tree lev
coupling is fixed to be the same as in the MSSM, i.e.,λ ∼ (g2 + g′2)/8 which leads to:µ ∼ 120 GeV� Ms . A possible
solution is to consider models with a low string scale where the tree-level term is absent and the Higgs mass paramete
one-loop with a small coefficient [14] or at higher loops [15].
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3.2. Higher dimensional gauge symmetry

In order to avoid the scalar mass parameters to be dependent on the details of the fundamental theory, they mus
the ultraviolet limit. In theories with extra dimensions, this is ensured by implementing the higher dimensional theory
symmetry that forbids the Higgs mass [17–27]. Upon compactification, the symmetry is spontaneously broken, so tha
mass term is allowed in the IR theory. Then the knowledge of the IR degrees of freedom (including the KK modes) is s
in order to evaluate the resulting Higgs mass.

The simplest example [16] is provided by a class of models where a non-vanishing VEV for a scalar (Higgs) fieldφ results
in shifting the mass of each KK excitation by a constanta(φ):

M2
�m =

d∑
i=1

[
mi + ai(φ)

Ri

]2
, (6)

where �m= {m1, . . . ,md } withmi integers. Such mass shifts arise for instance in the presence of Wilson lines,ai = q ∮ dyi
2π gAi ,

whereAi is the internal component of a gauge field with gauge couplingg andq is the charge of the given state under t
corresponding generator. The effective one-loop potential is given by:

Veff(φ)= 1

2

∑
I

(−)FI
∫

d4p

(2π)4
log

[
p2 +M2

I (φ)
] = − 1

32π2

∑
I

(−)FI
∞∫

0

dl l e−M2
I (φ)/ l, (7)

where the sum is over all statesI with massesMI(φ). A straightforward computation shows that theφ-dependent part of th
one-loop effective potential is given by [16]:

Veff = −Tr(−)F
∏d
i=1 Ri

32π(4−d)/2
∑
�n

e2π i
∑
i niai

∞∫
0

dl l(2+d)/2fs(l)e−π2l
∑
i n

2
i R

2
i , (8)

whereF = 0,1 for bosons and fermions respectively andfs(l) contains the effects of string massive modes. For instanc
the case of type I models considered in [14]:

fs(l)=
[

1

4l

θ2

η3

(
il + 1

2

)]4
→ 1 for l→ 0. (9)

In the case ofRi > 1 (in string units), only thel→ 0 region contributes to the integral, we can approximatefs(l)∼ 1, dropping
the sensitivity to details of the UV theory, and remain with a finite field theory result given by:

Veff(φ)= −Tr(−)F )((4+ d)/2)
32π(12+d)/2

d∏
i=1

Ri

∑
�n=�0

e2π i
∑
i niai (φ)

[∑i n
2
i R

2
i ](4+d)/2 . (10)

We can easily extract the one-loop mass term fora through a Taylor expansion, it is finite and given by a loop factor tim
the compactification energy scale. This result was expected because at scales above 1/R the gauge symmetry is restaured a
protectsA5 from getting a mass.

Note that if we consider insteadRi → 0, which byT -duality corresponds to taking the extra dimensions as transvers
very large, the one-loop effective potential receives contributions from the whole tower of string oscillators as appe
fs(l) leading to squared UV-sensitive masses given by a loop factor timesM2

s .
Wilson lines are associated with flat directions and do not have tree-level quartic terms. They lead to unrealistic sm

massesmH � 50 GeV. In order to construct a realistic model based on this scenario we consider an orbifold theory.
below the most relevant points in model building:

(1) The Higgs field should be identified with the internal component of a gauge field extending the Standard Model i
dimensions. The minimal extension is U(3)× U(3) [16]. An orbifold projection can be used in order to break down
group to the Standard Model one.

(2) The presence of a tree-level quartic interaction term requires thatd‖ > 1 which implies the presence of extra Higgs field
(3) The spectrum of the Standard Model fields splits in two sets: those living in the 4+ d‖ bulk and those localized on th

boundaries. The latter, if any, have to come in supersymmetric multiplets.
(4) Reproducing the realistic Yukawa texture remains the biggest challenge for this construction. A possibility is to add

couplings by means of Wilson lines localized at the boundaries of the orbifold and giving mass to either the bul
localized fermions.
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The last condition, to reproduce the Yukawa texture without spoiling the UV insensitivity properties of the Higgs m
the most challenging one. A model based onT 2/Z4 and unifying the electroweak gauge group inG2 was presented in [27].

3.3. Higher dimensional supersymmetry

The simplest solution to deal with sensitivity with respect to the cutoffΛ is by using supersymmetry in the 4+ d‖
higher dimensional space. Since most of supersymmetric models have been constructed in five dimensions, where
dimensions are located, we will describe here supersymmetry in this case. In five dimensions the matter supers
multiplets are vector and hypermultiplets. A vector multiplet isV = (VM,λ

i,Σ) whereVM , M = µ,5 is a five-dimensiona
vector boson,λi are two Majorana spinors transforming as a doublet of SU(2)R (the symmetry of the two supersymmetr
charges) andΣ is a real scalar. A gauge multipletV should be in the adjoint representation of the gauge group. The other
of multiplets are hypermultipletsH = (Ψ,φi) whereΨ is a Dirac fermion andφi complex scalars transforming as doubl
under SU(2)R .

Five-dimensionalN = 1 supersymmetry has, as we already indicatedN = 2 supersymmetric charges corresponding to
degrees of freedom of a Dirac spinor. We have to break fromN = 2 toN = 0 supersymmetry to get the Standard Model degr
of freedom. The normal way of breakingN = 2 toN = 1 is by compactification on an orbifold. The simplest way of doin
is by defining aZ2 parity and compactifying the extra dimension on the orbifoldS1/Z2. All fields are then assigned defini
transformation rules under theZ2-parity. If the bulk gauge group is to remain unbroken by the orbifold action there is a u
way to do this process consistent with the symmetries of the five-dimensional Lagrangian, in particular with the residuN = 1
supersymmetry. For theN = 2 gauge multiplet, theN = 1 gauge multiplet(Aµ,λ1) is even and theN = 1 chiral multiplet
(Σ + iA5, λ

2) is odd. For the hypermultiplets, one of theN = 1 chiral multiplets(ΦL,φ
1) is even and the other one(ΦR,φ

2)

is odd.
The residualN = 1 supersymmetry can be broken by compactification, the so-called Scherk–Schwarz mechanism

It consists in imposing to the five-dimensional fields a non-trivial periodic condition under a 2πR translation (R is the radius of
the circleS1) that is represented by an operator of a global (or local) symmetry of the five-dimensional theory with geneT
as

Φ(xµ,y + 2πR)= e2π iωT Φ
(
xµ,y

)
. (11)

Eq. (11) can be easily solved by means of

Φ(xµ,y)= eiωTy/RΦ̃
(
xµ,y

)
, (12)

whereΦ̃(xµ) are periodic functions, Fourier expandable, and Eq. (12) implies a non-trivialy-dependence for then= 0 mode
that leads to a mass term in the four-dimensional theory.

The Scherk–Schwarz mechanism is a very natural way of breaking supersymmetry by compactification. This brea
very interesting properties: it is flavor blind and it thus solves in a natural way the flavour problem, it is a global br
of supersymmetry and thus it provides a finite Higgs mass and finally it provides a genuine extra-dimensional solutio
µ-problem of the MSSM [32–39].

3.3.1. The MSSM like models
These models are based on compactification of the extra dimension onS1/Z2 as we have seen above [32–38]. The ga

sector is propagating in the bulk of the extra dimension and the Scherk–Schwarz breaking of supersymmetry is bas
global SU(2)R symmetry. In particular Eq. (12) for gauginos is,

λ= exp

{
iωσ2y

R

}
λ̃. (13)

Then-KK mass eigenstate modes are given by two Majorana fermionsλ
1(n)
L

±λ2(n)
L

with masses|n±ω|/R. For the zero mode
the supersymmetry breaking Majorana mass is given by

M1/2 = ω

R
. (14)

The Higgs sector can be, either localized on the boundary or in the bulk. In the former case, MSSM-like, theµ-problem has
to be solved using one of the usual solutions (extra singlet, Higgs term in the Kahler potential, . . .) in the literature. However i
the Higgs sector propagates in the bulk theµ-problem can be solved by compactification. Let us consider two hypermulti
corresponding to the two Higgses of the MSSM,Ha wherea = 1,2 transforms as a doublet under a global symmetry of
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Lagrangian SU(2)H . We can use as global symmetry for the Scherk–Schwarz mechanism in the Higgs sector the d
subgroup of SU(2)R × SU(2)H . The compactification for the Higgs sector can now be written as

H = exp

{
iωσ2y

R

}
H̃exp

{−iωσ2y

R

}
, ΨH = exp

{
iωσ2y

R

}
Ψ̃H , (15)

whereH =Hia andΨH = Ψ aH . The KK mass eigenstates are two Dirac fermionsΨ
1(n)
H ± Ψ

2(n)
H with masses|n± ω|/R and

four scalarsh(±n) andH(±n) with masses|n|/R and |n ± 2ω|/R, respectively. We can see that the Higgsinos get a m
providing an extra-dimensional solution to theµ-problem while there remains a massless SM-like Higgs doublet. The fac
Higgsinos are not degenerated with the Higgs scalars is due to the interplay between the Scherk–Schwarz along SU(2)H (that
provides the supersymmetric mass) and the Scherk–Schwarz with respect to SU(2)R (that breaks supersymmetry) as realiz
by the diagonal subgroup of SU(2)R × SU(2)H .

As for the matter fields they can either be localized on the boundary or propagating in the bulk of the extra dimension
multiplets localized on the boundary do not feel Scherk–Schwarz sumersymmetry breaking and the corresponding ferm
sfermions are degenerate and massless at the tree level. However they interact at one-loop with the gauge sector an
feel supersymmetry breaking. In particular we find that boundary scalars (e.g., squarks) get a mass from the gauge se
by [33,34]

5m2
i = g2C(Ri)

8π4R2

[
2ζ(3)−Li3

(
e2π iω) −Li3

(
e−2π iω)]

. (16)

However it has been recognized that in models with extra dimensions electroweak breaking is triggered at one-loop
quark is propagating in the bulk. It that case one gets the additional bonus that it yields a finite mass term. This can be u
since, even if the five-dimensional theory is non-renormalizable the quadratic divergence is cancelled by supersymme
subtracting the five-dimensional part it remains a finite piece that is cutoff by 1/R, as it happens in field theory at fini
temperature for thermal masses. This contribution is similar to the one a localized scalar receives in (16). Including
Yukawaht and gauge weakg coupling it is given by [33,34]

5m2
h = 6h2

t − 3g2

32π4R2

[
2ζ(3)−Li3

(
e2π iω) −Li3

(
e−2π iω)]

. (17)

Scalar fields in hypermultiplets are SU(2)R doublets and they are given boundary conditions as for the gauginos in
Consequently the mass spectrum isn-KK mass eigenstates with masses|n± ω|/R and supersymmetry breaking mass for
zero mode given by

M0 = ω

R
. (18)

The typical spectrum for this kind of models consists in heavy gauginos and scalars belonging to hypermultiplets pro
in the bulk, Eqs. (14) and (18) and not so heavy scalars belonging to chiral multiplets localized on the boundary, Eq. (
detailed predictions for the Higgs mass spectrum are of course model dependent but can always be described from
of view of the MSSM parameter space. In particular for the models described in [40] with the Higgs doublets localized
boundary and the top-quark propagating in the bulk the typical predictions are large tanβ, more precisely tanβ ∼mt/mb , and
light pseudoscalarmA. The rest of the Higgs mass spectrum is deduced from these values. The compactification radius
by imposing correct electroweak breaking is somewhat model dependent but typically 1/R ∼ few TeV.

3.3.2. The single Higgs models
There is also the possibility of constructing models where the Higgs sector is SM-like, i.e., only containing a

hypermultiplet propagating in the bulk [39]. In this case, using SU(2)R as the global symmetry for the Scherk–Schwarz break
it is not possible to end up with a massless state as can be deduced from (15). In the previous section the way out was to
a second Higgs hypermultiplet and a global symmetry SU(2)H rotating both hypermultiplets. The identification of the Sche
Schwarz parameters for both SU(2)R and SU(2)H left a massless SM-like Higgs doublet. A different possibility was depic
in [39] where the Scherk–Schwarz breaking of supersymmetry was not performed using the global SU(2)R but the discreteRp
(R-parity). In particular starting from the orbifoldS1/Z2 with radiusR′ one imposes the boundary conditions

φ(y + 2πR′)= Rpφ(y). (19)

SinceRp = +1 for all SM-particles andRp = −1 for all supersymmetric partners, Eq. (19) translates inton-KK modes for

superpartners mass eigenstates given by|n ± 1
2 |/R′ while the SM-states have masses|n|/R′. In this way the Higgs scala

remains massless at the tree level. In this model the supersymmetry breaking masses are those in (14) and (18) withω= 1/2.
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This model is dubbedS1/Z2 × Z
′
2 orbifold because it can be formulated as anS1/Z2 orbifold with radiusR = 2R′ and

imposing the further parityZ′
2 which corresponds to inversion with respect toy = πR/2 andRp = Z2 × Z

′
2. The alternative

interpretation (equivalent to the Scherk–Schwarz breaking) of supersymmetry breaking in this model is by considering
N = 1 supersymmetriesS andS′ contained inN = 2. The projectionZ2 preserves one of them,S, while the projectionZ′

2
preserves the other of them,S′. The combined projection then breaksN = 2 toN = 0. At the fixed points ofZ2, y = 0,πR
one can write a superpotential corresponding to theS supersymmetry while at the fixed points ofZ

′
2, y = ±πR/2 one can write

the superpotential corresponding to the other supersymmetryS′. These interactions contain Yukawa couplings that can trig
electroweak breaking as in Eq. (17) with a finite Higgs mass. The predictions of this model are those corresponding to
all matter particles propagating in the bulk and with Scherk–Schwarz breaking parameterω= 1/2. The compactification radiu
fixed by imposing correct electroweak minimum is fixed to rather low values 1/R ∼ 2mt while the Higgs mass stemming fro
the quartic coupling turns out to beMh ∼ 127 GeV.

However this model presents a quadratic sensitivity to the UV cutoff due to the fact that there is only a single
hypermultiplet [41]. It turns out that the auxiliary field of theU(1) hypercharge multiplet,DY receives a quadratic divergen
due to the tadpole generated by the Higgs scalars localized on the boundary as

ξ√
2

(
δ(y)+ δ(y − πR))DY , ξ � g′Λ2

32π2
, (20)

whereξ is the FI term, that triggers a quadratically divergent contribution to the Higgs mass as [42]

5m2
h = g′

2
ξ. (21)

In this model the Yukawa couplings become strong for scalesΛ ∼ 5/R. For such low values of the cutoff the previo
quadratic divergences are not numerically relevant although they present a conceptual problem for models with a sin
hyperscalar. Of course models with two Higgs hyperscalars are free from FI divergences.

4. Conclusion

The Standard Model is an effective theory with a cutoff at a scaleΛ that is usually supposed to be at the four dimensio
Planck (quantum gravity) scale. The Higgs mass is sensitive to the cutoff through quadratic divergences that desta
electroweak vacuum: this is the hierarchy problem.

If the underlying theory beyond the cutoff is a string theory (the only known consistent theory of quantum gravity
exists the possibility that the string (quantum gravity) scaleMs be in the TeV region, thus alleviating the hierarchy proble
if there are large (at most in the submillimeter range) transverse dimensions where gravity propagates. In this case
unambiguous experimental signatures at present (Tevatron) and future (LHC) colliders corresponding to missing en
inclusive production of extra-dimensional gravitons.

On the other hand if there are longitudinal (TeV) extra dimensions where the Standard Model matter propagates, the
extra dimensional symmetries (gauge symmetry or supersymmetry) that protect the Higgs mass against quadratic dive
this case there are also unambiguous experimental signatures of longitudinal dimensions corresponding to the direct p
of Kaluza–Klein modes of Standard Model gauge bosons.

In this paper we have reviewed the actual situation concerning the different higher dimensional symmetries that ca
the Higgs mass from quadratic divergences at least at the one-loop level. Unlike in four dimensions, where the only s
that can prevent quadratic divergences in a weakly coupled theory is supersymmetry, we have seen that there are oth
extra-dimensional solutions. A particularly interesting solution is the case of a higher-dimensional gauge invariance.

Of course a parallel discussion can be followed if the cutoffΛ is no more due to the presence of a fundamental theory
instead of an unknown strongly coupled system. Symmetries protecting the Higgs mass from quadratic divergences sh
be invoked (for instance if the Higgs originates as a pseudo-Goldstone boson in what is called little Higgs models [43])
to keep the UV sensitivity of the Higgs mass small.
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