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Abstract

The physical motivations and consequences of large extra dimensions are reviewed in light of recent developm
particular mm-sized extra dimensions, gauge coupling unification and neutrino masses.To cite this article: K.R. Dienes et
al., C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Unification et physique des dimensions supplémentaires.Nous passons en revue les motivations physiques e
conséquences des grandes dimensions d’espace supplémentaires, en particulier l’unification des couplages et les
neutrinos.Pour citer cet article : K.R. Dienes et al., C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

It was noticed [1,2] that in Type I strings the string scale can be lowered all the way down to the TeV range.
ideas appeared for lowering the fundamental Planck scale in theories with (sub)millimeter gravitational dimensions [3
alternative solution to the gauge hierarchy problem, and, simultaneously, a new way for lowering the GUT scale in theo
large (TeV) dimensions [5,6] was proposed. The new emerging picture found a simple realization in a perturbative Type
[7] with low string scale (in the TeV range) and became the subject of an intense activity, mostly on the phenomenolog
but also on the theoretical side. We review here some of the salient features of this class of models and their phenom
and experimental consequences.

2. Millimeter and TeV −1 large extra dimensions

The presence of branes in String Theory opens new perspectives for particle physics phenomenology. Indeed,
strings the string scale is not necessarily tied to the Planck scale. In view of the new D-brane picture, let us take a clos
the simplest example of compactified Type I string, with only D9 branes present. The string scale can be in the TeV ran
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1631-0705/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-0705(03)00041-0
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string coupling is extremely small,λI ∼ 10−32. One can see that in this case the compact volume is very smallVM6
I

∼ 10−32.

Let us split the compact volume into two parts,V = V (1)V (2), whereV (1), of dimension 6− n, is of order one in string unit
andV (2), of dimensionn, is very small. The Kaluza–Klein states of the brane fields alongV (2) are much heavier than the strin
scale and therefore are difficult to excite. The physics is then better captured in this case performing T-dualities aloV (2),
which can be written:

λ′
I = λI

V (2)MnI
, V⊥ = 1

V (2)M2n
I

. (1)

In the T-dual picture, neglecting numerical factors, we find

M2
P ∼ 1

αGUTλ
′
I

V⊥M2+n
I

,
1

αGUT
∼ V‖M6−n

I

λ′
I

, (2)

where for transparency of notation we redefinedV (1) ≡ V‖. After then T-dualities, the D9 brane becomes a D(9− n) brane,
since the T-dual winding modes of the bulk (orthogonal) compact space are very heavy and therefore the brane fiel
propagate in the bulk. As seen from (2), for a very large bulk volume the string scale can be very lowMI 
MP . The geometric
picture here is that we have a D-brane with some compact radii parallel to it, of orderM−1

I
, and some very large, orthogon

compact radii. In particular, if the full compact space is orthogonal to the brane (n= 6), from (2) the T-dual string coupling i
fixed by the unified couplingλ′

I
∼ αGUT, and therefore we find [7]

M2
P ∼ 1

α2
GUT

V⊥M2+n
I

, (3)

a relation similar to that proposed in the field-theoretical scenario of [3,4].
Let us now imagine a ‘brane-world’ picture,1 in which the Standard Model gauge group and charged fields are con

to the D-brane under consideration. We can then ask a very important question: what are the present experimenta
parallelR‖ and perpendicularR⊥ type radii? The Standard Model fields have light KK states in the parallel directionsR‖.

Their possible effects in accelerators were studied in detail [15,16] and the present limits areR−1
‖ � 4–5 TeV. On the othe

hand, Standard Model excitations related toR⊥ are very heavy and are thus irrelevant at low energy. The main constrain
R⊥ come from the presence of very light KK gravitational excitations, which can therefore generate effects in colliders
and deviations from the Newton law of gravitational attraction. The actual experimental limits on such deviations are li
the mm range and experiments in the near future are planned to improve them [20]. There are also collider effects com
string physics at energies close toMI [21–23]. ForMI ∼ TeV in (3), the case of only one extra dimension is clearly exclud
since it asks forR−1

⊥ ∼ 108 Km. However, for two extra dimensions, we findR−1
⊥ ∼ 1 mm, only marginally excluded by th

present experimental data. On the other hand, if all compact dimensions are perpendicular and large, one findsR−1
⊥ ∼ fm,

a distance scale completely inaccessible for Newton law measurements. Such a physical picture withMI ∼ TeV provides in
principle a new solution to the gauge hierarchy problem, i.e., of why the Higgs massMh is much lower than the 4d Planck ma
MP , provided the physical cutoffMI has similar valuesMI �Mh.

In Type I strings [24–26], the brane we considered can be a D9 or a D5 brane, up to T-dualities. Our brane world
on any of the branes; let us choose for concreteness that our Standard Model gauge group be on a D9 brane. Notice
D9 branes fill (before T-dualities) the full 10d space, D5 branes fill only six dimensions. The D5 degrees of freedom
course propagate in what we called previously bulk space, and can change slightly our previous picture. The relation
the corresponding D9 and D5 gauge couplings is:

g2
9

g2
5

= V⊥, (4)

whereV⊥ denotes here (before T-dualities) the compact volume perpendicular to the D5 brane. IfV⊥ � 1 in string units, then
D5 branes live in (at least part of) the bulk and, by (4) their gauge coupling is very suppressed compared to our (D
coupling. In particular, ifV⊥ in (4) is as in (3), the D5 gauge couplings are of gravitational strength. The fields in mix
representations are charged under both gauge groups. Then, due to their very small gauge couplings, the D5 gau
manifest themselves as global symmetries on our D-brane, and could be used for protecting baryon and lepton num
conservation processes. Indeed, global symmetries are presumably violated by non-renormalizable operators suppre
fundamental scaleMI and, sinceMI can be very low, we need suppression of many higher-dimensional operators.

1 For earlier proposals of such a ‘brane-world’ picture, see [8–14].
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There are clearly many challenging questions that such a scenario must answer in order to be seriously conside
alternative to the conventional ‘desert picture’ of supersymmetric unification at energies of order 1016 GeV. The gauge hierarch
problem still has a counterpart here, understanding the possible mm size of the compact dimensions (perpendicular to
in a theory with a fundamental length (energy) in the 10−16 mm (TeV) range. There are several ideas concerning this iss
the literature, which, however, need further studies in realistic models in order to prove their viability. A serious the
question concerns gauge coupling unification, that in this case, if it exists, must be completely different from the conv
MSSM (Minimal Supersymmetric Standard Model) one. Moreover, there is more and more convincing evidence for
masses and mixings, and the conventional picture provides an elegant explanation of their pattern via the seesaw m
with a mass scale of the order of the 1012–1015 GeV, surprisingly close to the usual GUT scale. Cosmology, astrophy
accelerator physics and flavor physics put additional strong constraints on the low-scale string scenario.

3. Gauge coupling unification

Models with gauge-coupling unification at low energy triggered by Kaluza–Klein states were proposed in [5,6]. It
that low-scale string models are the natural framework for this fast-driven unification.

The essential ingredient in this proposal are the KK excitations of the Standard Model gauge bosons and matter m
and their contribution to the energy evolution of the physical gauge couplings. In the early paper [27], Taylor and Ve
pointed out that the KK excitations give power-law corrections that at low energy can be interpreted as threshold cor
Actually, as shown in [5,6], if the energy is higher than the KK compactification scale 1/R, these corrections should b
interpreted as power-law accelerated evolutions of gauge couplings that, under some reasonable assumptions, can
couplings together at low energies.

Let us start, for reasons to be explained later on, with the MSSM in 4d and try to extend it to 5d, where the fifth dime
a circle of radiusR‖, in the notation introduced in the previous section. In this case the evolution of gauge couplings is go
by [5,6]

1

αa(µ)
= 1

αa(µ0)
+ 1

2π

∑
r

Str

1/µ2
0∫

1/µ2

dt

t
Q2
a,r

(
1

12
− χ2

r

)(∑
n

e−tm2
n,r (R‖) + e−tm2

r

)
, (5)

where we separated the mass operator into a part containing fields with KK modes and a part containing fields wit
modes. In (5),Qa,r is the gauge group generator in the representationr of the gauge group,m2

r is the mass operator andχr
is the helicity of various charged particles contributing in the loop. Indeed, consider again for concreteness gauge cou
a D9 brane and considerδ large compact dimensionsR‖MI � 1 parallel to D9 and orthogonal to D5. Then the 99 states
have associated KK states, but 95 states will not. Evaluating (5) withµ0 =MZ , one finds

1

αa(µ)
= 1

αa(MZ)
− ba

2π
ln
µ

MZ
− b̃a

2π

1/M2
Z∫

1/µ2

dt

t
θδ3

(
it

πR2‖

)

� 1

αa(MZ)
− ba

2π
ln
µ

MZ
+ b̃a

2π
ln(µR‖)− b̃a

2π

[
(µR‖)δ − 1

]
. (6)

The coefficients̃ba in (6) denote one-loop beta-function coefficients of the massive KK modes, to be computed in each
model. The important term contained in (6) is the power-like term(µR‖)δ � 1, which overtakes the logarithmic terms in t
higher-dimensional regime and governs the eventual unification pattern.

The power-like term is proportional to the coefficientsb̃a , thatare not the usual 4d MSSM ones which successfully pred
unification. Let us, however, go on and find theminimal possible embedding of the MSSM in a 5d spacetime. Before doin
notice that compactifying on a circle a supersymmetric theory in 5d gives a 4d theory with at leastN = 2 supersymmetries. Th
simplest way to avoid this is to compactify on anorbifold. We consider as an example the case of aZ2 orbifold which breaks
supersymmetry down toN = 1. 5d fields can be even or odd under this operation, in particular 5d Dirac fermions in 4d tr
into one even Weyl fermion containing a zero mode and its KK tower and one odd Weyl fermion, with no associated zer
and its KK tower. It is easy to realize that a 4d chiral multiplet(ψ1, φ1) can arise from a 5d hypermultiplet containing K

modes(ψ(n)1 ,ψ
(n)
2 , φ

(n)
1 , φ

(n)
2 ) or from a 5d vector multiplet. Similarly, a 4d massless vector multiplet(λ,Aµ) arises from a

5d vector multiplet containing the KK modes(λ(n),ψ(n)3 ,A
(n)
µ , a(n)), whereψ(n)i , i = 1,2,3, are 4d Weyl fermions andφ(n)i ,
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a(n) are complex scalars. The massive KK representations are clearly nonchiral, while chirality is generated at the lev
modes.

The simplest embedding of the MSSM in 5d is the following [5,6]. The gauge bosons and the two Higgs multiplet

MSSM are already in real representations of the gauge group and naturally extend to KK representations(λ(n),ψ
(n)
3 ,A

(n)
µ , a(n))

and(ψ(n)1 ,ψ
(n)
2 ,H

(n)
1 ,H

(n)
2 ), respectively.2 The matter fermions of MSSM, being chiral, can either contain only zero m

or, alternatively, can have associated mirror fermions and KK excitations forη = 0,1,2,3 families. The unification patter
does not depend onη (the value of the unified coupling, on the other hand, does), since each family forms a complete
representation. The massive beta-function coefficients for this simple 5d extension of the MSSM are

(b̃1, b̃2, b̃3)=
(

3

5
,−3,−6

)
+ η(4,4,4), (7)

where, as usual, we use the SU(5) embedding̃b1 ≡ (3/5)b̃Y . These coefficients in the caseη= 3 are not the same as the MSS
ones(b1, b2, b3)= (33/5,1,−3). However, interestingly enough, as seen from Fig. 1, the couplings unify with a surpris
good precision, for any compact radius 103 GeV � R−1

‖ � 1015 GeV, at a energy scale roughly a factor of 20 above

compactification scaleR−1
‖ . The algebraic reason for this is that, in order to have MSSM unification, the conditions tha

be fulfilled are:

B12

B13
= B13

B23
= 1, whereBac ≡ b̃a − b̃c

ba − bc . (8)

Although these relations are not satisfied exactly in our case, they are nonetheless approximately satisfiedB12/B13 = 72/77�
0.94,B13/B23 = 11/12� 0.92.

This fast unification with KK states is another numerical miracle, similar to the MSSM unification and may be rega
one serious hint pointing into the possible relevance of extra dimensions in our world. The usual MSSM unification is a
case of our more general scenario in the limit whereR−1 approaches 1016y GeV (the usual GUT scale). There are clearly ma
questions that this scenario can raise, which were discussed in detail in the literature [5,6,28–30] and will not be discus

Fig. 1. Unification of gauge couplings in the presence of extra spacetime dimensions. We consider two representative cases:R−1 = 105 GeV
(left), R−1 = 108 GeV (right). In both cases we have takenδ = 1 andη= 0.

2 As one of the two Higgses in a hypermultiplet is odd underZ2, the simplest extension actually has one KK Higgs hypermultiplet and
Higgs without KK excitations.
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4. Bulk physics: neutrino masses with large extra dimensions

There is more and more convincing evidence for the existence of neutrino masses and mixings. Any extensio
Standard Model should therefore address this question, at least at a qualitative level. The most elegant mech
explaining the smallness of neutrino masses postulates the existence of right-handed neutrinos with very large Majora
1011 GeV�M � 1015 GeV. Via the seesaw mechanism, very small neutrino masses, of the order ofmν ∼ v2/M , are generated
wherev � 246 GeV is the vev of the Higgs field. This suggests the presence of a large (intermediate or GUT) scale in th
related to new physics. On the other hand, low-scale string models do not have such a large scale and therefore, su
have problems to accommodate neutrino masses.

The scenario we present here is based on the observation that right-handed neutrinos can be put in the bulk
large (mm size) compact space [31–33], perpendicular to the brane where we live. Consider for simplicity the cas
family of neutrinos. The model consists of our brane with the left-handed neutrinoνL and Higgs field confined to it and on
bulk Dirac neutrino,Ψ = (ψ1, ψ̄2)

T in Weyl notation, invading a space with (again for simplicity) one compact perpendi
directiony. The compact direction is taken here to be an orbifoldS1/Z2, since as is well known circle compactifications are
phenomenologically realistic. TheZ2 orbifold acts on the spinors asZ2Ψ (y)= ±γ5Ψ (−y), so that one of the two-compone
Weyl spinors,ψ1, is even under theZ2 actiony → −y, while the other spinorψ2 is odd. If the left-handed neutrinoνL is
restricted to a brane located at the orbifold fixed pointy = 0,ψ2 vanishes at this point and soνL couples only toψ1. This then
results in a Lagrangian of the form

L= −1

2

∫
d4x dyMs

{�Ψ iγM∂MΨ − ∂M �Ψ iγMΨ
} −

∫
d4x

{
ν̄L iσ̄ µDµνL + (m̂νLψ1|y=0 + h.c.)

}
. (9)

HereMs is the mass scale of the higher-dimensional fundamental theory (a reduced Type I string scale) and the sp
indexM runs over all five dimensions:xM ≡ (xµ,y). The first line describes the kinetic-energy term for the 5dΨ field, while
the second line describes the kinetic energy of the 4d two-component neutrino fieldνL, as well as the coupling betweenνL
andψ1. Note that in 5d, an even (underZ2) bare Dirac mass term forΨ would not have been invariant under the action of
Z2 orbifold, since�ΨΨ ∼ψ1ψ2+ h.c.

Now compactify the Lagrangian (9) down to 4d, expanding the 5dΨ field in Kaluza–Klein modes. The orbifold relation
ψ1,2(−y)= ±ψ1,2(y) imply that the Kaluza–Klein decomposition takes the form

ψ1(x, y)= 1√
2πR

∞∑
n=0

ψ
(n)
1 (x)cos

(
ny

R

)
, ψ2(x, y)= 1√

2πR

∞∑
n=1

ψ
(n)
2 (x)sin

(
ny

R

)
. (10)

However, a more general possibility emerges naturally from the Scherk–Schwarz compactification. Recall that our
5d Dirac spinor fieldΨ is decomposed in the Weyl basis asΨ = (ψ1, ψ̄2)

T, whereψ1 andψ2 have the mode expansions giv
in (10). Let us consider performing a local rotation in(ψ1,ψ2) space of the form(

ψ̂1
ψ̂2

)
≡U

(
ψ1
ψ2

)
, whereU ≡

(
cos(ωy/R) −sin(ωy/R)
sin(ωy/R) cos(ωy/R)

)
, (11)

with ω an (for the moment) arbitrary real number. The effect of the matrixU in (11) is to twist the fermions after a 2πR rotation
on y. Such twisted boundary conditions, as we have seen, are allowed in field and in string theory if the higher-dim
theory has a suitable U(1) symmetry. The 4d Lagrangian of the component fields coming from the 5d Lagrangian
from (9) by replacing everywhereψi → ψ̂i .

For convenience, let us defineM0 = ω/R and the linear combinationsN(n) ≡ (ψ(n)1 + ψ(n)2 )/
√

2 andM(n) ≡ (ψ(n)1 −
ψ
(n)
2 )/

√
2 for all n > 0. We also define in the following the effective Dirac neutrino mass couplings

m≡ m̂√
2
√
πMsR

. (12)

In the Lagrangian (9), the Standard Model neutrinoνL mixes with the entire tower of Kaluza–Klein states of the high
dimensionalΨ field. Indeed, if for simplicity we restrict our attention to the case of only one extra dimension, define

NT ≡ (
νL,ψ

(0)
1 ,N(1),M(1),N(2),M(2), . . .

)
, (13)
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and integrate over the compactified dimension, we see that the mass terms in the Lagrangian (9) take the form(1/2)(NTMN +
h.c.), where the mass matrix is

M=



0 m m m m m . . .

m M0 0 0 0 0 . . .

m 0 M0 + 1/R 0 0 0 . . .

m 0 0 M0 − 1/R 0 0 . . .

m 0 0 0 M0 + 2/R 0 . . .

m 0 0 0 0 M0 − 2/R . . .
...

...
...

...
...

...
. . .


. (14)

Let us start for simplicity by disregarding the possible bare Majorana mass term, settingM0 = 0. In this case, the
characteristic polynomial which determines the eigenvaluesλ of the mass matrix (14) can be worked out exactly and ta
the form:[ ∞∏

k=1

(
k2

R2
− λ2

)][
λ2 −m2 + 2λ2m2R2

∞∑
k=1

1

k2 − λ2R2

]
= 0, (15)

which is clearly invariant underλ → −λ. From this we immediately see that all eigenvalues fall intodegenerate, pairs of
opposite sign. In order to solve this eigenvalue equation, it is convenient to note thatλ = k/R is never a solution (unless o
coursem = 0), as the cancellation that would occur in the first factor in (15) is offset by the divergence of the second
We are therefore free to disregard the first factor entirely, and focus on solutions for which the second factor vanis
summation in the second factor can be performed exactly, resulting in the transcendental equation

λR = π(mR)2 cot(πλR). (16)

All the eigenvalues can be determined from this equation, as functions of the productmR. This equation can be analyze
graphically [31], and in the limitmR→ 0 (corresponding tom→ 0), the eigenvalues arek/R, k ∈ Z, with a double eigenvalue
at k = 0. Conversely, in the limitmR→ ∞, the eigenvalues withk > 0 shift smoothly toward(k + 1/2)/R, while those with
k < 0 shift smoothly toward(k − 1/2)/R. Finally, the double zero eigenvalue splits toward the values±1/(2R). The overlap
between the light mass eigenstates and the neutrino gauge eigenstate is generically less than half in this scenario. Th
prediction of this scenario is that the gauge neutrino and the (lightest) sterile neutrino are degenerate in mass, a poss
can be experimentally tested.

Let us now return to the more general caseM0 �= 0. To this end, it is useful to define

k0 ≡ [M0R], ε ≡M0 − k0

R
, (17)

where[x] denotes here the integer nearest tox. Thus,ε is the smallest diagonal entry in the mass matrix (14), correspondi
the excited Kaluza–Klein stateM(k0). In other words,ε ≡M0 (moduloR−1) satisfies−1/(2R) < ε � 1/(2R). The remaining
diagonal entries in the mass matrix can then be expressed asε± k′/R, wherek′ ∈Z+. Reordering the rows and columns of o
mass matrix, we can therefore cast it into the form

M=



0 m m m m m . . .

m ε 0 0 0 0 . . .

m 0 ε+ 1/R 0 0 0 . . .

m 0 0 ε− 1/R 0 0 . . .

m 0 0 0 ε+ 2/R 0 . . .

m 0 0 0 0 ε− 2/R . . .
...

...
...

...
...

...
. . .


. (18)

While this is of course nothing but the original mass matrix (14), the important consequence of this rearrangement is
heavy mass scaleM0 has been replaced by thelight mass scaleε. Unlike M0, we see that|ε| ∼ O(R−1). Thus, the heavy
Majorana mass scaleM0 completelydecouples from the physics. Indeed, the value ofM0 enters the results only through i
determinations ofk0 and the precise value ofε. Therefore, interestingly enough, the presence of the infinite tower of regu
spaced Kaluza–Klein states ensures that only the value ofM0 moduloR−1 plays a role.

The easiest way to solve (18) for the eigenvaluesλ± is to integrate out the Kaluza–Klein modes. It turns out that there
two relevant cases to consider, depending on the value ofε. If |ε| �m (which can arise whenmR
 1), all of the Kaluza–Klein
modes are extremely massive relative tom, and we can integrate them out to obtain an effectiveνLνL mass term of size:

|ε| �m: mν = m2

ε
+m2

∞∑
′

(
1

ε+ k′/R + 1

ε− k′/R
)

= πm2R cot(πRε). (19)

k =1
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We shall discuss the special caseε = 1/(2R) later on. Alternatively, if|ε| ��m, the lightest Kaluza–Klein modeM(k0) should
not be integrated out, and the end result is an effectiveνLνL mass term of sizeµ, where

|ε| ��m: µ≡ −m2
∞∑
k′=1

(
1

ε+ k′/R + 1

ε− k′/R
)

= m2

ε
− πm2R cot(πRε). (20)

Note thatµ→ 0 smoothly asε→ 0, withµ otherwise of sizeO(m2R). Diagonalizing the final 2× 2 mass matrix mixingνL
andM(k0) in the presence of this mass term then yields

|ε| ��m: λ± = 1

2

[
(µ+ ε)±

√
(µ− ε)2 + 4m2

]
. (21)

We therefore conclude that, although we may have started with a bare Majorana massM0 � R−1, in all cases the fina
neutrino mass remains of orderm2R. Even though we might have expected a neutrino mass of orderm2/M0 from the mixing

betweenνL and the original zero-modeψ(0)1 , the contributionm2/M0 from the zero-mode is completely canceled by

summation over the Kaluza–Klein tower, while the seesaw betweenνL andM(k0) becomes dominant.
In string theory, however, there are additional topological constraints that permit onlydiscrete values ofM0. Taking

M0 = 1/(2R) then impliesψ1,2(2πR)= −ψ1,2(0), which shows that lepton number is broken globally (although not loca
as the spinor is taken around the compactified space. It is straightforward to show that whenε = 1/2R, the characteristic
eigenvalue equation det(M− λI)= 0 for the mass matrix (14), (18) becomes

λR

[ ∞∏
k=1

(
λ2R2 −

(
k− 1

2

)2)][
1− 2m2R2

∞∑
k=1

1

λ2R2 − (k− 1/2)2

]
= 0. (22)

This has an exact trivial solutionλ = 0, corresponding to an exactly massless neutrino. Indeed, the characteristic poly
for the mass matrix in this case has the form

λR = −π(mR)2 tan(πλR). (23)

It is then clear than the zero eigenvalue is always present, irrespective of the value of the radius. In fact, by changing
of M0, we see that it is possible to smoothlyinterpolate between the scenario withM0 = 0 and the scenario we are discuss
here [31]. This also provides another explanation of why only the valueε ∼M0 (moduloR−1) is relevant physically. The
regular, repeating aspect of the infinite towers of Kaluza–Klein states is now manifested graphically in the periodic n
the cotangent function.

The scenario(s) presented have also other interesting consequences. The neutrino eigenstate can now oscillate int
tower of right-handed KK neutrinos with a probability that can be reliably estimated and experimentally tested. Moreov
if in the last scenario presented the physical neutrino is massless, its probability of oscillation into the tower of KK s
nonvanishing. In particular, a neutrino mass difference8m∼ 10−2 eV, that fits the experimental data, could well be explain
by an oscillation of the massless neutrino into the first KK state, for a radiusR−1 ∼ 10−2 eV, precisely in the mm region w
are interested in! Thus, we see that neutrino oscillations do not require neutrino masses in higher dimensions. Fina
mention that recent SNO data strongly disfavors oscillations of an active neutrino into a sterile one. The scenario m
above involves oscillations into several sterile neutrinos and, as such, is not directly excluded by the recent data. Mor
needed, however, in order to check the viability of this scenario in light of the new solar neutrino data.

Another possible explanation for neutrino masses in low scale string models, without invoking bulk sterile neutrin
recently proposed in [34], by producing a neutrino mass of the ordermν ∼M4

Z
/M3

I
. Finally, it should be mentioned that

similar formalism, but with axions in the bulk, can potentially be used to provide possible new mechanisms for axion inv
[3,4,35,36].
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