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Abstract

We present a method for explicitly computing the non-perturbative superpotentials associated with the vector bundle
moduli in heterotic superstrings ard-theory. This method is applicable to any stable, holomorphic vector bundle over an
elliptically fibered Calabi—Yau threefold. Superpotentials of vector bundle moduli potentially have important implications for
small instanton phase transitions and the vacuum stability and cosmology of superstringstheadry. To cite this article:
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Résumé

Pfaffiens, superpotentiels et modules des fibrés vectorielous présentons une méthode pour calculer explicitement les
superpotentiels non-perturbatifs associés aux modules d’un fibré vectoriel dans les cordes hétérotiddeth&briz. Cette
méthode est applicable a n’importe quel fibré vectoriel stable et holomorphe d’une variété Calabi—Yau de dimension complexe
trois elliptiguement fibrée. Les superpotentials des modules des fibrés vectoriels ont d'importantes implications potentielles
pour les petits instantons de transitions de phase et la stabilité du vide et cosmologie des supertpittiésee.Pour citer
cet article: B.A. Ovrut, C. R. Physique 4 (2003).
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1. Introduction

The calculation of non-perturbative superpotentials for the moduli of superstrindg @hdory has a considerable literature.
The first computations were carried out from the point of view of string worldsheet conformal field theory [1,2]. Subsequently,
a second approach appeared, pioneered in [3,4] in which the associated worldsheet instantons are viewed as genus-zero
holomorphic curveg in the compactification space, and one integrates over their physical oscillations. This latter technique
has been used to compute non-perturbative superpotentialthnory [5], weakly coupled heterotic string theory on Calabi—
Yau manifolds [6],M-theory compactified on seven-manifolds @ holonomy [7] and heterotid/-theory on Calabi—Yau
threefolds [8,9]. The results for both the weakly and strongly coupled heterotic string theories are proportional to a factor
involving the Wess—Zumino term, which couples the superstring to the backgrou(82)S8d Eg x Eg gauge bundle/ [6,
8,9]. This term can be expressed as the Pfaffian of a Dirac operator twisted by the gauge bundle restricted to the associated
holomorphic curveC. It was pointed out in [6] that this Pfaffian, and, hence, the superpotential, will vanish if and only if the
restriction of the gauge bundl&,| ¢, is non-trivial. Furthermore, it is clear that the Pfaffian must be a holomorphic function of
the gauge bundle moduli associated witly-. Although related work has appeared in other contexts [5], neither the vanishing
structure of the Pfaffian in heterotic string theories, nor its functional dependence on the vector bundle moduli, has yet appeared
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in the literature. It is the purpose of this paper to provide explicit solutions to these two problems, within the framework of both
weakly and strongly coupled heterotiiy x Eg superstring theories compactified on elliptically fibered Calabi—Yau threefolds.

Our approach to determining the zeros of the Pfaffian is the following. First, we note that the Pfaffian will vanish if and
only if the chiral Dirac operator on the holomorphic cur@ein the background of the restricted gauge burid|e:, has at
least one zero mode. Thus, the problem becomes one of determining whether or not the dimension of the kernel of the Dirac
operator is non-vanishing. We then show that this kernel naturally lies in a specific exact sequence of cohomologies and will
be non-vanishing if and only if the determinant of one of the maps in this sequence vanishes. For a wide range of holomorphic
vector bundles on elliptically fibered Calabi—Yau threefolds, we can explicitly compute this determinant as a holomorphic,
homogeneous polynomial of the vector bundle moduli associatedWyjth These parameterize a quotient manifold which is
the projective space of ‘transition’ moduli introduced and described in [10]. It is then straightforward to determine its zeros and,
hence, the zeros of the Pfaffian.

It follows from this that the vanishing structure of the Pfaffian is determined by a holomorphic polynomial function on the
space of vector bundle moduli. Note, however, that the Pfaffian must itself be a holomorphic function of the same moduli, and
that this function must vanish at exactly the same locus as does the polynomial. Since the moduli space is compact, one can
conclude that the Pfaffian is given precisely by the holomorphic polynomial function, perhaps to some positive power, multiplied
by an over-all constant. Therefore, solving the first problem, that is, the zeros of the Pfaffian, automatically solves the second
problem, namely, explicitly determining the Pfaffian, and, hence, the superpotential, as a function of the vector bundle moduli.

In this paper, following [11], we present our results in terms of a single, non-trivial example. We have also suppressed
much of the relevant mathematics, emphasizing motivation and method over mathematical detail. Our method, however, is,
in principle, applicable to any stable, holomorphic vector bundle over any elliptically fibered Calabi—Yau threefold. In [12],
we present a wider range of examples, computing the superpotentials for several different vector bundles and analyzing the
structure of their critical points. In addition, we give a more complete discussion of the mathematical structure underlying our
computations.

Although at first sight rather complicated to derive, the superpotential for vector bundle moduli potentially has a number
of important physical applications. To begin with, it is essential to the study of the stability of the vacuum structure [13,14] of
both weakly coupled heterotic string theory and heterdfitheory [15-28]. Furthermore, in both theories it allows, for the
first time, a discussion of the dynamics of the gauge bundles. For example, in helésbteory one can determine if a bundle
is stable or whether it decays, via a small instanton transition [29], into five-branes. In recent years, there has been considerable
research into the cosmology of superstrings and hetetdttbeory [30-39]. In particular, a completely new approach to early
universe cosmology, Ekpyrotic theory [40-47], has been introduced within the context of brane universe theories. The vector
bundle superpotentials discussed in this paper and [12] allow one to study the dynamics of the small instanton phase transitions
that occur when a five-brane [40-43] or an ‘end-of-the-world’ orbifold plane [44—46] collides with our observable brane, thus
producing the Big Bang. These physical applications will be discussed elsewhere.

2. Pfaff(D_) and superpotential W

We want to consideEg x Eg heterotic superstring theory on the space
M=R*x X, (1)
whereX is a Calabi—Yau threefold. In general, this vacuum will admit a stable, holomorhic vector Bamai& with structure
group
G C Egx Eg (2)

and a specific connection one-forrh It was shown in [48] (see also [49]) that for any open neighborhoo# ,ahe local
representatived, of this connection satisfies the Hermitian Yang—Mills equations

Foun = Fﬁlﬁ =0 (3)
and
8" Fypiz =0, @

whereF is the field strength ofi.

As discussed in [4], a non-perturbative contribution to the superpotential corresponds to the partition function of a superstring
wrapped on a holomorphic curnée C X. Furthermore, one can show [3] that only a curve of genus zero will contribute. Hence,
we will take

c=pL (5)
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To further simplify the calculations, we will also assume thais an isolated curve iX and that the superstring is wrapped
only once onC. The spin bundle ovef will be denoted by

S=5+@S- (6)

and the restriction of the vector bundieto C by V|¢. Finally, we will assume that the structure group of the holomorphic
vector bundle is contained in the maximal subgrouEgfx Eg. That is,

G € SO(16) x SO(16) C Eg x Eg. (7)

This condition will be satisfied by any quasi-realistic heterotic superstring vacuum. Briefly, the reason for this restriction is the

following. As discussed, for example, in [3,8] and references therein, when (7) is satisfied, the Wess—Zumino—Witten (WZW)

term coupling the superstring to the background vector bundle can be written as a theory of thirty-two worldsheet fermions
interacting only with the vector bundle through the covariant derivative. In this case, the associated partition function and,

hence, the contribution of the WZW term to the superpotential is easily evaluated. When condition (7) is not satisfied, this

procedure breaks down and the contribution of the WZW term to the superpotential is unknown. Under these conditions, it can
be shown [6] that the non-perturbative superpoteritidhas the following structure

W Pfaﬁ(D,)exp<i / B), (8)
c

whereB is the Neveu—Schwarz two-form field. The Pfaffiariaf is defined as

Pfaff(D_) = \/detD_, 9)

where, for the appropriate choice of basis of the Clifford algebra,

D= (i ;1 DO*). (10)

Here, the operatab_ represents the covariant chiral Dirac operator
D_:I'C,V|c®S-)—>T(C,V|c®S+), (11)

whereasi; : I'(C, V|c ® S4+) — I'(C,V|c ® S-) is independent of the connectiod. Pfaff(D_) arises as the partition
function of the WZW term, as discussed above. Note that we have displayed in (8) only those factors in the superpotential
relevant to vector bundle moduli. The factors omitted, such ag-e4gC)/(2ra’)) where A(C) is the area of the surfac@

using the heterotic string Kahler metric ahande’ is the heterotic string parameter, are positive terms dependent on geometric
moduli only. Now

|detD_|2 = def(D_D" ) o detD, (12)
where the proportionality is a positive constant independent of the connection,

D= ( D°+ Do—> (13)
and

Dy=D". (14)
Note that we have absorbed a factor of i into our definition of the Dirac operBtorand D . It follows that

detD_ /| detD|€?, (15)
where

|detD| =detD_D (16)

is a non-negative real number apds a phase. It is well known that dBtis gauge invariant. However, under both gauge and
local Lorentz transformations with infinitesimal parametesd6 respectively, the phase can be shown to transform as

sp=2 / (—tr(e dA) +tr(6 dw)), a7
C
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where A andw are the gauge and spin connections respectively. This corresponds to the worldsheet sigma model anomaly.
Fortunately, this anomaly is exactly cancelled by the variation

5B = / (tr(e d.A) — tr(6 dw)) (18)

C

of the B-field [6]. It then follows from (8) that the superpotenti#l is both gauge and locally Lorentz invariant.

We displayed the factor exip/- B) in the superpotential expression (8) since it was relevant to the discussion of a gauge
invariance. However, as was the case with(exd(C)/(2ra”)), it also does not depend on the vector bundle moduli and,
henceforth, we will ignore it. Therefore, to compute the vector bundle moduli contribution to the superpotential one need only
consider

W  Pfaff(D_). (19)

We now turn to the explicit calculation of Pféfp_). To accomplish this, it is necessary first to discuss the conditions under
which it vanishes.

3. The zeros of PfaffD_)

Clearly, Pfaff D_) vanishes if and only if d&P does. In turn, it follows from (16) that this will be the case if and only if one
or both of D_ and D4 have a non-trivial zero mode. In general, dimker and dimkeD4 may not be equal to each other
and must be considered separately. However, in this calculation that is not the case, as we now show. Recall that

indexD4+ =dimkerD4 — dimkerD_. (20)

Since ding C = 2, it follows from the Atiyah—Singer index theorem that

indexD4 = Zlﬂ—/tr]-‘, (21)
c

whereF is the curvature two-form associated with connectibnestricted to curve. Since, in this paper, the structure group
of V is contained in the semi-simple grodfg x Eg, we see that tF vanishes. Therefore,

indexD1 =0 (22)
and, hence
dimkerD4 =dimkerD_. (23)

It follows that Pfaf{iD_) will vanish if and only if
dimkerD_ > 0. (24)

To proceed, therefore, we must compute the zero structure of dibkemhis calculation is facilitated using the fact that a
holomorphic vector bundle with a Hermitian structure admits a unique connection compatible with both the metric and the
complex structure (see, for example, [50]). That is, for a special choice of gauge, one can always set

D_=id, (25)
where, for any open neighborhotfic C with coordinateg, z,

d=0;. (26)
This result was proven in [11]. Using (24) and (25), we conclude that@¥aff will vanish if and only if

dimkerd > 0. (27)

However, it follows from Egs. (11) and (25) that the zero modesarke precisely the holomorphic sections of the vector bundle
V|e ® S—. Using the fact that o = P1

S_=0c(-1), (28)
and defining

Vie(=D)=Vlc ®Oc(-1), (29)
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we conclude that

dimkerd = h0(C, V|c(-1)). (30)
Hence, PfaffD_) will vanish if and only if

h(C,Vic(-1) > 0. (31)

Therefore, the problem of determining the zeros of the Pfaffia®.ofis reduced to deciding whether or not there are any
non-trivial global holomorphic sections of the bundi¢- (—1) over the curveC. An equivalent way of stating the same result
is to realize that the condition for the vanishing of Pfaff.) is directly related to the non-triviality or triviality of the bundle
V|c. To see this, note that any holomorphic @6 x SO(16) bundleV |- over a genus zero cun@ = Pl is of the form
16
Ve =@ Op1(mj) & Opi(—m;) (32)
i=1
with non-negative integers; . Therefore

16
Vie(=) =@ Opr(m; — 1) & Opa(—m; — D). (33)
i=1

Using the fact that

hO(BL, Opi(m)) =m +1 (34)
form >0and

hO(PL, Op1(m)) =0 (35)

for m < 0, it follows that
16
WO(C.Vic(-D) =Y "m;. (36)
i=1

Thereforeh9(C, V|c(—1)) > 0 if and only if at least onen; is greater than zero. That is, as first pointed out in [6],
hO(C, V]c(=1)) > 0, and hence PfafD_) will vanish, if and only if V|- is non-trivial. We now turn to the question of
how to determine whether or not there are non-trivial sectiorig|gf(—1) overC.

The problem of whether or nat®(C, V| (—1)) is non-zero can be solved within the context of stable, holomorphic vector
bundles over elliptically fibered Calabi—Yau threefolds. In this paper, following [11], we will present a single explicit example,
prefering to be concrete and to emphasize the method rather than the underlying mathematics. A more detailed discussion, with
all the relevant mathematics, is presented in [12]. We consider a Calabi—Yau thrgedtigtically fibered over a base

B =T, (37

wherelFq is a Hirzebruch surface. That is,: X — F4. SinceX is elliptically fibered, there exists a zero sectionF; — X.
We will denoteo (F1) C X simply aso. The second homology grouﬁz(]Fl, R) is spanned by two effective classes of curves,
denoted byS and&, with intersection numbers

§?=-1, S§-£=1, £&?=o (38)
The first Chern class @4 is given by

c1(F) =285 + 3€. (39)
Over X we construct a stable, holomorphic vector bundlgith structure group

G =SU(3). (40)
This is accomplished [51-53] by specifying a spectral cover

C=30+n*n, (41)
where

n=(a+1S+bE (42)



398 B.A. Ovrut/ C. R. Physique 4 (2003) 393-404

anda + 1 andb are non-negative integers, as well as a holomorphic line bundle

N:OX<3<A+%)0— (A— %)n*n—{— (3)»—{— %)Tr*cl(B)), (43)

wherex € Z + % Note that we use + 1, rather tham, as the coefficient of in (42) to conform with our conventions in [10].
The vector bundl& is then determined via a Fourier—Mukai transformation

C,N) «— V. (44)
In this paper, we will consider the case
3
a>>5, b—a=86, Azé. (45)

We refer the reader to [10] to show that for such parameters spectral €asdyoth irreducible and positive. In addition, it
follows from (39), (42), (43) and (45) that

N =0x(60 + (99— a)n*(S +&)). (46)
Now consider the curvé c F4. SinceS - S = —1, itis an isolated curve ifi;. SinceS is an exceptional curve
S=pL (47)

The lift of S into X, 7*S, was determined in [10] to be the rational elliptic surface

7*S = dPg. (48)
The curveS is represented iX by

Sy =0 -7*S. (49)

By construction Sy is isolated inX and Sy = PL. We will frequently not distiguish betweefi and Sy, referring to both
curves asS. Recall that we want to wrap the superstring once over a genus-zero Riemann Biieltieh is isolated inX. In
this example, we will take to be this isolated curve.

To proceed, let us restrict the vector bundle data*S. The restriction of the spectral cover is given by

Clagpg =C - *S (50)
which, using (38) and (45), becomes

Cldpy = 30'|dpg + 5F, (51)
whereF is the class of the elliptic fiber. Note th@lgp, is a divisor indPg. Similarly

Nldpg = Odpy ((60 + (9— a)* (S +&)) - 7*S). (52)
Using (38), this is given by

Nldpg = Odpy (60 |dpy)- (53)
It is useful, as will be clear shortly, to define

Nlgpg(—F) = Nldpy ® Odpy(—F). (54)
Then

Nldpg(—F) = Odpy (60 |gpy — F). (55)

SincedPyg is elliptically fibered, the restriction o¥ to dPg, denoted byV|qp,, can be obtained from the Fourier-Mukai
transformation

(Cldrg, Nldrg) < VdPy- (56)
In a previous paper [10], we showed that the direct image umdsgfthe line bundle omlPg associated witlf|gpy, that is
Odpy (30 |dpg + 5F) (57)

is a rank three vector bundle ¢h In this case, we find that
7+ Odpy (30 |dpg + 5F) = Os5(5) @ Os(3) ® O5(2). (58)
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In addition, we proved in [10] that the moduli associated with a small instanton phase transition involving th8 dineeo
called transition moduli, are in one-to-one correspondence with the holomorphic sections of this bundle, that is, with elements
of

HO(S, 05(5)® 053 ® 05(2)). (59)
It follows that the number of these transition moduli is given by
h0(S, 05(5) & 053 ® 0s(2)) =13, (60)

where we have used expression (34). In this paper, we are interested not in the full set of transition moduli but, rather, in the
moduli of C|gpg, Which can be determined as follows. First note, using a Leray spectral sequence and (58), that

HO (0P, Oy (30 |gpy + 5F)) = HO(S, 05(5) © O5(3) & Os(2) (61)
and, hence,

hO(dPg, Ogpy (30 |y + 5F)) = 13. (62)
Denote bys;, i =1,...,13, a basis of sections @yp, (30 |gp, + 5F). Now letC|qp, be a fixed effective curve in the class

30|gpg + 5F and

13
fC|dP9 :Zaisiv (63)
i=1

whereq; are complex coefficients, the unique sectio@p, (30 |dp, + 5F), up to scaling, which vanishes

13
Z a;s; = 0 (64)
i=1

on Clgpe- Now deform the representative cur@éqgp, within its homology class, keeping it effective. As the culigp,
changes, the sectior)"§|dPg in HO(dPg, Odpy (30|dpg +5F)) also change. Clearly, any such section satisfies Egs. (63) and (64),
albeit with different coefficients; . Therefore, the coefficients of sectiois 4P parameterize the projective space

P2~ PHO(dPg, Ogp, (30 |dpy + 5F)), (65)
where
dimg P12 =12 (66)

This space, although twelve-dimensional, is most easily parameterized in terms of the thirteen homogeneous cagrdinates
Now note thatC|gp, is a 3-fold cover ofS with covering mapre|gs, :Clgpg — S. The image of/\/|c|dpg under7rc|dPg is also
a rank three vector bundle ovét In fact,

VIS =7C|gpgs N ICIgpy - (67)

Within this context, we can now consider the question of determining the zeros ofIPfafffor the explicit case of a
superstring wrapped of. As discussed in the previous section, we want to study the propertib@(ﬁt Vis(=1). We
showed in [11] that (S, V|s(—1)) appears in the exact sequence

0 fC\dpg

0> H (S, VIs(-D))—> W1 — Wo—---, (68)
where

W1 = HY(dPg, Ogpy (30 |dpy — 6F)) = H(S, 05(—6) ® O5(—8) & O5(~9)) (69)
and

7
W2 = HY(dPg, Ogpy (65 |gpy — F)) = Hl(«S’ Os-DH & @OS(—i)) (70)
i=3

are two linear spaces. Using Serre duality, one finds that
HY(S,05(—6) ® 05(-8) ® 05(~9) = H(S, O5(4) & O5(6) ® Os(7))* (71)



400 B.A. Ovrut/ C. R. Physique 4 (2003) 393-404

and
7 7 *
H1<S, Os(-DH @& @03(—1')) = H0<S, Os(-D o P Os(-2+ i)) : (72)
i=3 i=3
Then it follows from (34) that
dimWwy =dimWw, = 20. (73)

The malpfc|dPg in (68) is just multiplication by the unique, up to scaling, eIemenH@(dPg, Odpy(Cldpy)) With the property
that it vanishes o@|gp, = 30 |dpy + 5F . Hence, the coefficients q‘hdpg parameterize

PHO(dPg, Ogpy (30 |gpy + 5F)). (74)

Exact sequence (68) is precisely what we need to solve the problem of Whetherlo(?(ﬁowg(—l)) is zero. Since
W1 and W are just linear spaces of the same dimension, and since it follows from (68) that the space we are interested in,
HO(S, V|5(—1)), is the kernel of the map, . , We conclude that%(S, V|5(—1)) > 0 if and only if

deth|dPg =0. (75)

Therefore, the solution to this problem and, hence to finding the zeros ofPfaffreduces to computing d_¢'@|dpg, to which
we now turn. An arbitrary element ¥, can be charactarized as follows. Let

w1=B_g®B_g® B_g (76)
be an element ofH1(S, Os(—6) @ Og(—8) ® Og(—9)) where B_;, i = 6,8,9, denotes an arbitrary section in
HLS, Og(—i)). We see from Serre duality and (34) that

hY(S, Os(—i)) =i — 1. 7)
Now let us liftwq to H1(dPg, Ogpy (30 |dp, — 6F)), using (69). We find that

w1 =b_gz+b_gx +b_gy, (78)
where, from the isomorphism

Odpy(kF) =1*Og(k) (79)
for any integerk, b_; = 7*B_; are elements i/ 1(dPo, Ogpy (=i F)) and we have used the fact thdReg has a Weierstrass
representation

V2o =4x® — goxz? — g32®, (80)
where [10]

x ~ Odpy (30 |dpg + 2F), ¥~ Odpe(30ldpy +3F), 2z~ Odpy(30|dpy) (81)
and

82~ Odpy(4F), 83~ Odpy (6F). (82)

In the above equations, symbelmeans ‘section of’.
Expression (78) completely characterizes an element Wi. In a similar way, any elemeni, € Wo = H1(dPg,
Odpy (60 |gpy — F)) can be written as

Wy = c_32X + C_42y + C_5x° + c_gxy +C_7)°, (83)

whereforj =3,...,7, c_; =x*C_j is an element ot 1(dPy, Odpy(—Jj F)) andC_; is a section in th¢; — 1)-dimensional
spaceH 1(S, Os(—J)). Eq. (83) follows from expressions (70), (79) and (81). Finally, we note from (61) and (81) that any map
fe dpy CAN be expressed as

Jfe|gpy = msz +m3x +may, (84)

wherem; = 7*My, k =2,3,5, is an element irHo(dPg, Odpy(kF)) and My is a section in thék + 1)-dimensional space
HOS, Og(k)). Although there are thirteen parametersrp, k =2, 3,5, it must be remembered that they are homogeneous
coordinates for the twelve-dimensional projective spBHQ(dPg, Odpy (30 |dpg + 5F)).



B.A. Ovrut / C. R. Physique 4 (2003) 393-404 401

fC\dp
Putting this all together, we can completely specify the linear mameg—>9 Wo. First note that with respect to fixed

basis vectors oV, and Wo, the linear ma|c;fc|dp9 is a 20x 20 matrix. In order to find this matrix explicitly, we have to study
its action on these vectors. This action is generated through multiplcation by a sﬁqgf%nof the form (84). Suppressing, for
the time being, the vector coefficierits; andc_ ;, we see from (78) that the linear spdég is spanned by the ‘basis vectors’

L X,y (85)
whereas it follows from (83) that the linear spd&e is spanned by ‘basis vectors’
X, 7Y, xz, Xy, yz. (86)

The explicit matrixM; ; representing;"c|dPg is determined by multiplying the basis vectors (85)Wf by fc|dP9 in (84).
Expanding the resulting vectors Wi in the basis (86) yields the matrix. We find thdy ; is given by

z  x Yy
xz (m3 ms O
vz | ma 0 msg
X 0 m3 O | (87
Xy 0 mo m3
y 0 0 mo

Of course M ; is a 20x 20 matrix, so each of the elements of (87) represelijs-al) x (i — 1) matrix for the corresponding
j=3,4,56,7 andi =6, 7, 8. For example, let us compubé; ;. This corresponds to the; — z component of (87) where

HY(dPg, Ogpy (30 |dpy — 6F))1_s — H(dPg, Opy (60 |dpg — F))lc_s- (88)
Note, that

1 (dPg, Ogpy (30 |dpg — 6F))lp_o =5 (89)
and

1 (dPg, Ogpy (60 ldpy — F))lc 5 =2 (90)

An explicit matrix for m3 is most easily obtained if we now use the Leray spectral sequences and Serre duality discussed
in (69), (71) and (70), (72) to identify

HY(0Pg, Ogpy(30ldpy — 6F))1p_o = HO(S, Os(4)” (91)
and

HY(dPg, Ogp, (60 |gpy — F))lc_s = HO(S, O5(D)*. (92)
If we define the two-dimensional linear space

V=HS,00), (93)
then we see that

HY(dPg, Odpy (30| dpy — 6F))[_g = Synf' V* (94)
and

H(dPg, Ogpy (60 |gpy — F))lc_3 = V*, (95)

where by Syrh V* we denote the-th symmetrized tensor product of the dual vector spﬁéeof V. Similarly, it follows
from (61) and (93) that:3 is an element in

HO(dPg, Odpy (37 |dpg + 5F)) g = Synt* V. (96)
Let us now introduce a basis
(u,v}eV (97)

and the dual basis

(u*,v*} e V*, (98)
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where

w*u=v*v=1, u*v=v*u=0. (99)
Then the space S)/?T?* is spanned by all possible homogeneous polynomiads jm* of degreek. Specifically,

{u*4’ WS 22k x3, v*4} e synft v+ (100)

is a basis of SythV* and

{u3, u?v, uv?, v3} € Syrr? V. (101)
is a basis of SyﬁlV. Clearly, any sectiom3 can be written in the basis (101) as

m3 = 1u> + pou®v + dguv® + pav°, (102)
where¢,,a =1, ..., 4, represent the associated moduli. Now, by using the multiplication rules (99), we find that the explicit

2 x 5 matrix representation af3 in this basis, that is, th#f1, submatrix ofM/ ;, is given by

u*4 u*3v* u*2v*2 u*v*3 v*4

u*(d)l b2 b3 ¢ 0). (103)
v\ 0 41 b2 3 ¢a

Continuing in this manner, we can fill out the completex2@0 matrix My ;. It is not particularly enlightening, so we will not
present the matrid; ; in this paper. What is important is the determinandfyf;. Let us parametrize the sectioms andms
as

mp = X1M2 + xouv + X3v2,
ms = yyu® + Youtv + YauBv? + Yauvd + ysuv® + Y, (104)

where x;,, b =1,2,3, andy., ¢ =1,...,6, represent the associated moduli. It is then straightforward to compute the
determinant of\/; ; using the symbol manipulating program MATHEMATICA. We find that

det /ey, = dety; = P4, (105)

where

P = X12X3¢>32, - X12X2¢>3¢4 - 2X1X§¢>3¢>1 — X1X2X3%3¢2 + X22X3¢1¢>3 + @%Xf
- 2¢2¢4X3x12 + X1x32,¢§ + 3p1pax1x2x3 + ¢2X1¢4x22 + d)fxg - ¢2X2¢1x32, - ¢4¢1x§’ (106)

is a homogeneous polynomial of the seven transition magjuéind x;,. Note that none of the remaining six modlj, appear
in P. We emphasize that the coordinatgs x; andy,. parametrize the projective space

PHO(S,05(5) ® 0s5(3) & O5(2) ~ P2 (107)

Therefore, the thirteen variables,, x; and ¥ should be treated as homogeneous coordinates on the twelve dimension
manifold (107). It follows that on every coordinate chart of (107), the polynofidepends on six local coordinates only.
We conclude that the Pfgf>_) will vanish if and only if the polynomialP vanishes. It follows from the above thBtis a
global holomorphic section of some complex line bundle @ Therefore, there must exist a divisbp C P12 such thatP
is a section of

Op12(Dp) (108)

and vanishes on the co-dimension one submanifetdof P12 This categorizes the space of zero$adind, hence, PfafD_).
The exact eleven-dimensional submanifdg in ]P’HO(S, Os(®) ® Os(3) ® Os(2)) can be determined by solving the
equation” = 0 using (106). Here, we will simply state the results. There is a smooth eleven-dimensional Varighich is
aP? bundle overP® x P! together with a map: 7 — P12 with the property that embeds eacht? fiber as a linear subspace
P9 in P12. Then, we find that

Dp =i(F) (109)

and, henceDp is the union of a two-dimensional family of linear subspaB@sFurthermore, it can be shown thats has a
singular subset. We find that the non-singular parDef arises as the image undeof the dense open subsetBfon which

i is injective. The singular part ddp, on the other hand, is the image of lociBfon whichi is not injective. These singular
subspaces abp can be analyzed completely.
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4. The superpotential

In the previous section, we categorized the vanishing locu8 ahd, hence, PfafD_). However, one can achieve much
more than this, actually calculating from the above results the exact expressions for the Pfaffian and the non-perturbative
superpotentialv. Recall thatP is a section 0fDp12(Dp) which vanishes op C P12 On the other hand, Pfafb_) is itself
a global holomorphic section of a line bundle o2, That it is a section, rather than a function, is a reflection of the fact
that the Pfaffian is not gauge invariant. Since, from the above results(Pfgffalso hasDp as its zero locus, it follows that
Pfaff(D_) is a section of

Op12(pDp), (110)
wherep is a positive integer. Therefore,
Pfaff(D_) = ¢PP (111)

for some constant parameterlt is straightforward to demonstrate thaimust satisfyp > 2. Furthermore, it is shown in [12]
that p will, in fact, take the value occurring in d¢@|dpg, that is

p=4 (112)
Therefore,
Pfaff(D_) = cP4, (113)

whereP is given in (106). Thus, up to an overall constant, we have determinedPfaffas an explicit holomorphic function
of the twelve moduli oP HO(S, O5(5) ® O5(3) ® O5(2)).

We can now present the final answer for the vector bundle moduli contribution to the non-perturbative superpotential. Since
the superpotential is proportional to the Pfaffian, we conclude that

WP = (x2x302 — x2 120304 — 2x1 050301 — x1x2X30302 + X2 x3b103 + D2 X3
4
— 20004x3X7 + X1X3P5 + 3P10ax1X2X3 + P2X104X2 + DT A3 — P2x201 X3 — Pad1xS) (114)

where the thirteen transition modul,, x;, and ¥ parameterize the twelve-dimensional moduli spﬁ’deo(s, Os®) @

0Os(3) @ Og(2)). SummarizingW in (114) is the non-perturbative superpotential induced by wrapping a heterotic superstring
once around the isolated cungin an elliptically fibered Calabi—Yau threefold with baBe= F1. The holomorphic vector
bundleV has structure groug = SU(3) and W is a holomorphic function of the moduli associated withs. Note that, in

this specific case, thg¢. moduli do not appear. This is an artifact our our example. Generically, we expect all transition moduli
to appear inW. The remaining moduli o¥, that is, those not associated wittjs, do not appear in this contribution to the
superpotential.

5. Conclusion

In this paper, we have considered non-perturbative superpoteRtigisnerated by wrapping a heterotic superstring once
around an isolated holomorphic curgeof genus-zero in an elliptically fibered Calabi—Yau threefold with holomorphic vector
bundle V. We presented a method for calculating the Pfaffian factor in such superpotentials as an explicit function of the
vector bundle moduli associated witfic. For specificity, the vector bundle moduli contributionfitbwas computed exactly
for a Calabi-Yau manifold with basB = IF1 and isolated curve, and the associated critical points discussed. Our method,
however, has wide applicability, as shown in [12] where the vector bundle moduli contributions to the superpotentials in a
number of different contexts are exactly computed and analyzed. Finally, in conjunction with the associated Kahler potential,
one can use our superpotential to calculate the potential energy functions of the vector bundle moduli. This potential determines
the stability of the vector bundle and has important implications for superstringfattteory cosmology, as will be discussed
elsewhere.
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