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Abstract

Zhang and Hu have formulated an SU(2) quantum Hall system on the four-sphere, with interesting three-dimens
boundary dynamics including gapless states of nonzero helicity. In order to understand the local physics of their m
study theU(1) and SU(2) quantum Hall systems on flatR

4, with flat boundaryR3. In theU(1) case the boundary dynamics
essentially one-dimensional. The SU(2) theory can be formulated onR4 for any isospinI , but in order to obtain a flat boundar
theory we must takeI → ∞ as in Zhang and Hu. The theory simplifies in the limit, the boundary becoming a collecti
one-dimensional systems. We also discuss general constraints on the emergence of gravity from nongravitational fiel
To cite this article: H. Elvang, J. Polchinski, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

L’effet Hall quantique sur R
4. Zhang et Hu ont formulé un système de Hall quantique SU(2) sur la quatre-sphère, ave

une dynamique de bord tridimensionnelle intéressante comprenant des états sans gap d’hélicité differente de zér
comprendre la physique locale de leur modèle, nous étudions les systèmes de Hall quantiqueU(1) et SU(2) sur unR

4 plat,
avec pour bord unR3 plat. Dans le casU(1) la dynamique de bord est essentiellement uni-dimensionnelle. La théorie S(2)
peut être formulée surR4 pour n’importe quel isospinI , mais afin d’obtenir dans une théorie de bord plate nous de
prendreI → ∞ comme Zhang et Hu. La théorie se simplifie dans cette limite, le bord devenant une collection de sy
unidimensionnels. Nous discutons également des contraintes générales sur l’apparition de la gravité à partir de th
champs non-gravitationnelles.Pour citer cet article : H. Elvang, J. Polchinski, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

The two-dimensional quantum Hall effect (QHE) has been a rich and fascinating subject. The bulk has a mass ga
the low-lying excitations live on the one-dimensional edge. Many nontrivial phenomena of(1+ 1)-dimensional quantum field
theory arise in the QHE edge dynamics.

Recently, Zhang and Hu have found a beautiful four-dimensional generalization of the QHE, with three-dimension
dynamics, based on fermions moving in a background SU(2) gauge field [1,2]. Their most striking result is the presence
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reserved.
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gapless spin-two bosons in the edge theory, suggesting the emergence of gravity. The model as presently formulate
theory, so there is no gravitational force, and there are actually massless bosons of all helicities. However, it has been
that introducing interactions might plausibly remove the unwanted states while leaving a theory of gravity.

Our goal is to develop a better understanding of thelocal dynamics of the Zhang–Hu model, where most of the key phy
issues should arise. The model is originally formulated with the spatial dimensions forming a four-sphereS4. To expose the
local physics one must take the infinite-radius limit while focusing on a patch with geometryR

4. In the Zhang–Hu model thi
limit is nontrivial: the fermions couple to the background gauge field with isospinI , and one must takeI to infinity along with
the radius. We would like to understand better why this is necessary, and in what sense the limit exists. Further, if the l
exist then we might hope that it allows for some simplification, so that the important aspects of the physics are cleare
the formulation onS4.

Let us mention in particular one puzzling feature of the Zhang–Hu model. The ‘graviton’ is a particle–hole state. It is
in [1,2] that the particle–hole separation remains small at all times, even in the absence of interactions, so that one
of the state as a single particle. However, the uncertainty principle normally forbids this. If the separation is initially
|δ�x|<∞, then the relative momentum of the particle and hole is uncertain,|δ �p|> 0. But the velocity is in general a nontrivia
function of the momentum, so that|δ�v|> 0 as well, and then the separation will grow linearly in time. The one exception to
is for relativistic particles in one dimension, which move with velocityc independent of their momentum. This is the esse
of bosonization: a noninteracting fermion–antifermion pair forms a bosonic excitation that remains localized. But in m
one dimension∂vi/∂pj is nontrivial (in particular the direction of the velocity depends on that of the momentum), and th
no natural bosonization.

Our approach will be to formulate the quantum Hall effect directly on flatR
4, making contact with the Zhang–Hu model on

later. In Section 2 we consider the QHE based on gauge groupU(1). We first review the two-dimensional theory and its ed
dynamics. We then extend this to four dimensions in the obvious way, by introducingU(1) magnetic fields in two independe
planes. We show that the edge dynamics is not truly three-dimensional. Rather, it corresponds to a one-dimensional sy
an infinite number of fermion fields, with helicities 0,1,2, . . . , or equivalently to parallel one-dimensional systems arra
(fuzzily) in two transverse dimensions. Nevertheless, this system turns out to be a useful building block toward under
the SU(2) system. By taking a particle and hole with different helicities, we obtain localized gapless particle–hole exc
of arbitrary helicity as claimed in [1]. We develop some of the properties of these states, and we find some curious as
may be an obstacle to a relativistic theory.

The failure of theU(1) example can be ascribed to insufficient spatial symmetry. The symmetry group isU(2), which is
smaller than the spatial symmetry group (rotations plus translations) ofR

3. In Section 3 we show that by introducing an SU(2)
gauge field as in [1], it is possible to retain an SO(4) symmetry that combines spatial rotations with gauge rotations.
reduces to the spatial symmetry group ofR

3 in the flat limit. We are able to formulate, and solve, this version of the QHE
flat R

4 even for finite isospinI . However, the density of states in the lowest Landau level of our system is finite for finI .
A bubble of quantum Hall fluid thus has a maximum radius, so the edge theory lives onS3 not R

3. In order to take the limit
of a large bubble of quantum Hall fluid, so that its edge becomes locallyR

3, we find it necessary to takeI → ∞ just as
in [1].1

In Section 4 we simplify the system to the maximum extent possible by taking theI → ∞ limit of our system at the
beginning, before taking the size of the Hall bubble to be large. The result is a continuously infinite collection o
dimensionalU(1) systems, distinguished by the spatial orientation of the magnetic field. The corresponding edge th
an infinite collection of one-dimensional theories, distinguished by their orientation in three dimensions.

Section 5 is somewhat independent from the rest, an essay about emergent gravity. We explain why we do not be
this is possible in the Zhang–Hu approach, and contrast this with the AdS/CFT duality which is an example of emergen
We also relate this to the more familiar phenomenon of emergent gauge symmetry.

Reference [3] considers bothU(1) and SU(2) magnetic fields onCP2, so the discussion in our Section 2.2 would gov
the local and edge dynamics of theU(1) case. The references in [4] develop the Zhang–Hu idea in other directions; it m
interesting to consider the local limits of these.

1 There is another case in which the number of lowest Landau level states is infinite but the local density diverges at large radius
also unsatisfactory for going to theR3 limit.
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2. The U(1) QHE on R
2 and R

4

2.1. The U(1) QHE in two dimensions

2.1.1. The bulk
We first review the physics of charged fermions in a constant magnetic field in two dimensions. For simplicity the fe

are spinless. We use unitsh̄= e/c = 1, so the covariant derivative isDa = ∂a − iAa . The spatial dimensions are indexeda, b;
since these are spatial indices, there is no distinction between upper and lower. We work in the gauge

A1 =−B
2
x2, A2 = B

2
x1. (1)

The Hamiltonian is

H =− 1

2m
DaDa = 1

2m

(
−∂a∂a + B

2

4
xaxa −BL12

)
= |B|(n+ 1)−BL12

2m
. (2)

Heren is the total number of oscillator excitations and

Lab =−i(xa∂b − xb∂a). (3)

ForB > 0 the lowest Landau level (LLL) consists of all states withL12= n; these have the minimum energyB/2m. It is
convenient to work with complex coordinates,

z= 1

2
(x1 + ix2), ∂z = ∂1 − i∂2, Dz = ∂z −Bz̄, Dz̄ = ∂z̄ +Bz. (4)

The Hamiltonian is then

H = B

2m
− 1

2m
DzDz̄. (5)

The second term is nonnegative and forB > 0 the LLL states satisfyDz̄ψ = 0, implying that

ψ = f (z)exp(−Bzz̄) (6)

with f (z) analytic. The caseB < 0 is given byz↔ z̄, so without loss of generality we takeB positive in the remainder of thi
section.

The system is translationally invariant, and so there exist magnetic translation operatorsΠa having the property

[Πa,Db] = 0. (7)

In the gauge (1) these are simply given byΠa =−i(∂a + iAa). There are two convenient bases for the LLL. The first are
eigenstates ofL12,

f (z)∝ zl, n= L12= l. (8)

The second are the eigenstates ofΠ1,

f (z)∝ exp
(
Bz2 + 2ip1z

)
, Π1 = p1. (9)

In the latter case,|ψ | is independent ofx1 and Gaussian inx2.

2.1.2. The edge
To produce a localized bubble one adds a confining potential to the Hamiltonian (we also add a constant so that

energy is zero):

H ′ =H − B

2m
+ V, V = κ

2
xaxa, (10)

with κ a positive constant. Now take the limitm→ 0. In this limit all excited states go to infinite energy and so only the L
states mix underV ; we can write

H ′ = V (between LLL states). (11)

By rotational invariance,V is diagonal in theL12 basis, and therefore so is the Hamiltonian

〈
l|xaxa |l′

〉= 2
(l + 1)δll′ ,

〈
l|H ′|l′〉= κ

(l + 1)δll′ . (12)

B B
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The second-quantized Hamiltonian is

H′ = κ

B

∞∑
l=0

(l + 1)c†
l
c
l
. (13)

With D fermions the ground state has levelsl = 0,1, . . . ,D − 1 filled, forming a bubble of radiusr0 =√
2D/B. The number

of states per area is

ρ = D

πr20

= B

2π
, (14)

independent ofD. Low-lying excitations involve fermions and holes withl close toD, which by Eq. (12) are near the edge. T
level spacingκ/B corresponds to a massless field with velocityv = r0κ/B. This is the same velocity that one gets by balanc
the Lorentz force against that from the confining potential.

We are interested in the limit of an infinite bubble, where the edgeS1 becomes the real lineR. Taker0 to infinity while
holdingB andv fixed, and focus on a point on the edge, sayxa = (0,−r0). By translation invariance we can take this point
be the origin, and in the limit the potential linearizes,V =−vBx2. Then

H ′ = −vBx2 = vΠ1 (between LLL states). (15)

The last equality follows fromΠ1 + Bx2 =−i(Dz +Dz̄)/2, sinceDz (Dz̄) gives zero acting to the left (right). Equivalentl
it reflects the noncommutativity in the lowest Landau level,[x1, x2] =−i/B. The Hamiltonian (15) describes fermions movi
to the left with velocityv. The second quantized description is

H′ = −iv

∞∫
−∞

dx1Ψ
†∂1Ψ. (16)

2.2. The U(1) QHE in four dimensions

2.2.1. The bulk
The most direct extension of the QHE to four dimensions is to introduce constantU(1) magnetic fields in two independe

planes,

F12= F34=B. (17)

The Hamiltonian is

H =− 1

2m
DaDa = 1

2m

[
−∂a∂a + B

2

4
xaxa −B(L12+L34)

]
, (18)

where nowa runs 1, . . . ,4. This is just two copies of the previous system. In particular, we can introduce two com
coordinateszα ,

z1 = 1

2
(x1 + ix2), z2 = 1

2
(x3 + ix4), (19)

and the lowest Landau level consists of all states of the form

ψ = f (z1, z2)exp
(−Bz†·z), (20)

wherez†·z= z1z1 + z2z2. The background can be written

Fαβ̄ = 2iBδαβ̄ , Fαβ = Fᾱβ̄ = 0. (21)

In this form there is a manifestU(2) symmetry,

zα→Mαβzβ (22)

for any 2× 2 unitary matrixM . There are also translational symmetries in the four dimensions.
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2.2.2. The boundary
The confining potential

V = κxaxa
2

= 2κz†·z (23)

gives two copies of the two-dimensional system (10). For example,〈
l1l2|V |l′1l′2

〉= κ

B
(l1 + l2 + 2)δl1l

′
1
δl2l

′
2
, (24)

where l1 and l2 are the eigenvalues ofL12 andL34. This potential preserves theU(2) symmetry (22) while breaking th
translational symmetries.

Now let us go to the linearized limit,

V = uaxa. (25)

By a U(2) rotation we can take(u1 + iu2, u3 + iu4) to (0,−ivB) so that the confining force is in the 4-direction. Th
corresponds to looking at a point on the sphere that is tangent to the 1–2–3 plane. Then

H ′ = −vBx4 = vP3 (between LLL states). (26)

We thus have two copies of the two-dimensional system. The first, in the 1–2 plane, has no potential and so an
degenerate ground state. The second, in the 3–4 plane, has a linear potential and one-dimensional edge dynamics.
theL12 basis for the first and theP3 basis for the second, so that there is an infinite number of one-particle statesψl1,p3 with
given momentump3.

The second-quantized description thus involves an infinite number of fields,

H′ = −iv

∞∫
−∞

dx3

∞∑
l=0

Ψ
†
l ∂3Ψl. (27)

Herel ≡ l1 is the helicity, the eigenvalue of the rotationL12 around the direction of motion. Alternatively,

H′ = −iv
∫

d3x Ψ †(�x)∂3Ψ (�x), (28)

but with the 1–2 plane noncommutative,[x1, x2] = −i/B. The boundary theory is not truly three-dimensional, but rather o
dimensional with an infinite number of fields. We can understand this in terms of the symmetries of the system. We ha
that the confining potential (23) leaves aU(2) spatial symmetry. In the linear limit (25) the four symmetry generators bec
the translations in the 1-, 2-, and 3-directions and the rotation in the 1–2 plane. We are missing the additional two r
symmetries ofR3, which would rotate the 3-direction into the other two and so require fields moving in all directions.

2.2.3. Particle–hole states
Although theU(1) system is not truly three-dimensional, it is a useful warmup for the SU(2) system, and so we develo

some of the properties of its particle–hole states. We focus on the two-body wavefunction

ψ(x,x′)= 〈
0|Ψ (x)Ψ †(x′)|Σ 〉

, (29)

where|Σ〉 is a particle–hole state.
One basis for the particle–hole states is

ψ(x,x′)=ψl1,p3
(x)ψ∗

−l′1,−p′3(x
′), (30)

taking the particle and hole each to have definite 3-momentum and definite helicity. The total quantum numbers for the
thenP3 = p3 + p′3 andL12= l1 + l′1. In particular there is an infinite number of ways to getL12=±2.

The total particle–hole momenta areΠa =Πp
a +Πh

a with Πp
a =−i∂a +Aa(x) andΠh

a =−i∂ ′a −Aa(x′). Note that unlike
the separate particle and hole momenta, the total momenta commute,[Πa,Πb] = 0. Thus we can take for example a basis t
are eigenstates ofΠ1,Π2,Πp

3 , andΠh
3 with respective eigenvaluesP1, P2, p3, andp′3. One finds

ψP1,P2,p3,p
′
3
(x, x′) ∝ exp

{−B(
z†·z+ z′†·z′ − 2z1z

′
1 − z22 − z′22)

+ i(P1 − iP2)z1 + i(P1 + iP2)z
′
1 + 2ip3z2 + 2ip′3z′2

}
. (31)

In the 1–2 plane these are Gaussian in the separation and plane waves in the center of mass. In the 3–4 plane the
waves inx3 andx′3 and Gaussian inx4 andx′4.
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The states (30) and (31) are both nonseparating: the particle and hole move in the 3-direction with fixed velocity,
the 1–2 plane they are confined by the magnetic force as argued in [1]. The loophole in the argument given in the intr
is that the velocity here isva = vδa3, independent of the momentum: bosonization is possible because the dynamics is
dimensional.

To obtain a relativistic theory we should retain only states where the momentum is proportional to the velocity. Th
with this property are the momentum eigenstates (31) such thatP1 = P2 = 0. Note however from their explicit form that a
these states have helicity identically zero: they are invariant under simultaneous rotation ofz1 andz′1. This is an obstacle to
relativistic theory with spin.

References [1,2] identifyextreme dipole states (EDS), which are the candidate graviton states. These have an ana
the U(1) model. To make contact with the notation of [2] we start with the spherically symmetric potential (23). The
are eigenstates of the SU(2) part of the unitary symmetry (22). Call this symmetryK1i wherei = 1,2,3, and the total for a
particle–hole pair isT1i =K1i +K ′

1i . Let the particle have total harmonic oscillator leveln and the hole total leveln′. The LLL
states are sums of monomials of degreen in zα and of degreen′ in zβ ′, times an invariant Gaussian, sok1 = n/2 andk′1 = n′/2.
Thent1 � (n−n′)/2, and the EDS are defined to saturate this inequality,t1 = (n−n′)/2. One readily finds that these states
of the form

ψEDS
m (x,x′)∝ zm1 zn−n

′−m
2 (z′†·z)n′ exp

{−B(z†·z+ z′†·z′)}. (32)

To make contact with the basis (31) we must expand near the boundary,

(z1, z2)= (z̃1, z̃2)+ (0,−ir0/2). (33)

Also, because the vector potential is translation-invariant only up to a gauge transformation we must transform to

ψ̃ =Uψ, U = eiBr0(x ′3−x3)/2. (34)

This is determined byH {z̃, ∂z̃} =UH {z, ∂z}U−1. The tilded wavefunction in the tilded coordinates is to be compared (drop
the tildes) to the wavefunctions (31) obtained directly near the origin.

From the discussion in Section 2.1 it follows that asr0 →∞, states of fixed energy relative to the Fermi level have

n= Br20/2+ r0q, n′ = Br20/2− r0q′ (35)

with q andq′ fixed. Taking the limit of the states (32) with this scaling gives

ψ̃EDS
m → zm1 ψ0,0,q,q ′ . (36)

Thus form = 0 the EDS is the zero-helicity plane wave state encountered above, while for positivem we obtain a non-
normalizable state of helicitym. We conclude that the EDS of nonzero helicity are not good states in theR

3 limit. We
can also understand this as follows. One finds thatUT1i {z, ∂z}U−1 = −ir0Πi/2, so that the EDS condition linearizes
(Π2

1 + Π2
2 )ψ = 0. The only normalizable solutions again haveP1 = P2 = 0, but multiplying by a power ofz1 gives a

nonnormalizable solution. Thus we can characterize the EDS withm �= 0 as states of definite helicity and definite momentu
squared, but indefinite momentum. One can generalize the EDS tot1 = s + (n− n′)/2 with fixed s. This introduces an extr
power ofz1

′s in the flat limit, allowing negative helicities but still nonnormalizable.
The energy of a particle–hole state isE = v(n−n′)/r0 = v(q+q′)= vP3. The EDS states thus have a relativistic dispers

relationE2 = v2P 2. Note that the non-EDS states are all tachyonic (in the sense of their momenta, not their velo
E2 = v2P 2

3 < v
2P 2. This is a further obstacle to obtaining a relativistic theory.

3. The SU(2) QHE on R
4

3.1. The model

By extending to an SU(2) magnetic field it is possible to obtain a larger spatial symmetry [1]. Consider the configurat

F1
23= F1

14= F2
31= F2

24= F3
12= F3

34= B. (37)

In other words,Fiab = Bηiab where

ηiab = εiab4 + δiaδ4b − δibδ4a (38)

is the ’t Hooft symbol. Note thata, b run 1, . . . ,4 andi, j run 1,2,3.
Let us analyze the symmetries of this configuration. First use the separation of SO(4) into two commuting SO(3) algebras,
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(0)
1i =−1

4
η̃iabLab =

1

2
(Li +L4i), K

(0)
2i = 1

4
ηiabLab =

1

2
(Li −L4i), (39)

where

η̃iab =−εiab4 + δiaδ4b − δibδ4a (40)

is the parity-reflected ’t Hooft symbol. We follow the notation of [1,2]. We can similarly separate the field strength

Gi1j =−1

4
η̃
j
ab
F iab, Gi2j =

1

4
η
j
ab
F iab. (41)

ThenGi1j is invariant underK(0)2 , while it transforms as a vector ofK(0)1 on itsj index. SimilarlyGi2j is invariant underK(0)1 ,

while it transforms as a vector ofK(0)2 on its j index. Also, each is a vector of isospinI on its i index. In this notation the
configuration (37) is

Gi1j = 0, Gi2j = Bδij /2. (42)

It follows that this is invariant underK(0)1 and under simultaneous rotation byK(0)2 and byI . Thus we define [1]

K1i =K(0)1i , K2i =K(0)2i + Ii , (43)

which are the symmetries of this configuration; hereIi is the(2I +1)-dimensional representation of SU(2). The generators (43
form an SO(3)× SO(3) = SO(4) algebra, all generators of which act nontrivially on space. The generatorsK2i have also an
action on the SU(2) isospin indices.

The actual model that we will study is slightly different from the above but has the same symmetries. That is, we w
the vector potential

Aia =−B
2
ηiabxb. (44)

In the corresponding field strength,

Fiab = ∂aAib − ∂bAia + εijkAjaAkb, (45)

the linear terms reproduce the earlier configuration (37), but the quadratic term is nontrivial and of orderx2. We take the
potential to be simple, rather than the field strength, because it is this that appears in the Hamiltonian.

The configuration (44) is invariant under SO(4) rotations but it is clearly not translationally invariant because of theO(x2)

terms in the field strength. However, the confining potential that is to be added breaks these same translation symme
Curiously, the configuration (37), in spite of its simple appearance, is not translationally invariant either. That is, the

magnetic translationΠa having the property

[Πa,Db] = 0 (46)

for all a, b. Here the covariant derivative is

Da = ∂a − iAiaIi ≡ ∂a − iAa, (47)

while

Πa =−i(∂a − iVa) (48)

is the combination of a translation in thea-direction with some infinitesimal gauge transformationVa . To show that there is no
such symmetry, note first that the property (46), with the Jacobi identity, implies[[Πa,Πb], [Dρ,Dσ ]] = 0 ⇒ [Wab,Fcd ] = 0. (49)

Here

Fcd = Ficd Ii = ∂cAd − ∂dAc − i[Ac,Ad ] (50)

is the field strength in matrix notation, whileWab is similarly constructed fromVa . Since theFcd span a complete set of SU(2)
generators it follows that

Wab = 0 ⇒ Va = g∂ag−1 (51)

for someg(x) in SU(2). But then the definition (46) implies[
g∂ag

−1,Db
] = 0 ⇒ [

∂a, g
−1Dbg

] = [
∂a, ∂b − iAgb

] = 0. (52)
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That is, there is a gauge in which the vector potentialAga is constant and so

Fg
cd

=−i
[
Agc ,A

g
d

]
. (53)

Finally, let c = 1 and letd run over 2,3,4. Then the left-hand side runs over a complete set of independent SU(2) generators,
while the right cannot (its trace withAgc always vanishes).

Essentially, the naive translational invariance of the configuration (37) is broken by the action of parallel transpor
isospin index. It is interesting to compare this with the Zhang–Hu configuration [1] which has the larger symmetry SO(5). One
can think of the gauge curvature in that configuration as conspiring with the curvature of theS4 to allow the extra symmetrie
to exist. This is one reason why in that system the gauge field strength must go to zero as the radius of theS4 goes to infinity,
and so why the isospin must be taken to infinity to get a nontrivial limit. By keeping only SO(4) symmetry from the start it is
possible to find a larger set of models on the flatR

4.
However, there will ultimately be a penalty for the lack of translation invariance. In the usual QHE, the combina

translation invariance and localized states implies an infinitely degenerate LLL with a uniform density of states. This
be the case here, and will necessitate taking theI →∞ limit.

3.2. The spectrum

The Hamiltonian for a spinless particle coupled to the vector potential (44) is

H =− 1

2m
DaDa + κ

2
xaxa =H1 +H2, (54)

whereH1 is the oscillator Hamiltonian

H1 = 1

2m

(−∂a∂a +m2ω2)
, m2ω2 = B

2

4
I (I + 1)+mκ, (55)

andH2 is the spin–isospin interaction

H2 =−B
m
K
(0)
2 · I =− B

2m

(
K2 ·K2 − I · I −K(0)2 ·K(0)2

)
. (56)

Note that we have introduced a harmonic potential from the start, since this entails no loss of symmetry. There is no c
variables that reverses the sign ofB, and the physics will depend on the sign.

It is straightforward to diagonalize the Hamiltonian by addition of angular momenta. However, the reader who is in
in theR

3 limit of the edge need not work through the detailed counting of states and enumeration of cases, but may
the next section, since in the limit the Hamiltonian becomes even simpler. The only result one needs from the remaind
section is that in order to reach theR

3 limit one must also takeI →∞. Thus theR3 limit of our model coincides with theR3

limit of the Zhang–Hu model.
To diagonalizeH consider first the oscillator part. Withn excitations the oscillator energy isE1 = (n+ 2)ω. The raising

operators

a
†
a =−∂a +mωxa (57)

are vectors of SO(4), which can also be written as matrices

a†
α
β ≡ a†

4δ
β
α + ia†

i

(
σ i

)β
α
. (58)

These transform as spin-1
2 under bothK(0)1 andK(0)2 ; theK(0)1 index is written as a subscript and theK(0)2 index as a superscrip

At level n, the product ofn a†
a ’s gives ann-fold symmetric tensor; by subtracting traces this decomposes into irredu

representations

(n)⊕ (n− 2)⊕ (n− 4)⊕ · · · ⊕ {
(1) or (0)

}
, (59)

where(r) denotes the rankr traceless symmetric tensor. In terms of the SO(3) × SO(3) quantum numbers(k(0)1 , k
(0)
2 ), the

representation(r) is (1
2r,

1
2r) and so at leveln the states are(1

2n,
1
2n

)⊕ (1
2n− 1, 1

2n− 1
)⊕ (1

2n− 2, 1
2n− 2

)⊕ · · · ⊕ {( 1
2,

1
2

)
or (0,0)

}
. (60)

For each value(1
2r,

1
2r) the quantum numbersk(0)1,3 andk(0)2,3 run independently from−1

2r to +1
2r . The total dimension is

(n+ 1)2 + (n− 1)2 + (n− 3)2 + · · · + {4 or 1} = 1
(n+ 3)(n+ 2)(n+ 1). (61)
6
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The equality ofk(0)1 andk(0)2 follows from the operator identityK(0)1 ·K(0)1 =K(0)2 ·K(0)2 . It is also evident from the explici
form of the states,(1

2m,
1
2m

) = {
a†
α(1
β1a†

α2
β2 · · · a†

αm)
βm

}{
a†
α[m+1

βm+1a†
αm+2]

βm+2
} · · · {a†

α[n−1
βn−1a†

αn]
βn

}|0〉, (62)

where we symmetrize the firstm α indices and antisymmetrize the rest in pairs: theβ indices automatically have the sam
symmetry.

To diagonalizeH2, addK(0)2 andI to go to a basis of definitek2. Then

E = (n+ 2)ω− B

2m

[
k2(k2 + 1)− I (I + 1)− k1(k1 + 1)

]
. (63)

We have usedk1 = k(0)1 = k(0)2 . States are labeled by the quantum numbers

(n, k1, k1,3, k2, k2,3) (64)

with the ranges

n ∈ {0,1,2, . . .},
k1 ∈ { 1

2n,
1
2n− 1, . . . , 1

2 or 0
}
, k1,3 ∈ {k1, k1 − 1, . . . ,−k1},

k2 ∈ {
I + k1, I + k1 − 1, . . . , |I − k1|

}
, k2,3 ∈ {k2, k2 − 1, . . . ,−k2}. (65)

3.3. The lowest Landau level

Unlike theU(1) theory, the physics depends on the sign ofB. Thus the analysis separates into two cases.

3.3.1. B > 0
For givenk1, the energy is minimized by takingk2 to have its maximum valuek1 + I , so that

E = (n+ 2)ω−Bk1I/m (k2 = k1 + I ). (66)

For givenn, this is minimized in turn by takingk1 to have its maximum value12n, and so

E = 2ω+ n(ω−BI/2m) (
k1 = 1

2n, k2 = 1
2n+ I

)
. (67)

In order that this be independent ofn, we must takeω= BI/2m and so the harmonic potential isκ =−B2I/4m. In contrast to
theU(1) case, we need a harmonic potential to obtain a large degeneracy; this is due to the lack of translation invarian
vector potential.

The LLL states, all withE = 2ω= BI/m, are then

I:
(
n, 1

2n, k1,3,
1
2n+ I, k2,3

)
, n ∈ {0,1,2, . . .}, (68)

with degeneracy(n+ 1)(n+ 2I + 1) for givenn.

3.3.2. B < 0
Now for givenk1, the energy is minimized by takingk2 to have its minimum value|k1 − I |, giving

E =
{
(n+ 2)ω− |B|k1(I + 1)/m (k2 = I − k1 � 0),

(n+ 2)ω− |B|(k1 + 1)I/m (k2 = k1 − I � 0).
(69)

For givenn and either sign ofI − k1, this is again minimized by takingk1 to have its maximum value12n, and so

E =
{

2ω+ n(ω− |B|[I + 1]/2m) (
k1 = 1

2n, k2 = I − 1
2n� 0

)
,

2ω− |B|I/m+ n(ω− |B|I/2m) (
k1 = 1

2n, k2 = 1
2n− I � 0

)
.

(70)

There are now two values ofκ that give a large ground state degeneracy. Forκ = B2(I + 1)/4m so thatω = |B|[I + 1]/2m,
the states withn� 2I are degenerate and lie below those withn > 2I . Forκ =−B2I/4m so thatω= |B|I/2m, the states with
n� 2I are degenerate and lie below those withn < 2I .

To summarize, forκ = B2(I + 1)/4m the LLL states haveE = |B|[I + 1]/m and quantum numbers

II:
(
n, 1

2n, k1,3, I − 1
2n, k2,3

)
, n ∈ {0,1,2, . . . ,2I }, (71)



414 H. Elvang, J. Polchinski / C. R. Physique 4 (2003) 405–417

ubble of
ee LLL

tion

n:

ry

the

II
h

e a
with degeneracy(n+ 1)(2I − n+ 1) for givenn. Forκ =−B2I/4m the LLL states haveE = |B|/m and quantum numbers

III:
(
n, 1

2n, k1,3,
1
2n− I, k2,3

)
, n ∈ {2I,2I + 1, . . .}, (72)

with degeneracy(n+ 1)(n− 2I + 1).

3.3.3. Discussion
The next step is to find the boundary theory, increasing the harmonic potential slightly so as to confine a finite b

fermions, and then taking the size of the bubble to infinity while focusing on a point on the boundary. We have thr
systems to work with, labeled I, II, and III above.

However, none of these allows a straightforward limiting process. Consider the mean value ofxaxa = r2 in the LLL states.
Since the LLL states have distinct SO(4) quantum numbers,r2 is diagonal in the basis (64) and a short calculation gives

r2 = n+ 2

mω
(LLL ). (73)

The volume of the shell betweenn andn+ 1 is then

V = 2π2r3
δr

δn
≈ 2π2r2

|B|I . (74)

We taken, I � 1 so that the levels are closely spaced. The number of states in the shell, divided by the volumeV , is

I: ρ = |B|2I3

2π2

(
1+ |B|r2

4

)
,

II: ρ = |B|2I3

2π2

(
1− |B|r2

4

)
, (75)

III: ρ = |B|2I3

2π2

(
−1+ |B|r2

4

)
.

The range ofr is implicitly limited by the positivity ofρ. In all casesρ is a nontrivial function ofr . This is in contrast to
the familiar Abelian case where the density is constant. Ther-dependence would not be present if the LLL were transla
invariant, but we have emphasized that this invariance is absent. If we try to make a boundary system onR

3 by takingr→∞
in case I or III, the limit is singular because the local density of states diverges asr2. In case II we do not even have this optio
the LLL has a finite radius even in the absence of a confining potential.

Note that the density of states is constant in cases I and II in the limited ranger2 � |B|−1. However, in order to taker→∞
we must takeB→ 0, and then must also takeI→∞ to get a nontrivial result. Equivalently,r2 � |B|−1 is n� I , son→∞
impliesI →∞. Thus, while we are able to formulate the SU(2)QHE onR

4 for finite I , when we attempt to reach the bounda
theory onR

3 we are forced to take the same limit as in [1,2].
In fact, our case II is very similar to the Zhang–Hu model onS4. In both cases the LLL has a finite number of states, and

SO(4) representations are the same,

(k1, k2)=
(1

2n, I − 1
2n

)
, n ∈ {0,1, . . . ,2I }. (76)

The total degeneracy

2I∑
n=0

(n+ 1)(2I − n+ 1)= 1

6
(2I + 1)(2I + 2)(2I + 3) (77)

is then the same. In the Zhang–Hu model the LLL is uniformly distributed onS4. Roughly speaking, one can think of our case
as cutting this open at the north pole and spreading it out to form a ball onR

4. Near the origin ofR4, corresponding to the sout
pole ofS4, the Zhang–Hu system and ours match; this is the region of interest for reaching the limit of flatR

3.

4. The I→∞ limit

4.1. The bulk

We have concluded that we must keepI � n asn→ ∞. It is logical therefore to first takeI → ∞ at fixedn, and then
n→∞. We have been unable to avoid the problem of an infinite-dimensional SU(2) representation, but at least we can mak
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virtue of necessity and take advantage of the simplifications that occur whenI →∞. Also, this is more closely parallel to th
usual QHE, where the Hamiltonian is held fixed (aside from scaling the confining potential) as the size of the bubble
to infinity. Note that there is another limiting process as well, takingm→ 0 to restrict to the LLL. This limit commutes wit
I →∞; for example, in either order the ratioρ/I , whereρ is the density of LLL states, approaches ther-independent value
b2/2π2. It is simplest to take the limits in the orderI →∞, thenm→ 0, and finallyn→∞.

In order to obtain a nontrivialI →∞ limit of the Hamiltonian (54), we must hold fixedb = BI ; in this same limitκ→ 0
and the Hamiltonian becomes

H = 1

2m

(
−∂a∂a + b

2

4
xaxa − 2b �e · �K(0)2

)
. (78)

Here we have defined

ei = Ii√
I (I + 1)

. (79)

Since

[ei, ej ] =
iεijkek√
I (I + 1)

, �e · �e= 1, (80)

�e becomes aclassical unit vector asI→∞.
The Hamiltonian (78) is the same as the Abelian Hamiltonian (18), with the replacements

B→ b, L12+L34→ 2�e · �K(0)2 = ei (Li −L4i). (81)

In particular, for�e= (0,0,1), 2�e · �K(0)2 = L12+L34 and the Hamiltonians are identical. Thus we have a simple interpret

of this system in theI →∞ limit: it is an infinite number of copies of theU(1) quantum Hall system onR4, with the spatial
orientation of the magnetic field indexed by the unit vector�e. Note that in the limit translation invariance onR

4 is restored.
The LLL then consists of states with the appropriate analyticity

ψ(�e, x)= f (�e, z1, z2)
e−bxaxa/4, (82)

where now the coordinatesz have an implicit dependence on�e,
z1 = (ui + ivi )xi, z2 = eixi + ix4. (83)

Here(�e, �u, �v) form an orthonormal frame in three dimensions. One can see this by rotating to a frame where�e= (0,0,1), where
it reduces to the earlierU(1) analysis.2 One can then verify that

H = b

m
− 1

2m
DαDᾱ, Dα = ∂α − bzα, Dᾱ = ∂ᾱ + bzα. (84)

4.2. The boundary

As in theU(1) case, ther0 →∞ limit is equivalent to linearizing around the origin, introducing a potentialV = −vbx4.
Between LLL states this becomes

H ′ = veiPi . (85)

Again, this is an infinite collection ofU(1) systems, with all possible spatial orientations: the velocity of the boundary excita
is v�e. In second-quantized form one can write for example

H′ = −iv
∫

d2ed3x Ψ †(�e, �x) �e · �∂ Ψ (�e, �x), (86)

but where the space is noncommutative in the directions orthogonal to�e, [xi , xj ] = −iεijkek/b.
As has been noted in various places, one can think of theI→∞ limit as a six-dimensional system with a five-dimensio

boundary, elevating�e to a coordinate. The space is thenR
4×S2, and its boundary isR3×S2. However, the boundary dynamic

is still one-dimensional. The velocity is independent of the momentum – it depends only on the position onS2, and is tangen
to R

3.

2 Since the space of complex structures onR
4 is part of the twistor construction, one could say that we are now considering a Fermi

on twistor space.
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For particle–hole states to have a finite value ofT2i =K2i +K ′
2i asI →∞, it is necessary to take�ep =−�eh ≡ �e. A basis

of such states, analogous to the plane wave basis (31), would then be

|�e, �P⊥, �e · �p, �e · �p ′〉, (87)

where⊥ denotes the two dimensions orthogonal to�e; one should note that�e · �p and�e · �p ′ are always positive. TheT1 eigenstates
are obtained as in theU(1) case, while theT2 eigenstates correspond to appropriate superpositions of different values of�e, since
T2 rotates�e.

From the point of view of obtaining a relativistic theory with spin, the same problems as discussed in Section 2.2.3
U(1) case arise here. To obtain a relativistic theory we need in some way to truncate the one-particle spectrum to
which �P is parallel to�e.3 However, the only such states have zero helicity. The extreme dipole states of nonzero heli
nonnormalizable. The states with�P not parallel to�e are all tachyonic, not in their velocities but in the sense thatP 2>E2/v2.
Since the energy of a state isE = ve · P , the states with�e ‖ �P are actually thehighest energy states with given�P .

Because of the effective one-dimensionality of the edge theory it is likely that one can solve various four-fermion inte
by means of bosonization, though theI →∞ limit is somewhat subtle becauseδ(0) appears in various expressions, from th�e
dependence. For now we just note that the most obvious effect of interactions is to allow the relativistic states withE = vP to
decay to tachyonic states withE < vP , which would be a problem for obtaining a relativistic theory.

5. Discussion

We first summarize our conclusions. OnR
4 we have formulated theU(1) and SU(2) quantum Hall systems, with arbitrar

SU(2) isospinI . In the former case the boundary theory is effectively one-dimensional. In the latter case it is necessar
I →∞ in order to obtain a boundary theory, and the result is essentially an infinite collection of one-dimensional theo

As claimed in [1,2], even in the free theory there are localized gapless particle–hole excitations with arbitrary
Taking the flat limit as we have done clarifies the nature of these states. We have noted some specific difficulties with
a relativistic theory – the absence of nonzero-helicity states with�v ‖ �P , and the existence of tachyonic states. Howe
independent of the relativistic application, the QHE onR

4 is a rich and interesting system. We believe that for analyz
any local issues the limiting form that we have obtained in Section 4 is the appropriate starting point. In particular it
possible to solve certain four-fermion interactions.

We now discuss some general aspects of the emergence of gravity from nongravitational field theories, aside
specific details noted above. Let us suppose that it is possible to add interactions to the Zhang–Hu model in such a
the low energy fixed point becomes Poincaré invariant; likely this would require a certain degree of fine tuning. Then
in [1], Weinberg’s theorem [5] would require that the low energy interactions of massless helicity-two states take the
general relativity, if these states are present and if their interactions are nontrivial at zero momentum transfer. The Fi
theorem [6] (regarding the impossibility of coupling massless higher-spin states to conserved currents) would then re
the states of helicity greater than two decouple.

However, under the same conditions the Weinberg–Witten theorem [7] would require that the helicity-two states ac
absent from the low energy spectrum. The conditions for the Weinberg–Witten theorem are quite general – Poincaré i
and the existence of a conserved energy-momentum tensor – so it is difficult to see how the theorems of [5] could
without the Weinberg–Witten theorem as well. (Note that the energy-momentum tensor in four spatial dimensions redu
energy-momentum tensor in the three-dimensional boundary theory by integrating overx4.) Thus it appears that an interactin
theory of gravity cannot arise in this way.

One can perhaps understand this heuristically as follows. An important feature of gravity is that there are n
observables: to say where a measurement is made one must specify a process of parallel transport. This is an essenti
general relativity. The Zhang–Hu model, like any ordinary nongravitational quantum field theory, does have local obse
This would be evaded if all local operators decoupled from the low energy physics,4 but this is not possible for the energ
momentum tensor which must have a nonzero expectation value in any state of nonzero energy. From this point of view
make more sense to look for a theory of quantum gravity in the zero energy states of the LLL without confining potentia
than the edge states with the potential. Note however the complete change of interpretation: time is no longer assoc
Hamiltonian evolution, rather it must emerge ‘holographically’ from correlations in the states.5

3 The states that must be removed were termed ‘incoherent fermionic excitations’ in [1].
4 This possibility was also noted by C. Johnson.
5 A more sophisticated obstacle to emergent gravity, pointed out by S. Shenker, is the holographic principle. There is strong reason

that in quantum gravity the maximum entropy in a given volume is proportional to the surface area. If there is an underlying nongra
QFT one expects the entropy to be proportional to the volume.
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In perturbative string theory one invokes Weinberg’s theorem to predict that the low energy amplitudes will be t
general relativity, and this is borne out by explicit calculation [9]. This does not conflict with the Weinberg–Witten th
because string theory has no local observables – Weinberg’s theorem uses only properties of the S-matrix,6 whereas the
Weinberg–Witten theorem assumes existence of an energy-momentum tensor.

There is in fact a well-known example of emergent gravity: the AdS/CFT duality [10]. On the CFT side ther
supersymmetric gauge theory without gravity, but at largeN and large ’t Hooft coupling the effective description is in ter
of quantum gravity, string theory actually. The important point is that not only does gravity emerge, but spacetime
Only the boundary of the gravitational theory is locally realized in the gauge theory, so there are no local bulk observab
local observables of the gauge theory become boundary data in the gravitational theory [11]. Note that the bulk diffeom
invariance is invisible in the gauge theory; the SU(N) gauge invariance is a different gauge symmetry, which acts as a
internal symmetry, not a local spacetime symmetry, on the boundary.

This emergence of diffeomorphism invariance from ‘nothing’ is analogous to what happens in the various example
emergence of gauge symmetries: in coset field theories [12], in lattice models [13], and in the magnetic duals to supers
gauge theories [14]. The essential point is that gauge symmetry and diffeomorphism invariance are just redund
description. In the examples where they emerge, one begins with nonredundant variables and discovers that redundan
are needed to give a local description of the long-distance physics. In general relativity, the spacetime coordinates are t
part of the redundant description. Thus it appears that, as in the AdS/CFT example, the emergence of general relativit
the emergence of spacetime itself.
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