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Abstract

The physical motivations and consequences of large extra dimensions are reviewed in light of recent developments, in
particular mm-sized extra dimensions, gauge coupling unification and neutrino mess#e this article: K.R. Dienes et
al., C. R. Physique 4 (2003).
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Résumé

Unification et physique des dimensions supplémentairesNous passons en revue les motivations physiques et les
conséquences des grandes dimensions d’espace supplémentaires, en particulier I'unification des couplages et les masses de:
neutrinos Pour citer cet article: K.R. Dieneset al., C. R. Physique 4 (2003).

0 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

It was noticed [1,2] that in Type | strings the string scale can be lowered all the way down to the TeV range. Similar
ideas appeared for lowering the fundamental Planck scale in theories with (sub)millimeter gravitational dimensions [3,4], as an
alternative solution to the gauge hierarchy problem, and, simultaneously, a new way for lowering the GUT scale in theories with
large (TeV) dimensions [5,6] was proposed. The new emerging picture found a simple realization in a perturbative Type | setting
[7] with low string scale (in the TeV range) and became the subject of an intense activity, mostly on the phenomenological side,
but also on the theoretical side. We review here some of the salient features of this class of models and their phenomenological
and experimental consequences.

2. Millimeter and TeV ~1 large extra dimensions

The presence of branes in String Theory opens new perspectives for particle physics phenomenology. Indeed, in Type |
strings the string scale is not necessarily tied to the Planck scale. In view of the new D-brane picture, let us take a closer look at
the simplest example of compactified Type | string, with only D9 branes present. The string scale can be in the TeV range if the
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string coupling is extremely small; ~ 10732, One can see that in this case the compact volume is very smafl ~ 10732,

Let us split the compact volume into two parts= VD V@ wherev D, of dimension 6- n, is of order one in string units
andV (@, of dimensiom, is very small. The Kaluza—Klein states of the brane fields akﬁff?@ are much heavier than the string
scale and therefore are difficult to excite. The physics is then better captured in this case performing T-dualiti#$%jong
which can be written:

Af 1
Ny = —r—, Vi=——5-. 1
1 v<2)M;l L V(Z)MIZ” @)
In the T-dual picture, neglecting numerical factors, we find
6—n
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where for transparency of notation we redefired = V). After then T-dualities, the D9 brane becomes a B{) brane,

since the T-dual winding modes of the bulk (orthogonal) compact space are very heavy and therefore the brane fields cannot
propagate in the bulk. As seen from (2), for a very large bulk volume the string scale can be vafy ke p. The geometric

picture here is that we have a D-brane with some compact radii parallel to it, ofmpér and some very large, orthogonal
compact radii. In particular, if the full compact space is orthogonal to the braaes), from (2) the T-dual string coupling is

fixed by the unified coupling’l ~ aguT, and therefore we find [7]

M2~ vy Mz, ©)

YGuT

a relation similar to that proposed in the field-theoretical scenario of [3,4].

Let us now imagine a ‘brane-world’ pictufein which the Standard Model gauge group and charged fields are confined
to the D-brane under consideration. We can then ask a very important question: what are the present experimental limits on
parallel R and perpendicular | type radii? The Standard Model fields have light KK states in the parallel direciipns

Their possible effects in accelerators were studied in detail [15,16] and the present limits ape 4-5 TeV. On the other

hand, Standard Model excitations related®p are very heavy and are thus irrelevant at low energy. The main constraints on
R come from the presence of very light KK gravitational excitations, which can therefore generate effects in colliders [17-19]
and deviations from the Newton law of gravitational attraction. The actual experimental limits on such deviations are limited to
the mm range and experiments in the near future are planned to improve them [20]. There are also collider effects coming from
string physics at energies closeMy [21-23]. ForM; ~ TeV in (3), the case of only one extra dimension is clearly excluded,
since it asks fOI’RIl ~ 10% Km. However, for two extra dimensions, we finmj_l ~ 1 mm, only marginally excluded by the

present experimental data. On the other hand, if all compact dimensions are perpendicular and large, tz‘ilie1L findsn,

a distance scale completely inaccessible for Newton law measurements. Such a physical pictife wilfeV provides in
principle a new solution to the gauge hierarchy problem, i.e., of why the Higgs Mjassmuch lower than the 4d Planck mass
M p, provided the physical cutofff/; has similar valuedf; ~ Mj,.

In Type | strings [24—-26], the brane we considered can be a D9 or a D5 brane, up to T-dualities. Our brane world can live
on any of the branes; let us choose for concreteness that our Standard Model gauge group be on a D9 brane. Notice that, while
D9 branes fill (before T-dualities) the full 10d space, D5 branes fill only six dimensions. The D5 degrees of freedom can of
course propagate in what we called previously bulk space, and can change slightly our previous picture. The relation between
the corresponding D9 and D5 gauge couplings is:

2
5 _v,, @)
85
whereV | denotes here (before T-dualities) the compact volume perpendicular to the D5 brépesifl in string units, then
D5 branes live in (at least part of) the bulk and, by (4) their gauge coupling is very suppressed compared to our (D9) gauge
coupling. In particular, ifV) in (4) is as in (3), the D5 gauge couplings are of gravitational strength. The fields in mixed 95
representations are charged under both gauge groups. Then, due to their very small gauge couplings, the D5 gauge groups
manifest themselves as global symmetries on our D-brane, and could be used for protecting baryon and lepton number non-
conservation processes. Indeed, global symmetries are presumably violated by non-renormalizable operators suppressed by the
fundamental scal#/; and, sinceM/; can be very low, we need suppression of many higher-dimensional operators.

1 For earlier proposals of such a ‘brane-world’ picture, see [8—14].
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There are clearly many challenging questions that such a scenario must answer in order to be seriously considered as an
alternative to the conventional ‘desert picture’ of supersymmetric unification at energies of oY8l&ed The gauge hierarchy
problem still has a counterpart here, understanding the possible mm size of the compact dimensions (perpendicular to our brane)
in a theory with a fundamental length (energy) in the 3®mm (TeV) range. There are several ideas concerning this issue in
the literature, which, however, need further studies in realistic models in order to prove their viability. A serious theoretical
question concerns gauge coupling unification, that in this case, if it exists, must be completely different from the conventional
MSSM (Minimal Supersymmetric Standard Model) one. Moreover, there is more and more convincing evidence for neutrino
masses and mixings, and the conventional picture provides an elegant explanation of their pattern via the seesaw mechanism
with a mass scale of the order of thel#010'> GeV, surprisingly close to the usual GUT scale. Cosmology, astrophysics,
accelerator physics and flavor physics put additional strong constraints on the low-scale string scenario.

3. Gauge coupling unification

Models with gauge-coupling unification at low energy triggered by Kaluza—Klein states were proposed in [5,6]. It is clear
that low-scale string models are the natural framework for this fast-driven unification.

The essential ingredient in this proposal are the KK excitations of the Standard Model gauge bosons and matter multiplets
and their contribution to the energy evolution of the physical gauge couplings. In the early paper [27], Taylor and Veneziano
pointed out that the KK excitations give power-law corrections that at low energy can be interpreted as threshold corrections.
Actually, as shown in [5,6], if the energy is higher than the KK compactification scake these corrections should be
interpreted as power-law accelerated evolutions of gauge couplings that, under some reasonable assumptions, can bring these
couplings together at low energies.

Let us start, for reasons to be explained later on, with the MSSM in 4d and try to extend it to 5d, where the fifth dimension is
a circle of radiusR|, in the notation introduced in the previous section. In this case the evolution of gauge couplings is governed
by [5.6]

1 l/M(Z)dt 1
a(10) Ota(/to) Z / 2 Oir( gz Z (5)
1/

where we separated the mass operator into a part containing fields with KK modes and a part containing fields without KK
modes. In (5),0q,r is the gauge group generator in the representatiohthe gauge groupnf is the mass operator ang

is the helicity of various charged particles contributing in the loop. Indeed, consider again for concreteness gauge couplings of
a D9 brane and considérlarge compact dimensiong M; > 1 parallel to D9 and orthogonal to D5. Then the 99 states will

have associated KK states, but 95 states will not. Evaluating (5)wgte M2, one finds

_yMz
1 1 —b—alni—b—a dt95<it>
aa(n)  wa(Myz) 2m My 27 t ﬂRﬁ
1/u?
1 b b
~ Jbagg iy e In(,uR”) - —[(MR”) -1J. (6)
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The coefficients, in (6) denote one-loop beta-function coefficients of the massive KK modes, to be computed in each specific
model. The important term contained in (6) is the power-like temﬁ”)5 > 1, which overtakes the logarithmic terms in the
higher-dimensional regime and governs the eventual unification pattern.

The power-like term is proportional to the coefficiehts thatare not the usual 4d MSSM ones which successfully predict
unification. Let us, however, go on and find thimimal possible embedding of the MSSM in a 5d spacetime. Before doing so,
notice that compactifying on a circle a supersymmetric theory in 5d gives a 4d theory with dtlea&tsupersymmetries. The
simplest way to avoid this is to compactify on arbifold. We consider as an example the case @baorbifold which breaks
supersymmetry down t& = 1. 5d fields can be even or odd under this operation, in particular 5d Dirac fermions in 4d truncate
into one even Weyl fermion containing a zero mode and its KK tower and one odd Weyl fermion, with no associated zero mode,
and its KK tower. It is easy to realize that a 4d chiral multiplét, ¢1) can arise from a 5d hypermultiplet containing KK

modes(w(”) w(”) (") (”)) or from a 5d vector multiplet. Similarly, a 4d massless vector multiplet,,) arises from a
5d vector multiplet contalnlng the KK modes™, wé”), A,(f), a®), wherez//,.("), i =1,2,3, are 4d Weyl fermions anﬂi(”),
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a™ are complex scalars. The massive KK representations are clearly nonchiral, while chirality is generated at the level of zero
modes.
The simplest embedding of the MSSM in 5d is the following [5,6]. The gauge bosons and the two Higgs multiplets of the

MSSM are already in real representations of the gauge group and naturally extend to KK represe{nféﬁimgz), A,(f), a®)

and(zpi"), z/é"), Hl("), Hz(”)), respectively¥ The matter fermions of MSSM, being chiral, can either contain only zero modes
or, alternatively, can have associated mirror fermions and KK excitations 00, 1, 2, 3 families. The unification pattern

does not depend om (the value of the unified coupling, on the other hand, does), since each family forms a complete SU(5)
representation. The massive beta-function coefficients for this simple 5d extension of the MSSM are

(b1, b9, b3) = (g -3, —6) +1n(4,4,4), 7

where, as usual, we use the S)Jembeddingy1 = (3/5)by . These coefficients in the cage= 3 are not the same as the MSSM
ones(b1, by, b3) = (33/5, 1, —3). However, interestingly enough, as seen from Fig. 1, the couplings unify with a surprisingly
good precision, for any compact radius31GeV < R[l < 101° GeV, at a energy scale roughly a factor of 20 above the

compactification scalﬂ[l. The algebraic reason for this is that, in order to have MSSM unification, the conditions that must
be fulfilled are:

B B by — b
212 _ 218 _ 1 \whereBy = 24— ¢,
B13 Bo3 bq — b¢

®)

Although these relations are not satisfied exactly in our case, they are nonetheless approximatelyBgtidfied= 72/77 ~
0.94, B13/B23=11/12~0.92.

This fast unification with KK states is another numerical miracle, similar to the MSSM unification and may be regarded as
one serious hint pointing into the possible relevance of extra dimensions in our world. The usual MSSM unification is a limiting
case of our more general scenario in the limit wheré approaches 28y GeV (the usual GUT scale). There are clearly many
guestions that this scenario can raise, which were discussed in detail in the literature [5,6,28—-30] and will not be discussed here.
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Fig. 1. Unification of gauge couplings in the presence of extra spacetime dimensions. We consider two representativelcase® GeV
(left), R™1=108 Gev (right). In both cases we have takes 1 andn = 0.

2 As one of the two Higgses in a hypermultiplet is odd under the simplest extension actually has one KK Higgs hypermultiplet and one
Higgs without KK excitations.
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4. Bulk physics: neutrino masses with large extra dimensions

There is more and more convincing evidence for the existence of neutrino masses and mixings. Any extension of the
Standard Model should therefore address this question, at least at a qualitative level. The most elegant mechanism for
explaining the smallness of neutrino masses postulates the existence of right-handed neutrinos with very large Majorana masses
101 GeV < M < 1015 GeV. Via the seesaw mechanism, very small neutrino masses, of the oralerof2/ M, are generated,
wherev >~ 246 GeV is the vev of the Higgs field. This suggests the presence of a large (intermediate or GUT) scale in the theory,
related to new physics. On the other hand, low-scale string models do not have such a large scale and therefore, superficially,
have problems to accommodate neutrino masses.

The scenario we present here is based on the observation that right-handed neutrinos can be put in the bulk of a very
large (mm size) compact space [31-33], perpendicular to the brane where we live. Consider for simplicity the case of one
family of neutrinos. The model consists of our brane with the left-handed neutriramd Higgs field confined to it and one
bulk Dirac neutrino® = (¥, ¥2)" in Weyl notation, invading a space with (again for simplicity) one compact perpendicular
directiony. The compact direction is taken here to be an orbifidZ,, since as is well known circle compactifications are not
phenomenologically realistic. TH&, orbifold acts on the spinors &Y (y) = +ys5¥ (—y), so that one of the two-component
Weyl spinors,y1, is even under th&», actiony — —y, while the other spinot), is odd. If the left-handed neutring; is
restricted to a brane located at the orbifold fixed pgirt O, /> vanishes at this point and $@ couples only tof;. This then
results in a Lagrangian of the form

1 _ _
C:—E/d4xdyMs{Win3MW—BMlI/inlI/} —/d4x{DLi6“D/LvL+(%vL1pl\y=o+h.C.)}. (9)

Here M is the mass scale of the higher-dimensional fundamental theory (a reduced Type | string scale) and the space-time
index M runs over all five dimensions:™ = (x#, y). The first line describes the kinetic-energy term for the/stleld, while
the second line describes the kinetic energy of the 4d two-component neutrino,fiedd well as the coupling between
andv1. Note that in 5d, an even (undgp) bare Dirac mass term fa¥ would not have been invariant under the action of the
Z orbifold, since®@ ¥ ~ y1yo+ h.c.

Now compactify the Lagrangian (9) down to 4d, expanding the5field in Kaluza—Klein modes. The orbifold relations
¥1.2(—y) = £ 2(y) imply that the Kaluza—Klein decomposition takes the form

1 & ny 1 & . (ny
Yi(x,y) = m};}w{)(x)cos(;), Yolx,y) = mﬂ;wé Rx)sm(;). (10)

However, a more general possibility emerges naturally from the Scherk—Schwarz compactification. Recall that our original
5d Dirac spinor fieldV is decomposed in the Weyl basis#s= (1, V)T, wherey andy» have the mode expansions given
in (10). Let us consider performing a local rotation(ify, ¥») space of the form

V1) _,, (V1 _ (coswy/R) —sin(wy/R)
(w) =U (w)’ whereU’ = (sin(wy/R) coswy/R) ) (1)

with @ an (for the moment) arbitrary real number. The effect of the matrir (11) is to twist the fermions after az rotation
on y. Such twisted boundary conditions, as we have seen, are allowed in field and in string theory if the higher-dimensional
theory has a suitable U(1) symmetry. The 4d Lagrangian of the component fields coming from the 5d Lagrangian is found
from (9) by replacing everywherg; — ;.

For convenience, let us defilléy = w/R and the linear combinationsy ") = (w{”) + wé”))/«/i andM® = (wi") -
zpé"))/\/i for alln > 0. We also define in the following the effective Dirac neutrino mass couplings

m
m=—— . 12
V2 /TMsR (12)

In the Lagrangian (9), the Standard Model neutrino mixes with the entire tower of Kaluza—Klein states of the higher-
dimensional¥ field. Indeed, if for simplicity we restrict our attention to the case of only one extra dimension, define

NT= (. v iO)’ NO y® N @ ), (13)



360 K.R. Dieneset al. / C. R. Physique 4 (2003) 355-362

and integrate over the compactified dimension, we see that the mass terms in the Lagrangian (9) take i) fofh MN +
h.c.), where the mass matrix is

0 m m m m m
m Mo 0 0 0 0
m 0 My+1/R 0 0 0
M= m 0 0 MO—l/R 0 0 (14)
m 0 0 0 Mg+ 2/R 0
m 0

0 0 0 Mo—2/R

Let us start for simplicity by disregarding the possible bare Majorana mass term, skfging 0. In this case, the
characteristic polynomial which determines the eigenvalue$ the mass matrix (14) can be worked out exactly and takes
the form:

(k2 2 2,52 2,2% 1
k=1 k=1

which is clearly invariant undek — —A. From this we immediately see that all eigenvalues fall idégenerate, pairs of

opposite sign. In order to solve this eigenvalue equation, it is convenient to note th&f R is never a solution (unless of
coursem = 0), as the cancellation that would occur in the first factor in (15) is offset by the divergence of the second factor.
We are therefore free to disregard the first factor entirely, and focus on solutions for which the second factor vanishes. The
summation in the second factor can be performed exactly, resulting in the transcendental equation

AR = 7 (mR)2 COt(mAR). (16)

All the eigenvalues can be determined from this equation, as functions of the pra@ucthis equation can be analyzed
graphically [31], and in the limit: R — O (corresponding te: — 0), the eigenvalues akg R, k € Z, with a double eigenvalue
atk = 0. Conversely, in the limitn R — oo, the eigenvalues witk > 0 shift smoothly towardk + 1/2)/R, while those with
k < 0 shift smoothly towardk — 1/2)/R. Finally, the double zero eigenvalue splits toward the vatb&s(2R). The overlap
between the light mass eigenstates and the neutrino gauge eigenstate is generically less than half in this scenario. The important
prediction of this scenario is that the gauge neutrino and the (lightest) sterile neutrino are degenerate in mass, a possibility that
can be experimentally tested.

Let us now return to the more general cagg+~ 0. To this end, it is useful to define

ko= [MgR], &= Mqy— ]%, (17)

where[x] denotes here the integer nearest td hus,e is the smallest diagonal entry in the mass matrix (14), corresponding to
the excited Kaluza—Klein state *o). In other wordsg = Mg (modulo R 1) satisfies—1/(2R) < ¢ < 1/(2R). The remaining
diagonal entries in the mass matrix can then be expressest 25 R, wherek’ € ZT. Reordering the rows and columns of our
mass matrix, we can therefore cast it into the form

0 m m m m m
m € 0 0 0 0
m 0 e+1/R 0 0 0
M=|m 0 0 e—1/R 0 0 (18)
m 0 0 0 e+2/R 0
m 0

0 0 0 e-2/R

While this is of course nothing but the original mass matrix (14), the important consequence of this rearrangement is that the
heavy mass scalé/ has been replaced by thight mass scale. Unlike Mg, we see thats| ~ O(R~1). Thus, the heavy
Majorana mass scal®/y completelydecouples from the physics. Indeed, the value #f; enters the results only through its
determinations ofg and the precise value ef Therefore, interestingly enough, the presence of the infinite tower of regularly-
spaced Kaluza—Klein states ensures that only the valigahoduloR—1 plays a role.

The easiest way to solve (18) for the eigenvaluesis to integrate out the Kaluza—Klein modes. It turns out that there are
two relevant cases to consider, depending on the valaelbfe| 3> m (which can arise whem R « 1), all of the Kaluza—Klein
modes are extremely massive relativertoand we can integrate them out to obtain an effective; mass term of size:

2 00
. m 2

€ tmy=—+m® )

le] > m: m, - m p l(

1 n 1
e+k’/R  e—k'/R

) A cot(xr Re). (19)
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We shall discuss the special case 1/(2R) later on. Alternatively, ific| 3% m, the lightest Kaluza—Klein mod#f %o should
not be integrated out, and the end result is an effectiug mass term of sizg, where

00 2
1 1 m
L — 2 2
le| m: u=—-—m k,g_l<5+k//R +8—k’/R):_$ — wm“R cot(x Re). (20)

Note thatuy — 0 smoothly ag — 0, with u otherwise of siz&)(m?R). Diagonalizing the final Z 2 mass matrix mixing,
andM %0) in the presence of this mass term then yields

1
le] % m: Ai:5[(u+s)i,/(u—s)2+4m2]. 1)

We therefore conclude that, although we may have started with a bare Majoranafmassk 1, in all cases the final
neutrino mass remains of orde” R. Even though we might have expected a neutrino mass of erig/y from the mixing

betweenv; and the original zero-mod&io), the contributioan/Mo from the zero-mode is completely canceled by the

summation over the Kaluza—Klein tower, while the seesaw betweemd M ) becomes dominant.

In string theory, however, there are additional topological constraints that permitdmschete values of Mg. Taking
Mo =1/(2R) then impliesyr1 (27 R) = —1,2(0), which shows that lepton number is broken globally (although not locally)
as the spinor is taken around the compactified space. It is straightforward to show that whbf2R, the characteristic
eigenvalue equation de¥1 — AI) = 0 for the mass matrix (14), (18) becomes

00 1\2 s 1

252 252

AR || AR —k— = 1—2m“R E ———— | =0. 22

[ ( ( 2) )M A2R2—(k—1/2)2j| (22)
k=1 k=1

This has an exact trivial solutioh= 0, corresponding to an exactly massless neutrino. Indeed, the characteristic polynomial

for the mass matrix in this case has the form
AR = —(mR)%tan(rAR). (23)

It is then clear than the zero eigenvalue is always present, irrespective of the value of the radius. In fact, by changing the value
of Mo, we see that it is possible to smoottihterpolate between the scenario withfg = 0 and the scenario we are discussing

here [31]. This also provides another explanation of why only the vakseMq (modulo R—1) is relevant physically. The

regular, repeating aspect of the infinite towers of Kaluza—Klein states is now manifested graphically in the periodic nature of
the cotangent function.

The scenario(s) presented have also other interesting consequences. The neutrino eigenstate can now oscillate into an infinite
tower of right-handed KK neutrinos with a probability that can be reliably estimated and experimentally tested. Moreover, even
if in the last scenario presented the physical neutrino is massless, its probability of oscillation into the tower of KK states is
nonvanishing. In particular, a neutrino mass difference ~ 102 eV, that fits the experimental data, could well be explained
by an oscillation of the massless neutrino into the first KK state, for a ragfids~ 102 eV, precisely in the mm region we
are interested in! Thus, we see that neutrino oscillations do not require neutrino masses in higher dimensions. Finally, let us
mention that recent SNO data strongly disfavors oscillations of an active neutrino into a sterile one. The scenario mentioned
above involves oscillations into several sterile neutrinos and, as such, is not directly excluded by the recent data. More effort is
needed, however, in order to check the viability of this scenario in light of the new solar neutrino data.

Another possible explanation for neutrino masses in low scale string models, without invoking bulk sterile neutrinos, was
recently proposed in [34], by producing a neutrino mass of the onger Mé/M?. Finally, it should be mentioned that a
similar formalism, but with axions in the bulk, can potentially be used to provide possible new mechanisms for axion invisibility
[3,4,35,36].
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