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Abstract

We find a general class of pp-wave solutions of type IIB string theory such that the light cone gauge worldsheet Lagr
that of an interacting massive field theory. When the light cone Lagrangian has(2,2) supersymmetry we can find backgroun
that lead to arbitrary superpotentials on the worldsheet. We consider situations with both flat and curved transvers
We describe in some detail the background giving rise to theN = 2 sine Gordon theory on the worldsheet. Massive mi
symmetry relates it to the deformedCP1 model (or sausage model) which seems to elude a purely supergravity target
interpretation.To cite this article: J. Maldacena, L. Maoz, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Cordes sur ondes pp et les théories de champs massives à deux dimensions.On trouve une classe générale de soluti
ondes pp de la théorie de cordes de type IIB telles que le Lagrangien de la feuille d’univers dans la jauge du cone de lu
celui d’une théorie d’intéraction de champs massifs. Quand ce Lagrangien a une supersymétrie(2,2) on peut trouver des cas o
le superpotentiel sur la feuille d’univers est quelconque. Nous décrivons en détail les cas donnat lieu à une théorie Sin
N = 2 sur la feuille d’univers. La symétrie miroir massive le relie au modèleCP1 déformé (ou modèle saucisse) qui sem
éluder une interprétation de l’espace cible sous forme de supergravité pure.Pour citer cet article : J. Maldacena, L. Maoz, C. R.
Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Ramond-Ramond backgrounds are a very important piece of string theory and they play a prominent role in th
theory/gauge theory correspondence. Backgrounds of the plane wave type are particularly interesting since they ar
known exactly solvable backgrounds [1]. These backgrounds are very useful for studying the relation between largeN gauge
theory and string theory [2]. The existence of a covariantly constant null Killing vector greatly simplifies the quant
of a string in light cone gauge. In this paper we study backgrounds of the pp-wave type which lead tointeracting theories
in light cone gauge. For this purpose we consider type IIB string theory with a five-form field strength which has th

* Corresponding author.
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1631-0705/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-0705(03)00036-7
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F5 = dx+ ∧ ϕ4. If ϕ4 is a constant form in the transverse space it leads to masses for the Green–Schwarz light cone f
By taking non-constant four formsϕ4 we find that the light cone action becomes an interacting theory with a rather ge
potential. The mass scale in the light cone theory is set byp−. Boosts in thex+, x− directions corresponds to an RG flo
transformation on the worldsheet. Low values of|p−| correspond to the UV of the worldsheet theory while large values of|p−|
explore the IR of the worldsheet theory. We study solutions that preserve some supersymmetries. We find that we ca
N = (2,2) theory on the worldsheet with an arbitrary superpotential. Similarly we can getN = (1,1) theories as long as th
real superpotential is a harmonic function. We discuss solutions where the transverse space is curved or flat. One
result is that we can find backgrounds that lead to integrable models on the worldsheet in light cone gauge. Using r
integrable models we can compute some non-trivial features of the string spectrum. We can consider for example Toda
We discuss explicitly the case where we get theN = 2 sine Gordon model on the worldsheet. Soliton solutions of the ma
theory correspond to strings that interpolate between different ‘potential wells’ in the target space. Now that we have
interacting theories on the worldsheet we see that various dualities of these theories are worldsheet dualities whic
interesting dualities in the target space. TheN = 2 sine Gordon theory is dual to the supersymmetricCP1 theory [3–7], via a
mirror symmetry transformation. The size of theCP1 depends on the energy scale of the worldsheet theory. The size
worldsheet circle is proportional top−. Thus, we find that strings with very smallp− feel they are on a big space while strin
with largep− feel they are on a smaller space.

In Section 2 we discuss the gravity backgrounds that lead to supersymmetric interacting theories on the world
Section 3 we describe the actions we get on the worldsheet from the gravity backgrounds discussed in Section 2. In
we discuss in more detail some particular backgrounds. First we discuss the background leading to theN = 2 sine Gordon mode
on the worldsheet and the associated duality to theCP1 model. We then discuss what happens if we have anAN singularity
transverse to a pp-wave and we resolve it.

2. Supersymmetric supergravity solutions of pp wave type

We consider type IIB supergravity solutions with a nonzero 5-form field strength. They have a covariantly const
Killing vector, ∂/∂x−, which also leavesF5 invariant and it is such that it gives zero when contracted withF5.

More explicitly, the form of the solutions we consider is

ds2 = −2dx+ dx− +H
(
xi

)(
dx+)2 + ds28,

F5 = dx+ ∧ ϕ4
(
xi

)
,

(1)

wherexi are the 8 transverse coordinates,F5 is the self-dual RR field strength. We limit ourselves to solutions which are
independent ofx+. We consider constant dilaton and set all other fields to zero. The transverse metric can be curved. N
the background is such that we can scale downH andϕ by performing a boost in thex± directions.1 This property under boos
transformations implies that we can assign an ‘order’ to each field according to how they change under boosts. The
ϕ is of first order whileH is of second order. This means that the transverse space with zero RR five-form should be a
of the equations of motion by itself, since it is of zeroth order.

In order to clarify a bit the discussion we will first consider the simpler case when the transverse space is flat and
slightly more complicated case of a curved transverse space.

2.1. Flat transverse space

The equations of motion of type IIB supergravity imply that (1) obeys

∇2H = −32|ϕ|2, ∗10F5 = F5, (2)

where |ϕ|2 = 1
4!ϕµνρδϕµνρδ , and∇2 is the Laplacian in the transverse 8-dimensional space. In our conventions,2 the self-

duality ofF5 implies thatϕ is anti-self-dual in the 8-dimensional space, so that∗ϕ = −ϕ and dϕ = 0.3

In addition we will now require the solution to preserve some supersymmetries. Supersymmetries in type IIB supe
are generated by a chiral spinorε with 16 complex components. We find it convenient to separate it into two compo
according to their SO(8) chiralities

ε= −1

2
Γ+Γ−ε− 1

2
Γ−Γ+ε≡ ε+ + ε−. (3)

1 Thus, the background is not boost invariant in thex± directions.
2 Our conventions and notations are summarized in Appendix A.
3 A ∗ with no subindex will always refer to the 8-dimensional space.
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ε+ has positive SO(1,1) and SO(8) chiralities, and is annihilated byΓ+. We will find, roughly speaking (i.e., to lowest ord
in ϕ4), thatε+ is related to the supersymmetries that are preserved by a configuration with nonzerop− and are linearly realized
on the light cone action. These anti-commute to the lightcone Hamiltonian, plus possibly some rotations. On the ot
the supersymmetries generated byε− are non-linearly realized on the worldsheet and imply that some particular fermion
free on the worldsheet. For reasons that will become clear later we are especially interested in supersymmetries that a
realized on the worldsheet so we are interested in spinors such that onlyε+ is nonzero to first order.

Setting to zero the supersymmetry variations we obtain the following equation

0 =DMε=
(

∇M + i

2
/FΓM

)
ε, (4)

which leads to

∂−ε+ = ∂µε+ = ∂+ε+ = 0,

∂−ε− = 0, ∂µε− = i

2
Γ−/ϕΓµε+, (i∂+ − /ϕ)ε− = i

4
Γ−/∂Hε+,

(5)

where/ϕ ≡ 1
4!Γ µνρδϕµνρδ . These equations imply thatε+ must be a constant spinor and they determine the first and h

order parts ofε− in terms ofε+. These solutions with nonzero zeroth orderε+ determine the linearly realized supersymmetr
of the light cone action. In addition to these we might have solutions of (5) withε+ = 0. We obviously have 16 solutions o
this type ifϕ is a constant form, but whenϕ is not constant we will generically have no solutions of this type (below we
make a precise statement). Note that only solutions of this second type can bex+ dependent. Note also that ifε = ε+ + ε− is a
solution, then so iŝε = ε∗+ − ε∗−(−x+).

When we attempt to solve the equation forε− in terms ofε+ we find some integrability conditions. First, integrability of t
∂µε− equations places a constraint on the allowed 4-forms. Then the(i∂+ − /ϕ)ε− equation gives further consistency conditio
on ε− and determinesH in terms ofϕ4. In Appendix B we show these computations in detail. Below we will just state
form of the most general solutions with(2,2) and(1,1) supersymmetry. We did not explore the subset of(2,2) solutions which
actually have moreε+-type supersymmetries.

It is convenient to choose complex coordinates for the transverse space,z1, . . . , z4. The anti-self-dual 4-formsϕµνρδ written
in complex coordinates can be split into 2 kinds – those having two holomorphic and two anti holomorphic indice
(2,2) forms (of which there are 15) and those having one holomorphic and three antiholomorphic indices and their
conjugates – the(1,3) and(3,1) forms (of which there are 10+ 10). We denote the(1,3) forms by the shorter notation

ϕmn ≡ 1

3!ϕmijkε
ijkngnn̄. (6)

Anti-self duality ofϕ implies thatϕmn is symmetric.
It can be shown that one can write the anti-selfdual(2,2) forms in terms ofϕij̄ defined as

2ϕlm̄ = gss̄ϕlm̄ss̄ , (7)

where the reality and self duality condition imply thatϕlm̄ is a Hermitian and traceless matrix (which could, in principle, b
function of the coordinates). We also define the lowest weight spinor state|0〉 which is annihilated byΓ+ andΓ i wherei runs
over the four holomorphic indices. We begin by describing the solutions with anε+ which at zeroth order is proportional to|0〉
and its complex conjugate. We later describe solutions withε+ = 0.

2.1.1. Case 1.(2,2) supersymmetry or more
The solution is parameterized by a holomorphic functionW . In this case theϕlm̄ are constants and given in terms o

traceless Hermitian 4× 4 matrix.W andϕlm̄ should also obey

∂n
[
ϕj
kzj ∂kW

] = 0, (8)

where we raised the index ofϕjk̄ using the flat transverse space metric. The metric and the 4-form are given by

ds2 = −2dx+ dx− − 32
(|∂kW |2 + |ϕjk̄zj |2

)(
dx+)2 + dzi dzi,

ϕmn = ∂m∂nW, ϕm̄n̄ = ∂m̄∂n̄W, ϕlm̄ = constants.
(9)

The expressions for the Killing spinors can be found in Appendix B.
One can, of course, look at the simpler cases where eitherW = 0 or ϕlm̄ = 0. It is interesting to note that ifϕlm̄ is nonzero

the superalgebra has a central charge term proportional to the U(1) symmetry generated by the holomorphic Killing vec
zlϕlm̄∂/∂z

m and its complex conjugate.
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2.1.2. Case 2.(1,1) supersymmetry
These solutions are parameterized by a real harmonic functionU . However this time there are only 2 Killing spinors. T

solution is

ds2 = −2dx+ dx− − 32
(|∂kU |2)(

dx+)2 + dzi dzi

ϕmn = ∂m∂nU, ϕm̄n̄ = ∂m̄∂n̄U, ϕlm̄ = ∂l∂m̄U.
(10)

The expressions for the Killing spinors can be found in Appendix B.

2.2. The homogenous solution forε−

The homogenous equations forεhom− are

∂−εhom− = ∂j ε
hom− = ∂j ε

hom− = (i∂+ − /ϕ)εhom− = 0 (11)

and are solved by

εhom−
(
x+) = e−i/ϕx+

η0, (12)

whereη0 is a constant spinor. (11) implies that/ϕ andη0 should be such that after multiplying(/ϕ)nη0 (for n = 1,2, . . .) we
still have spinors that are constant in the transverse space and independent ofx+. So we get the spinorsη0, /ϕη0, . . . , (/ϕ)

n−1η0
which are linearly independent andn� 16. These solutions of (11) are associated to free fermions on the string worldsh
light cone gauge. In fact the last equality in (11) is the equation of motion for a zero momentum mode on the string wo
If we diagonalize the matrix/ϕ in the subspace of solutions we see clearly that each pair of solutions gives rise to a free f
on the worldsheet.4 The fermion is free but it can be massless or massive depending on the eigenvalue of the matrix/ϕ on it.
The sixteen supersymmetries ofε− type that arise in the usual quadratic plane waves discussed in [8] arise because all fe
are free. In a general interacting case all fermions will be interacting and there will be no supersymmetries of this ty
addition, we have worldsheet supersymmetry in lightcone gauge, as in the cases we are analyzing, each free fermion
boson partner and these two together decouple from the rest of the worldsheet theory. So the structure is clear, we ha
free bosons and fermions as there areε− supersymmetries. In theN = (2,2) case these supersymmetries come in group
four, one per complex field that appears at most quadratically in the superpotential.

2.3. Curved transverse space

When the transverse space is curved, the ansatz (1) is a solution of IIB supergravity iff it satisfies the equations of

∇2H = −32|ϕ|2, ∗8ϕ = −ϕ, dϕ = 0,

Rµν = 0,
(13)

where∇2 is the Laplacian in the transverse curved space, andRµν is the Ricci tensor of the transverse space.5

The supersymmetry equations for the curved case are

∂−ε+ = ∇µε+ = ∂+ε+ = 0,

∂−ε− = 0, ∇µε− = i

2
Γu/ϕΓµε+, (i∂+ − /ϕ)ε− = i

4
Γu/∂Hε+.

(14)

These are exactly the same equations as in the flat case (5), with the transverse derivatives replaced by covariant d
We will now state what the general solutions are and we refer the interested reader to Appendix B for the derivation.
point to note is that to zeroth order the supersymmetry equations for the transverse manifold imply that the transvers
a special holonomy space. If we demand(2,2) supersymmetries on the worldsheet it can only be a Calabi–Yau space (G2 and
Spin(7) could also be studied but we do not do that here). For this reason it is still convenient to choose complex coo
and we denote by|0〉 the covariantly constant spinor on the Calabi–Yau manifold that is annihilated byΓ+ andΓ µ where
µ runs over the four holomorphic indices. We will also use the short notation (6) for the(1,3) forms. We first focus on the
supersymmetries that are linearly realized on the worldsheet in lightcone gauge and later we explain what happens
homogeneous solutions forε−.

4 The solutions come in pairs. If the eigenvalue of the matrix/ϕ is nonzero this follows by considering the complex conjugate equatio
the eigenvalue is zero then we can multiply the solution by any complex number so that we have two real solutions.

5 We use(+,−) and greek letters to denote curved indices, and(v,u) and roman letters to denote flat indices. All notations and conven
we use for curved space are summarized in Appendix A.
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2.3.1. Case 1.(2,2) supersymmetry or more
In this Case the solution is parameterized by a holomorphic functionW , and a real Killing potentialU from which we can

define the Killing vectorsVµ = i∂µU , Vµ̄ = −i∂µ̄U . The Killing vector should be holomorphic (i.e.,V µ is holomorphic and
V µ̄ is antiholomorphic). The following conditions should also hold

∇µV µ = 0, (15)

∂ν
[
V τ∇τW

] = 0. (16)

The supergravity solution is

ds2 = −2dx− dx+ − 32
(|dW |2 + |V |2)(

dx+)2 + 2gµν̄ dzµ dz̄ν̄ ,

ϕµν = ∇µ∇νW, ϕµ̄ν̄ = ∇µ̄∇ν̄ �W, (17)

ϕµ̄ν = ∇µ̄∇νU,
where|dW |2 ≡ gµν̄∇µW∇νW , and|V |2 ≡ gµν̄V

µV ν̄ . The expressions for the Killing spinors can be found in Appendix
Here too, one can look at the simpler cases where eitherW = 0 orVµ = 0. Note that if the transverse space is compact th

is no non-constant holomorphic function. In order to have interesting solutions we need the transverse space to be non

2.3.2. Case 2.(1,1) supersymmetry
The(1,1) supersymmetry solutions are parameterized by a real harmonic functionU . The metric, 4-form and the 2 Killing

spinors are given by

ds2 = −2dx− dx+ − 32
(|∇U |)2

(dx+)2 + gµν̄z
µzν,

ϕµν = ∇µ∇νU, ϕµ̄ν̄ = ∇µ̄∇ν̄U, ϕµν̄ = ∇µ∇ν̄U.
(18)

Note that the(2,2) part of the 4-form (whose components areϕλσ̄µν̄ ) is therefore

ϕ = (∇µ∇ν̄U dzµ dzν)∧ J, (19)

whereJ is the Kähler form, which obeys dJ = 0 (so thatϕµν̄ = 1
2g
λσ̄ ϕλσ̄µν̄ = ∇µ∇ν̄U ).

2.4. The homogenous solution forε−

The homogenous equations forεhom− in a curved background are

∂−εhom− = ∇j εhom− = ∇j εhom− = (i∂+ − /ϕ)εhom− = 0. (20)

There is a solution

εhom−
(
x+) = e−i/ϕx+

η0 (21)

with η0 a covariantly constant spinor and all of(/ϕ)nη0 (n= 1,2, . . .) covariantly constant.
The discussion follows exactly the one we had for the flat case, where we argued that each pair of solutions for (

rise to a free (massive or massless) fermion on the string worldsheet in light cone gauge. Due to supersymmetry e
fermion has a free boson partner, and they both decouple from the rest of the worldsheet theory.

3. The worldsheet actions

In the last section we have listed all the supersymmetric solutions of the pp-wave form. In this section we write th
describing a string propagating in these backgrounds. We choose light cone gauge by settingx+ = τ , whereτ is worldsheet
time. Though the standard procedure we then find thatp− is conserved, etc.6 In light cone gauge, only Killing spinors whic
are not annihilated byΓ + survive as linearly realized supersymmetries on the worldsheet. These are theε+ part of the Killing

6 Our notation with a lower index forp± seems to be contrary to standard practice in the literature. While in Minkowski space it do
matter where we put the index, it actually does matter where we put it wheng++ is nonzero. (Some papers have chosen the unreaso
convention of raising the indices using the flat Minkowski metric...). In our conventions for the metric (whereg−+ = −1) we find thatp− � 0
for particles propagating to the future.
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spinor. Since we focused on solutions that preserved some supersymmetries of this type, we will have a supersymme
on the worldsheet. Thanks to these supersymmetries we do not need to work too much to find the action, since it
dictated by supersymmetry.

3.1. (2,2)

Supersymmetric solutions.We know that if all RR fields are set to zero, the action reduces to the usual(2,2) non-linear sigma
model which can be written in terms of the Kähler potential. By turning on(1,3) and (3,1) forms we can add anarbitrary
superpotential so that the action in superfield form becomes

S = 1

4πα′
∫

dτ

2πα′|p−|∫
0

dσ(LK +LW), LK +LW =
∫

d4θK
(
Φi, Φ̄i

) + 1

2

(∫
d2θW

(
Φi

) + c.c.
)
, (22)

whereΦi = Zi+√
2θLψiL+√

2θRψiR+2θLθRF i +· · · . From this we can find the component action by integrating outθ [9].
Note that (22) contains Yukawa interactions given in terms of/ϕ, a bosonic potential proportional toH (1), as well as four
fermion couplings which follow from supersymmetry. If the transverse space is flat, there are no four fermion couplin
the action could also be read from [1]. The fermions appearing in (22) are related to the Green–Schwarz fermions a
The G–S fermions are SO(8) spinors with negative chirality (in our conventions). Once we choose complex coordinat
have an SU(4) subgroup of SO(8) which preserves the complex structure. Under this subgroup 8− → 4 + 4̄, these are the
spinors with vector index. More explicitly, let us denote byη0 a covariantly constant spinor annihilated by allΓī . We then write

a general negative chirality SO(8) spinor asS =ψiΓiη0 +ψīΓīη
∗
0. This defines the worldsheet spinorsψi, ψī .

It can be checked that the(3,1) and(1,3) forms induce couplings of the typeψiLψ
j
R as implied by the action (22). It can als

be seen that the(2,2) forms induce couplings of the typeψi
L
ψ
j̄
R

. These couplings are not present in (22). Nevertheless, it
shown in [10–12], and reviewed in [6], that if the target space has a holomorphic isometry, i.e., a holomorphic Killing
field V i (∇iVj̄ + ∇j̄ Vi = 0), then this isometry can be gauged to give a vector multiplet (consisting of a complex scal
conjugate dirac fermions and a vector field). Then by taking the weak coupling limit and then freezing the vector and f
at zero and the scalar at a constant value, one can obtain a(2,2) supersymmetric Lagrangian. The extra terms in the Lagran
that arise in this way are

LV = −gij̄ |m|2V iV j − i

2

(
giī∂jV

i − gjj̄ ∂īV
j
)(
mψi

R
ψ
j
L

+ m̄ψi
L
ψ
j
R

)
. (23)

Note that in our case, we cannot obtain any such holomorphic Killing vector – we have the extra requirement (comi
the self-duality ofF5) that ∇µV µ = 0. It might be possible that including more background fields, such a three form
fieldstrength, we get a more general Lagrangian.

In the simple case where the transverse space is flat, we have a holomorphic Killing vectorVj̄ = icij̄ z
i , for a Hermitian

constant matrixcij̄ , and∇µV µ = 0 translates into the tracelessness ofcij̄ .
The combined action coming fromLK + LW + LV is supersymmetric iffV µ∇µW is constant [11]. This matches nice

with the condition (16).

3.2. (1,1)

Supersymmetric solutions.A general(1,1) supersymmetric sigma-model is of the form

S = 1

4πα′
∫

dτ

2πα′|p−|∫
0

dσ d2θ
(
gµνDLφ

µDRφ
ν +U(φ)

)
, (24)

whereφµ areN = 1 superfields. The superpotentialU(φ) is not as general as it could be in an arbitraryN = 1 theory, since it
needs to be a harmonic function. This condition also follows from conformal invariance in the Berkovits formulation [1
course if we view theN = (2,2) solution as anN = (1,1) theory then the correspondingN = 1 superpotential is harmonic du
to the stricter constraints that both the superpotential and Killing potential of theN = 2 theory have to obey.

4. Some examples

In this section we discuss some general features of the models and describe in more detail some examples.
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4.1. RG flow

The light cone worldsheet theory is a theory with a mass scale. So these theories behave quite non-trivially u
transformations. This mass scale on the worldsheet is basically set byp−. More precisely the important dimensionless param
is α′|p−|µ whereµ is the coefficient in front of the superpotentialW = µf (z/ls) wheref is a dimensionless function
This dimensionless parameter is the product of the mass scale on the worldsheet and the size of the worldshee
A physical spacetime question, like the spectrum of the theory, depends non-trivially on this dimensionless paramete
that performing a scale transformation on the worldsheet is related to performing a boost in thex+, x− coordinates. For low
values of|p−| we are exploring the UV of the worldsheet theory while for large values we explore the IR. As usual we
UV/IR relation between worldsheet and target space scales. Note that in many situations, most notably thec < 1 string theories
one can start with a non-conformal theory and ‘dress’ it with the Liouville mode so that the total theory is a critical string
In those cases the RG flow in the original massive theory becomes related to a change in position along the Liouville d
Notice that this case has a different character since an RG transformation is related to a change invelocityof the motion in
thex+, x− direction. In other words in one case we have that an RG transformation is atranslationin the Liouville direction
whereas in our case it is aboostin thex+, x− directions. The worldsheet will generically have periodic boundary condit
for the fermions since they are Green–Schwarz fermions. The number of zero energy (zerop+) supersymmetric ground state
can be computed by the standard index arguments. These will be BPS states in the spacetime theory.

It is interesting to note that we can choose a superpotential that has no supersymmetric vacua. In this case we do
supersymmetric vacuum on the worldsheet which means that the corresponding state in the spacetime theory is not
p− is nonzero. Supersymmetry breaking on the worldsheet should not be confused with spacetime supersymmetry b

4.2. Solitons

One feature of our models is that they contain solitons on the worldsheet. The worldsheet is compact and h
proportional to|p−|α′. If |p−| is large we will be able to trust soliton computations which are done in an infinite line. Not
when the string is propagating with fixed value ofp− it feels a gravitational force that pulls it to the regions where−g++ is a
minimum. A soliton on the worldsheet going between these minima corresponds to a string that goes between the two
where−g++ has a minimum in target space. For example, we can choose a superpotential which is a function of o
variableW(z1). In this case the three other complex fields on the worldsheet are massless and free. If we solve∂z1W = 0 we
will obtain the values ofz1 corresponding to supersymmetric vacua in the field theory. The gravitational force will be di
towards these points in spacetime. We can have string configurations that interpolate between these different points.
as we are discussing closed strings of finite length (i.e., we impose periodic boundary conditions on the worldshe
configurations will not be topologically stable, unless there are identifications in the transverse space. We will discuss
case with identifications in the transverse space.

4.3. Integrable theories

It is possible to choose the superpotential in such a way that we get an integrable model on the worldsheet. We
rely on the large literature on integrable models to derive properties of the worldsheet theory. Of course the most in
regime is when the worldsheet theory is strongly coupled, since in this case we do not have any other simple method
the spectrum. Our above derivation of the lightcone worldsheet Lagrangian is only valid for weak coupling, since we
supergravity approximation. It is nevetheless possible to show that in the case of flat transverse space these are g
solutions by using one of Berkovits’ formalisms [14,13]. We now take a flat transverse space and we explore the phy
results from adding a superpotential of the formW(z1)= µcosωz1. This gives theN = 2 supersymmetric sine Gordon theo
More explicitly the full background is

ds2 = −2dx+ dx− − ∣∣µω sinωz1
∣∣2(

dx+)2 + dzi dzi

= −2dx+ dx− − 1

2
|µω|2[

cosh
(
2ωx5) − cos

(
2ωx1)](

dx+)2 + dxi dxi , (25)

F5 = dx+ ∧ ϕ4, ϕ4 = µω2

32
cos

(
ωz1

)
dz1 ∧ dz2 ∧ dz3 ∧ dz4 + c.c.,

wherez1 = x1+ ix5. The sine Gordon model is conventionally written in terms of cannonically normalized fieldsφ = z/
√

2πα′
and the parameterβ is defined by writing the superpotential asW = µcosβφ. This implies thatw = β/

√
2πα′. At this point

we could consider two models, one wherex1 is non-compact or another werex1 is compact. Below we will be intereste
in the model wherex1 = x1 + 2π/ω. This model is such that that we have two distinct supersymmetric vacua,x1 = 0,π/ω
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(and alsox5 = 0). When we consider this sine Gordon model on an infinite spatial line (and time) one can compute ex
S-matrix [15]. It was found that the S-matrix is the product of the S-matrices for two theories, one is an integrable ve
theN = 2 minimal models and the other is the S-matrix of the bosonic sine Gordon theory. TheN = 2 minimal model is the
one withZ2 global symmetry. The spectrum contains a kink and anti-kink together with some breathers of masses

Mn = 2ms sin

(
nπ

2γ

)
, γ = 8π

β2
, (26)

wheren= 1, . . . ,N andN = [γ ] is the number of breathers.ms in (26) is the mass of a soliton which is proportional toµ. In
order to find the spectrum of states in string theory we need to find the spectrum of the sine Gordon theory on a circ
size of the circle is very large, which corresponds to large|p−|, we can use the Bethe ansatz to obtain an approximate an
for the spectrum. The corresponding expression is expected to be correct up to exponentially small corrections in the s
circle (or e−|p−|µα′

). Some exact results for the spectrum on the cylinder for a simple integrable model were obtained
but as far as we know the spectrum for theN = 2 sine Gordon on the cylinder is not known.

Note that the limitβ → 0 corresponds to the semiclassical limit of the sine Gordon model. In this limit the period
sine is much longer thanα′. This means that the backgroundF field involves large length scales. In this limit there is a la
number of breathers. The lowest lying breather is the basic pertubative massive field in the theory and the lowest lying
be thought of as bound states of these. On the other hand the limit of largeβ corresponds to the quantum regime of the s
Gordon model. Note that forγ < 1 there are no breathers, we only have the kinks and anti-kinks. Whenβ is large the radius
of thex1 circle in string units is small so that one would attempt to do a T-duality on this circle. Since the background
depends explicitly onx1 this is not a straightforward T-duality. Fortunately the necessary transformation is the mirror sym
transformation discussed in [6,7], which gives a sausage model. In fact this relation was conjectured first in [5], by stud
S-matrices and it is a close relative of [17]. The radius of the sausage is proportional toβ. More precisely it is̃R = α′ω. We can
see that in the limit that the RR fields are small, which is the UV of the worldsheet theory then in the original picture we
cylinder with a gravitational potential that confines the strings to the region near the origin of the non-compact directio
the cylinder. In the T-dual picture we have a cylinder of the T-dual radius near the central region of the original cylinder
compact circle of the cylinder shrinks as we move away from the center so that we form a sausage. The sausage mod
not conformal invariant so that the geometry of the sausage depends on the scale. As we go to the UV of the field
the worldsheet the sausage becomes longer and longer as log(E), whereE is the energy in question. Of course such a mo
contains a mass scale which is basically set by|p−|. When we go to the IR the sausage model develops a mass gap and
are only a few masssive excitations. We conclude that we have a background which is such that if we explore it wit
that have low values of|p−| we see it as being very large, while if we explore it with strings with higher values of|p−| it
appears smaller. A natural question that arises is whether this background is a solution of the supergravity equations
values ofR̃, which means large values ofβ, the curvature of the sigma model is small so one would expect it to be a so
of supergravity. In particular theβ = ∞ limit is the SU(2) symmetric roundCP1 model [4]. On the other hand, one cou
make an argument that this background cannot be a simple supergravity solution, at least within the context of a sim
cone reduction. The reason is the complicated way in which the scale of the model determines the geometry. When
light cone the scale that appears in the light cone theory is related to∂X+. If this scale appears quadratically or linearly in t
lightcone action it is very simple to find the particular supergravity fields that give rise to the light cone gauge model, q
appearances of∂X+ are related tog++ and linear appearances of∂X+ are related to fields with one+ index, such asF+···. In
the roundCP1 model the scale is appearing schematically as

S ∼
∫

log

(
E

|p−|
)
∂θ∂θ ∼

∫
log

(
E

|∂X+|
)
∂θ∂θ (27)

in the action, where the last term isvery schematic. This suggests that the background leading to thisCP1 model contains
excited massive string modes. In fact, if we treat the RR field as a small perturbation (which is correct if we are near th
of the cylinder and at small|p−|) we can see that a T-duality in the thex1 direction would transform the momentum mode
F5 into a winding mode (with winding number two). This is somewhat reminiscent of the description of the cigar used
though in that case one could view the background as a gravity solution. Another related, but distinct, way in which a
theory as theCP1 model could arise in string theory was presented in [19]. In that case the RG direction was preciselyx+ and
the metric wasx+ dependent.

All that we said here about the sine Gordon model can be generalized to afine Toda theories (with rank smaller t
[4]. The mirror symmetry transformation in this case will produce a deformedCPN model [7].
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4.4. ResolvingAN singularities

In this section we will consider deformations ofAN singularities in the presence of RR fields.7 We can start with the
maximally supersymmetric plane wave of IIB theory which has a field strength of the formϕ1234= −ϕ5678= constant and
all other components equal to zero. We can form complex coordinateszj = xj + ixj+4. Then we see that this backgroun
corresponds to a background with zero(2,2) forms and a superpotential of the formW = µ

∑4
i=1(z

i)2. We can consider now
theR4 space spanned by the coordinates 1256 and replace it by anAN singularity. This background still preserves half t
supersymmetries. Let us start discussing first the case of anA1 singularity. We see that we can replace theA1 singularity by the
Eguchi–Hanson space, which is a Ricci flat Kähler (actually hyper-Kähler) manifold. When the RR fields are zero this
preserves the same number of supersymmetries as theA1 singularity. They preserve 8 supersymmetries that are linearly rea
on the worldsheet, which is actually a(4,4) theory. We also have 8 other supersymmetries that are non-linearly realize
which are associated to the four real coordinates spanned byz3, z4 which are free on the worldsheet.

Another interesting situation to consider is anA1 singularity involving the first four coordinates 1234. In this case, in or
to find a supersymmetric deformation, it is convenient to group the coordinates into complex coordinates asz1 = x1 + ix2,
z2 = x3 + ix4, etc. Then the maximally supersymmetric solution can be thought of as a solution withW = 0 and only(2,2)
forms with Killing potentialU = µ(|z1|2 + |z2|2 − |z3|2 − |z4|2). We can still resolve theA1 singularity by replacing it by an
Eguchi–Hanson space. In this case the solution will be of the type described in Section 2.3. The Killing potential is

U =µ

[√
1+ a4

ρ4

(∣∣z1∣∣2 + ∣∣z2∣∣2) − (∣∣z3∣∣2 + ∣∣z4∣∣2)] = µ
[
r2 − (∣∣z3∣∣2 + ∣∣z4∣∣2)]

, (28)

whereρ2 ≡ |z1|2 + |z2|2, r4 ≡ ρ4 + a4, anda is the Eguchi–Hanson resolution parameter. The derivatives ofU form a
holomorphic Killing vectorV ν = −igνν̄∂ν̄U = −iµ(z1, z2,−z3,−z4) and the(2,2) forms are given byϕνσ̄ = ∇ν∇σ̄ U . One
can see that the solution actually has(4,4) supersymmetry since one can redefine the coordinatesz3,4 → z̄3,4 and construct
new Killing spinors of the type we constructed above. Furthermore if we view the theory as anN = 1 theory the superpotentia
we get in both cases is the same, so that we have twice the number of supersymmetries. Potentials for(4,4) two-dimensional
theories were considered in [21,11]. In conclusion, we have a(4,4) theory on the lightcone worldsheet. Of course we also h
another 8 supersymmetries of theε− type that are due to the fact that the coordinatesz3, z4 are free.

Above we discussed supersymmetric deformations of theA1 singularity. There are also non-supersymmetric deformati
which we can describe most easily by writing the Eguchi–Hanson metric in real coordinates

ds2 = dr2

(1− a4/r4)
+ r2

4

(
dθ2 + sin2 θ dφ2) + r2

4

(
1− a4

r4

)
(dψ + cosθ dφ)2, (29)

where the angles take values inθ ∈ [0,π); φ,ψ ∈ [0,2π). Then we can choose the four form to be proportional to the vol
element, and the metric componentg++ = −µr2 looks the same as what it was for the originalA1 singularity. This solution
is not supersymmetric. It differs from the supersymmetric solution by some terms which are localized near the sin
We can view the non-supersymmetric solution as the supersymmetric one plus some normalizable modes that live
singularity. These are normalizable modes of the four form potential. From the point of view of the worldvolume the
theA1 singularity, these are the modes that gives rise to the self dual tensor in six dimensions. Indeed one can chec
difference between the 5-form field-strengths of the two solutions isAF5 ∼ h3 ∧ l2, whereh3 = h+ij is an anti-self dual tenso
on the six directions corresponding to the worldvolume of the resolvedA1 singularity (i.e., directions+ − 5678) andl2 is the
unique normalizable anti-self dual two form on the Eguchi–Hanson space,l2 = 1

r2 [2
r dr ∧ (dψ + cosθ dφ)− sinθ dθ ∧ dφ].

The solution considered in [20] is equal to the non-supersymmetric solution described above, up to the addition of a h
function tog++, which is singular atr = 0. For any of the solutions described in this paper, we can add a singular har
function of the transverse coordinates tog++. We can think of them as describing the metric generated by massless pa
with worldlines alongx−.

Of course all that we said above can be extended toAN−1 singularities by replacing the Eguchi–Hanson instanton by
geometry of the resolved ALE space. TheseAN−1 singularities arise as Penrose limits ofAdS5 × S5/ZN , it would be nice to
know if in this case we can also resolve the singularity in a smooth fashion. In the case of(AdS3 × S3)/ZN we know that we
can smooth out the singularity in simple way [22].

7 This problem was also considered in [20], where some singular solutions were described. Here we construct non-singular solut
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5. Open problems

It would be nice to obtain some more exact results for strings propagating on these backgrounds and explore fur
they teach us about strings on non-trivial RR backgrounds. In particular, it would be nice to understand further th
space interpretation of the sine-Gordon model at largeβ. It is clear that we can add D-branes to these backgrounds, whic
expected to be supersymmetric if they sit at the minima of the superpotential [23]. One could explore a more gener
where we also have a nonzero three form RR field strength. An interesting question is if there any supersymmetric defo
of AN singularities when they are embedded inAdS5 × S5. Of course, it would be nice to find a holographic dual for th
backgrounds.
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Appendix A. Conventions and notations, and the supersymmetry equations

A.1. Flat transverse space

We use conventions wherex± ≡ 1√
2
(x0 ± x9) andε+−12345678= +1.F5 = dx+ ∧ϕ4. SinceF5 is self-dual and closedϕ4

is anti-self-dual in the transverse 8-dimensions and closed. For the metric (1) with flat transverse space we choose the

asθ î = dxi , θ+̂ = dx+, θ−̂ = dx− − 1
2Hdx+. The corresponding connections all vanish exceptω−̂i = −ωi−̂ = −1

2∂iH dx+ .

The covariant derivatives acting on spinors are∇− = ∂−, ∇i = ∂i , ∇+ = ∂+ − 1
4∂iHΓ−Γi . And the terms involving

F5 in the IIB covariant derivative are/FΓ− = Γ+/ϕΓ− = 0, /FΓj = −Γ−/ϕΓj , /FΓ+ = −Γ−/ϕΓ+. The chirality matrix

is Γ11 = −Γ 01...89 = 1
2[Γ+,Γ −]Γ 1...8. The IIB spinor is a 16-component complex chiral spinor satisfyingΓ11ε = +ε.

Sinceϕ4 is anti-self-dual in 8-dimensions, acting on a chiral spinor/FΓ+ε = 2/ϕε. Using all the above, the susy equatio
Dµε≡ (∇µ − i

2/FΓµ)ε = 0 take the form8

∂−ε = 0, ∂+ε−
(

1

4
Γ−/∂H − i/ϕ

)
ε = 0, ∂j ε− i

2
Γ−/ϕΓj ε= 0. (A.1)

We would find it easier to work in complex coordinates, so we split the transverse space (x1, . . . , x8) to 4 complex coordinate
zj = xj + ixj+4. In complex coordinates, the susy equations (A.1) are

∂−ε = 0,

∂+ε−
(

1

4
Γ− �Γ · ∂̄H + 1

4
Γ−Γ · ∂H − i/ϕ

)
ε = 0, (A.2)

∂j ε− i

2
Γ−/ϕΓj ε= 0, ∂̄j ε− i

2
Γ−/ϕΓj ε = 0.

Let us classify the a.s.d 4-forms according to their holomorphicity properties. Denoting by(p, q) the number of holomorphic
and anti-holomorphic indices inϕabcd (p + q = 4), there are 10(1,3)-forms, 10(3,1)-forms, and 15(2,2)-forms, giving a
total of 35 a.s.d. 4-forms. The(2,2) forms are of the formϕiīj k̄ andϕiīj j̄ (no sum), and a.s.d implies thatϕ11̄22̄ = −ϕ33̄44̄ etc.
andϕ11̄23̄ = ϕ44̄23̄ etc. The(3,1) and(1,3) forms are of the formϕījkl, ϕīijk , ϕijkl , ϕiijk , and a.s.d. relatesϕ1123= −ϕ4423,
ϕ1̄123= −ϕ4̄423 etc. The closed condition relates the(2,2) to the(1,3), (3,1) components. The reality condition onϕ implies
thatϕ

ijkl
= ϕ∗̄

ijkl
, ϕij̄kl̄ = ϕ∗

j īlk̄
.

Going back to the susy equations (A.2), we separateε into two components of different transverse chiralitiesε =
−1

2Γ+Γ−ε− 1
2Γ−Γ+ε ≡ ε+ + ε−. Sinceε has a positiveΓ11 chirality, ε+ has positive SO(1,1) and SO(8) chiralities, andε−

8 To relate these conventions to the ones in Blau et al. [8] take their conventions, replace theirx± with x0,9 according tox± = 1√
2
[x9 ±x0].

Takex0 → −x0 then flip one of the coordinates, sayx1 → −x1, and then replace back with chiral coordinatesx±
here= 1√ [x0 ± x9].
2
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has both negative. The susy equations forε+ are∂−ε+ = ∂j ε+ = ∂j ε+ = (∂+ + i/ϕ)ε+ = 0. Asϕ has negative SO(8) chirality,
automatically,/ϕε+ = 0 and we conclude thatε+ must be a constant spinor. The susy equations forε− are

∂−ε− = 0, (i∂+ − /ϕ)ε− = i

4
Γ−/∂Hε+,

∂j ε− = i

2
Γ−/ϕΓj ε+, ∂j̄ ε− = i

2
Γ−/ϕΓj̄ ε+.

(A.3)

In order to solve the susy equations explicitly, it is convenient to introduce a Fock space notation. The vacuum|0〉 is
defined to be the spinor annihilated byΓ+ and by allΓ i (where i is a holomorphic index). We also define the operat

bi = Γ i = gij̄ Γj̄ , b
+ī = Γ ī . Note that in this normalization{bi , b+j̄ } = 2gij̄ , wheregij̄ is the inverse of the Kähler metric

This is not the usual normalization of annihilation and creation operators. We denoteϕmn ≡ 1
3!ϕmijkεijkngnn̄, ϕmn ≡ (ϕmn)

∗
(so that, e.g.,ϕ24 = ϕ2123, ϕ21 = −ϕ2234). Anti-self-duality implies thatϕmn = ϕnm, ϕmn = ϕnm. We also use the notatio

2ϕmn̄ ≡ gss̄ϕss̄mn̄, and denote bỹbk |0〉 ≡ bk 1
4 4!εīj̄ k̄l̄ (b+ī b+j̄ b+k̄b+l̄ )|0〉 a ‘hole’ creation operator acting on the vacuu

The slashed four-form acts on the Fock space states as

/ϕb+m̄|0〉 = 4
[
ϕm̄nb̃

n − ϕm̄n̄b
+n̄]|0〉, /ϕb̃m|0〉 = 4

[
ϕmn̄b

+n̄ − ϕmnb̃
n
]|0〉, (A.4)

where we have raised the indices ofϕab using the metric. We parameterizeε∓ in this Fock space

ε− = Γ−
[
βk̄b

+k̄ + δkb̃
k
]|0〉, ε+ =

[
α+ 1

2
γp̄q̄b

+p̄b+q̄ + ζ
εīj̄ k̄l̄ (b

+ī b+j̄ b+k̄b+l̄ )
4 4!

]∣∣∣0〉
, (A.5)

α, γpq, ζ are complex constants, andβm̄, δk are complex functions ofzi, zi . By an appropriate SO(8) rotation we will see
that we can setγp̄q̄ to zero in our solutions. So from now on we set it to zero. Using (A.4) one can check that

/ϕε− = −4Γ−
[
βm̄ϕ

m̄
n̄ − δmϕ

m
n̄

]
b+n̄|0〉 + 4Γ−

[
βm̄ϕ

m̄
n − δmϕ

m
n

]
b̃n|0〉,

/∇Hε+ = α∂j̄Hb
+j̄ |0〉 + ζ∂jH b̃

j |0〉. (A.6)

The susy equations become the following equations forα,βm̄, δm, ζ

4
(
βm̄ϕ

m̄
n − δmϕ

m
n

) = − i

4
ζ∂nH + i∂+δn,

4
(−βm̄ϕm̄n̄ + δmϕ

m
n̄

) = − i

4
α∂n̄H + i∂+βn̄,

∂j βk̄ = −2iαϕjk̄, ∂j̄ βk̄ = 2iζϕ
jk
,

∂j̄ δk = −2iζϕkj̄ , ∂j δk = 2iαϕjk.

(A.7)

A.2. Curved transverse space

Starting from the metric

ds2 = −2dx+ dx− +H
(
xρ

)(
dx+)2 + gµν

(
xρ

)
dxµ dxν (A.8)

the nonzero connections for this metric areΓ−++ = −1
2∂+H, Γ

−+µ = −1
2∂µH, Γ

µ
++ = −1

2g
µν∂νH, Γ

µ
νρ = γ

µ
νρ , whereγ µνρ

are the connections on the 8-dimensional manifold. The only components of the Ricci tensor which do not vanish aR++
andRµν which are given byR++ = −1

2∇2H, Rµν = rµν , where rµν is the Ricci tensor for the 8-dimensional metr
The Ricci scalar is the same as that of the 8-dimensional metricR = r . The Einstein equations are thenrµν = 0 and
∇2H = −32|ϕ|2, where|ϕ|2 ≡ 1

4!ϕµνρδϕµνρδ . We also introduce the corresponding flat indicesa = (v,u, i, j, . . .) and the

coframeθv = dx+, θu = dx− − 1
2H dx+, θiµ dxµ, such that ds2 = −2θvθu + ∑

i θ
i θ i . The connections are determined

the no torsion condition and their nonzero components areΩui = −1
2θ
µ
i ∂µH dx+, Ωij = ωiµ j (x

ρ)dxµ , whereωij (x
ρ) are

the connections on the 8-dimensional manifold, satisfying dθi +ωi
j
∧ θj = 0. The covariant derivatives∇M = ∂M + 1

2Ω
ab
M
Γab

are given by

∇− = ∂−, ∇µ = ∂µ + 1
ω
ij
µ Γij , ∇+ = ∂+ − 1

θiµ∂µHΓui . (A.9)

2 4
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And the susy equations 0=DMε = (∇M + i
2/FΓM)ε are therefore

∂−ε = 0, ∂+ε− 1

4
Γu/∂Hε+ i/ϕε = 0,[

∂µ + 1

2
ω
ij
µ Γij

]
ε− i

2
Γu/ϕΓµε = 0.

(A.10)

The above equations are exactly the ones we had before for the flat case (A.1), the only difference being trading th
derivative in the 8-dim space with a covariant derivative. Also we recall that the Einstein equations implygµν is Ricci flat. Let us
now try to solve these equations, similarly to what we did in the flat case. Again we change to complex coordinates, and
ε = ε− + ε+. As before, we get thatε+ must be a covariantly constant spinor, i.e.,9 ∂−ε+ = ∂+ε+ = ∇µε+ = ∇µε+ = 0. The
equations forε− are

∂−ε−0,

∇µε− = i

2
Γu/ϕΓµε+, ∇µε− = i

2
Γu/ϕΓµε+, (A.11)

(i∂+ − /ϕ)ε− = i

4
Γu/∂Hε+.

As in the flat case, we again use the notationϕµν , and introduce the Fock space|0〉 which is annihilated byΓ+ and by allΓ µ

(µ a holomorphic curved index), and is a covariantly constant spinor,10 and the operatorsbµ̄+ ≡ Γ µ = θ
µ̄

ī
Γ i , bµ ≡ Γ µ =

θ
µ
i
Γ i, {bµ,bν̄+} = 2gµν̄ . From now on we can define the “hole” operatorb̃µ as we did in the flat space case. Similarly we c

defineβµ̄, δµ, α andζ as in (A.5). We can similarly derive Eqs. (A.4), (A.6) and finally (A.7), where all that we would ne
do is to replace the ordinary derivative with covariant derivatives for the transverse indices.

Appendix B. Derivation of the flat space supersymmetric solutions

We have seen thatε+ should be a constant. As the transverse space isR8 we can always do an SO(8) transformation which
setsγp̄q̄ = 0 in (A.5), but we will be unable to distinguish solutions with(2,2) susy from solution with more susy. We al
set allx+ dependence to zero, because, as discussed before, this part could always be added as a solution to the h
equations. Integrability of the∂j δk and∂j̄ βk̄ in (A.7) then assures (asα, ζ are not both zero) that the(1,3) and(3,1)-forms
make a closed form by themselves. Using the fact that the(1,3) and(3,1) parts ofϕ are separately anti-self-dual and clos

we can show thatϕij satisfiesϕij = ϕji from anti-self-duality,∂[iϕj ]m = gk̄k∂k̄ϕkj = 0 from closedness, for alli, j,m. These
imply thatϕij = ∂i∂jW whereW is a harmonic function. Similarly, asϕmn̄ must be Hermitian and closed by themselves, t
must be of the formϕmn̄ = ∂m∂n̄U whereU is a real harmonic function. Eqs. (A.7) (with nox+ dependence) become(

βm∂m∂nW − δm̄∂m̄∂nU
) = − i

16
ζ∂nH,

−(
βm∂n∂n̄U − δm̄∂m̄∂n̄W

) = − i

16
α∂n̄H,

∂jβk̄ = −2iα∂j ∂k̄U, ∂j̄ βk̄ = 2iζ∂j̄ ∂k̄W,

∂j̄ δk = −2iζ∂k∂j̄U, ∂j δk = 2iα∂j ∂kW.

(B.1)

Integrability of the equations implies that(|ζ |2 − |α|2)
∂j̄ ∂m∂kW = (|ζ |2 − |α|2)

∂m∂j̄ ∂kU = (|ζ |2 − |α|2)
∂m̄∂j̄ ∂kU = 0, (B.2)

for all m, m̄, j̄ , k. This can be satisfied in one of the following two cases

9 From here on∇µ denotes a covariant derivative in the 8-dimensional transverse space.
10 As the manifold is a CY, there is a covariantly constant spinorψ0 = |0〉. The spinor|0〉 is actually constant. In fact the Killing spino

equation is∂µ|0〉 + 1
2ω

ij̄
µ Γij̄ |0〉 = 0. The termΓij̄ |0〉 is proportional togij̄ and therefore to the trace of the spin-connection, which on a

can be chosen to be zero [24].
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(i) |α| �= |ζ |, W is holomorphic and harmonic, andϕjk̄ = ∂j ∂k̄U is a 4× 4 Hermitian traceless matrix ofconstants. In that

case we can solve the∂j and∂j equations to get11

βk̄ = −2i
[
αϕjk̄z

j − ζ∂kW
]
, δk = −2i

[
ζϕkj̄ z

j − α∂kW
]
. (B.3)

Then plugging these back into the first two equations in (B.1), and taking into account the fact thatH is real, we get the
consistency condition∂n[ϕjk̄zj ∂kW ] = 0, and the expression forH = −32(|∂kW |2 + |ϕjk̄zj |2).12 This is the solution with
(2,2) supersymmetries, or more, that we have in (9). Plugging (B.3) in (A.5) we get the explicit expression for the four
spinors, which are parametrized by the two complex numbersα, ζ .

(ii) |α| = |ζ |. Now we have that for alli, j, k̄, ∂i∂j ∂k̄[U + α
ζ W ] = 0. Without loss of generality, we choose the const

phaseα/ζ = −1.13 Then one can defineU a real harmonic function such that∂j ∂kU = ∂j ∂kW and∂j ∂k̄U = ∂j ∂k̄U , so the
four-form is given by the second derivatives ofU

ϕij = ∂i∂jU, ϕīj = ∂ī∂jU, ϕ
ij

= ∂ī ∂j̄U. (B.4)

Solving the∂j and∂j equations gives

βk̄ = 2iζ∂k̄U, δk = −2iζ∂kU. (B.5)

Then plugging these into the first two equations gives two identical equations forH , which are solved byH = −32|∂kU |2.
These are the(1,1) supersymmetric solutions we have in (10). Plugging (B.5) into (A.5) we get the explicit expression
two Killing spinors that are parametrized by one complex number,α = −ζ .

Appendix C. Derivation of the curved space supersymmetric solutions

Here too we setγµν = 0. This way we would still find all solutions with at least(1,1) supersymmetry, but would not be ab
to distinguish solutions with(2,2) supersymmetry from solutions with more supersymmetry. Note that if the transverse
has precisely SU(4) holonomy then the Killing spinor hasγµ̄ν̄ = 0. We also take as in the flat case,βν̄ , δν to be independent o
x+ (thex+ dependent part would be dealt with as part of the solution to the homogenous equations forε−). Then the equation
that we get from (A.7) by replacing ordinary derivatives by covariant derivatives becomes

4
(
βµ̄ϕ

µ̄
ν − δµϕ

µ
ν

) = − i

4
ζ∂νH,

4
(−βµ̄ϕµ̄ν̄ + δµϕµν̄

) = − i

4
α∂ν̄H,

∇µβν̄ = −2iαϕµν̄ , ∇µ̄βν̄ = 2iζϕµν,

∇µ̄δν = −2iζϕνµ̄, ∇µδν = 2iαϕµν.

(C.1)

The integrability conditions for∇δ and∇β imply that∇[ρϕµ]ν = 0 (i.e., the(1,3) and(3,1) forms are closed by themselves
Thusϕµν = ∇µ∇νW for some harmonic functionW . The(2,2) forms therefore should be closed by themselves, and tog
with anti-self-duality they must satisfyϕµν̄ = ∇µ∇ν̄U = ∇ν̄∇µU for some real harmonic functionU . Plugging these back t
Eqs. (C.1), we get

∇µβν̄ = −2iα∇µ∇ν̄U, ∇µδν = −2iζ∇µ̄∇νU,
∇µβν̄ = 2iζ∇µ̄∇ν̄W, ∇µδν = 2iα∇µ∇νW,
−[
βρ∇ρ∇ν̄U − δτ̄∇τ̄∇ν̄W

] = − i

16
α∂ν̄H,[

βτ∇τ∇µW − δτ̄∇µ∇τ̄U
] = − i

16
ζ∂µH.

(C.2)

11 There is no need to add integration constants toβk̄ , δk , as such terms can be set to zero by a redefinition of dW by a constant shift, and

redefinition ofzj by a constant shift.
12 Here too there is no need to add an integration constant toH , as such a constant can be set to zero, shiftingx− by a constant timesx+.
13 This amounts to redefining the complex coordinates by a constant phase.
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We can immediately solve the two equations in the first line to getβν̄ = −2iα∇ν̄U + fν̄(z̄), δν = −2iζ∇νU + gν(z) for some
antiholomorphic and holomorphic one-formsfν̄(z̄), gν(z) respectively. Then we can plug these back into the two equatio
the second line, and get the constraints

∇µ
[
∇ν(ζU + αW)+ i

2
gν(z)

]
= ∇µ

[
∇ν(α∗U + ζ ∗W)− i

2
f ∗̄
ν (z)

]
= 0. (C.3)

These can be solved in one of two ways.
(i) |α| �= |ζ |. Then we can define a new real harmonic functionU related toU throughfν̄ , gν

14 such that∇µ∇ν̄U =
∇µ∇ν̄U , and by (C.3)∇µ∇νU = 0. Note thatU is a Killing potential, if we define a vectorVµ = i∇µU then ∇µ̄V ν =
∇µV ν̄ = 0 and∇µVν̄ + ∇ν̄Vµ = 0. This means thatVµ is a holomorphic Killing vector. Additionally, asU is a harmonic
function, the Killing vector also satisfies∇µV µ = 0. By (C.3), one also finds that∇µ∇νW is holomorphic. SinceW appears
in the susy equations only under two holomorphic covariant derivatives, we can takeW to be holomorphic. One can now solv
the first four equations in (C.2) to get15

βν̄ = 2i
[
iαVν̄ + ζ∇νW

]
, δν = 2i[−iζVν + α∇νW ], (C.4)

whereϕµν = ∇µ∇νW andϕµν̄ = ∇µ∇ν̄U . Then plugging these into the last two equations in (C.2), and using the factH is real,
we get one constraint onW andVµ and one equation forH . The constraint is∂ν [V τ∇τW ] = 0, and the equation forH yields
H = −32(|dW |2 + |V |2), where|dW |2 ≡ gµν̄∇µW∇νW and |V |2 ≡ gµν̄V

µV ν̄ . This is the(2,2) supersymmetric solution
we have in (17). Inserting (C.4) into (A.5) we get the explicit expression for the four preserved Killing vectors parametr
α, ζ .

(ii) |α| = |ζ |. We can define a real harmonic functionU such that∇µ∇νU = ∇µ∇νW and∇µ∇ν̄U = ∇µ∇ν̄U , so that
ϕµν = ∇µ∇νU, ϕµν̄ = ∇µ∇ν̄U, ϕµν = ∇µ̄∇ν̄U . Then solving forβν̄ andδν , one gets

βν̄ = 2iζ∇ν̄U, δν = −2iζ∇νU. (C.5)

Plugging these back into the last two equations (C.2), one gets the same equation forH , whose solution isH = −32|dU |2.
These are the(1,1) supersymmetric solutions we have in (18). Again we can insert (C.5) in (A.5) to get the explicit expr
for the Killing spinors.
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