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Abstract

We consider a vesicle, bound on one side to a pipette and sticking on the other side to a flat plate. When a pullfhg force
is applied to the pipette, the radi®g of the contact patch decreases, and jumps to zero at a critical value of the force. We
present here an extension of the Evans theory for these processes. Then we discuss the dynamics of separation for two distinct
cases: (a) nonspecific adhesion; and (b) specific adhesion induced by mobile plateitesthis article: F. Brochard-Wyart,
P-G. de Gennes, C. R. Physique 4 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumeé

On considére une vésicule qui, aspirée par une pipette d’'un c6té, adhére de I'autre sur une surface plane. Lorsqu’on tire sur
la pipette avec une forcg, le rayon du contact adhésif décroit, et s’annule brusquement a une valeur critique de la force. On
présente ici une extension de la théorie d’Evans pour interpréter ces processus de détachement. Puis I'on discute la dynamique
de la séparation pour deux cas distincts : (a) adhésion non spécifique ; et (b) adhésion spécifique par des protéinBsunobiles.
citer cet article: F. Brochard-Wyart, P-G. de Gennes, C. R. Physique 4 (2003).
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1. Introduction

A common way to test the strength of an adhesive contact of a cell on a substrate is to measure the force of detachment.
The experiment is shown in Fig. 1 (here, the cell adheres to a plate, but it can also adhere on another cell). The experiment is
performed as follows: the suction pressux@ is increased step by step. At each step, the pipette is pulledPlk A Pc, the
contact is maintained, and the vesicle is extracted from the pipette adhesion wii®. AtA Pc, the cell separates from the
substrate and remains attached to the pipette. The fareeA PcnR whereRy is the pipette radius, is called the ‘breaking
force’.

We discuss here in Section 2 hafi is related to the separation ener§fy. To model the cell, we consider a vesicle,
which sticks on a substrate. The adhesion may be nonspecific (i.e., depletion forces [1,2], electrostatic [3], or van der Waals
attraction), or specific [4—7]: a vesicle, decorated with mobile cellular adhesion proteins (‘stickers’), is facing a wall grafted
with the corresponding receptors.
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Fig. 1. (a) A vesicle, held to the pipette under an increasing aspiration pressgursticks to a wall. As the pipette is moved outwards: (b) if

AP < AP, the vesicle pipette junction becomes too weak and the finger is pulled out; o(£) i A Pc, the junction is strong and the vesicle

is ultimately detached from the wall. We show how this method is applied to break nonspecific bonds between cells (courtesy of Yeh-Shiu Chu
and S. Dufour).

The paper is organised as follows: we first reconstruct the equilibrium state with no applied external force. Then, always
assuming equilibrium, we see how the contact resists to an applied force, and suddenly breaks. This analysis is classical: the
principles can be found in papers by E. Evans and coworkers [8,9]. However, we have attempted to present it in very simple
terms. In the last sections, we describe the dynamics of detachment Ahove

2. Unstressed contact f = 0)

The free vesicle (Fig. 2(a)) maintained with the pipette before attachment is composed of a ‘finger’ offlgragtti a
spherical part (radiugyg). The tensiory is imposed by the suction pressuse® = P — Pp [10]:

1 1
AP=2y(— - — =21, @)
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Fig. 2. (a) Free vesicle under aspiration by a micropipette maintained at a prescribed membrane/tefmi@uhesion of the vesicle to a
wall in the absence of external forces: the vesicle is spherical; (c) vesicle stretched underfa thecshape (reminiscent of droplets hung on
a fiber), is onduloidal.

The ‘bound’ vesicle (Fig. 2(b)) includes again a finger of lengtilus a truncated sphere. The contact adglean be deduced
from a capillary force balance

YSV — ¥SL = ¥ COSOE, 2

wherey;; are the substrate/vesicle, the substrate/liquid and the vesicle surface tension. The separatidi engrgyys_ —
ysy is directly related t@g from Eq. (2)

W =y (1— costg). ?3)
The contact radius iRc = Ry sinfg and the equilibrium distance between the plate and the pipefte=sRy (1 + cOSHg).
2.1. Remarks on the free energy
The contribution of the finger to the volume balance is negligible. The finger provides a reservoir of area: in the presence of

a finger, we may change the argeof the truncated sphere without any work performed in the finger (because of the pressure
balance equation (1)). We may thus write the free energy (at constant volume) in the form:

F=yA— 7 RZW + constant (4)
For smalld the aread of the truncated sphere differs from the argawithout contact (and with the same volume) by
0% 2 0%

A:Ai<l+ 1—6>=4JTRVO(1+ 1_6> (5)

We also haveRc = Ry6. Inserting this into Eq. (4) we arrive at:
2 04 242

f=47rva0E—nWRV6 + const (6)
Optimizing this with respect t6 gives

1

SrP=w ()

and this is the Young equation (3) (for sméjl

3. Unbinding = statics

The pipette is now used not only to create a finger, but also to stretch the vesicle and to unbind it. The pipette is pulled
from the plate with a forcef (Fig. 2(c)). The free part becomes elongated, with a ledgthde + §. The extensiord(f) has
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been calculated in detail in [8,9]. Using this calculation, red blood cells have been operated as soft spring to pull on one single
molecular bond [8]. Very roughly ~ f/y (omitting logarithmic factors).

Our aim here is to study hoRc decreases with the external forgeln [9], both the pipette radiuRp and the contact radius
Rc were kept constant. For the sticking vesicle, what is maintained constant is the pipetteRadiod the Young anglég
(Eq. (2)), imposed by a balance of forces.

The contour of the vesicle is a surface of constant curvature (because the pressure inside is uniform) and looks like the
profile of a droplet deposited on a fiber [10,11]. The profile can be derived from a balance of forces. On any section of the
vesicle (radius-, angled shown in Fig. 2(c)), the projection of the force along the symmetry axis is constant and eguat to
contains a surface term and a bulk pressure term:

2nry sind — nrlyC = f. )]

For f =0, the solution is a sphe&€ = Cqg = 2/Ry).
For f # 0, we write Eq. (8) at both ends, and at the apex where the cross section radius is mexdn®al § = /2).

f=2rRpysinGp — TR3Cy. ©)

f =27 Rey sinfg — T R2Cy, 10
C

f=2rRy —JTsz/C. (11)

We setf = f/(2r Ry). Eq. (11) givesC = %(1— f) and Eq. (10) becomes:
f= &sineE - R—g(l— AH=wog— w21 - f)
R R? '
where we put”’ = Rc/R. The relationf (¥) is
(12)

The resultis plotted in Fig. 3(a). For smad, ¥ is small and we may replace the denominator by ugfiity ) as a maximum
for: w =60g/2

1
fmax=ﬂR§y9é=nRW. 13)

The maximal force is related to the maximal radRignot R¢!) and to the adhesion energy.
Eq. (15) defines the rupture force. It is the intersectiorf @) by the line of slope 2W (Fig. 3(b)).

@) If W<y, f=W/y is very small and the profile is aimost spherical. From B Ry — fmax/(47y), i.e., R/Ry ~
1— W/(2y). This leads to:

w
Srupt= ﬂRvW<l— 2—) =g RyW.
Y

(ii) If W~ y, the relationR(f) must be calculated numerically.

n f
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Fig. 3. (a) Plot of the force versus contact radius (in reduced units (Eq. (12))). Abque= 7119,%, the contact is destroyed abruptly; (b) the
intersection of the curve relating the force to the apex rastivgith the line of sloper W gives the rupture forcgg.
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Detachment of contact/versus extraction from the pipette
As shown in Fig. 1, what is measured is not the fofcacting on the pipette, but the critical presswéc. If AP < AP,
the vesicle is extruded because the aspiration fgxce
fa=mR3AP =27 Rpy
is smaller than the rupture force. On the other hand, as soarPas A P, the break arises at the wall. Thg(A Pc) = 7#WR

allows us to measur#’.
4. Dynamics of unbinding: the case of nonspecific adhesion
4.1. Therate equation
If we pull on the pipette with a certain forcg (in reduced units), we induce a contact angle) different from the

equilibrium valuefe. The radius of the contact patd®(r) = Ry¥ (t) decreases. The dissipation by viscous flow near the
contact line creates a force opposing the noncompensated Youngrforce

1
F =y (cosfle — cost) = Sy (6% — 62). (14)
The viscous force is of the form [11]
—k———=— —— 15
0 dt Ty a4 (19

where the factoé —1 describes the strong dissipation present for narrow wedgsshe solution viscosity anklis a numerical
constant (ignoring logs)
Ry d¥
Vv odr
whereV* =y /kn2.
We expres® in terms ofy by the force equation (12), which can be expressed

0=V + f/w. 7)

= —0(02-6d), (16)

4.2. The case of weak forces

If f< 93/4: fe. there is an equilibrium patch. We can linearize Eq. (16) in the vicinity of the equilibrium conditions. We
then find an exponential relaxation, with a relaxation time

R - - _ _
=g Vo= )7 (T o) (18)

when f < 0.9f¢, this time is short (seconds). But whgrbecomes very close tfy, there is a critical slowing down.

4.3. The case of strong forces

We now assume that the pulling force is far beyond thresiiold fc. Then the patch shrinks to zero: we focus our attention
on the late stages, wheteis small, and Eq. (16) reduces to

Ry dw 3
. e 19
V* dr w3 (19)
The law of decay in this regime is:
A\ L4
v=wo(1-£) " (20)
7
where
1R Yy 1 Re (fc>3 (21)
I=24v* 73 7 4 3\ F
ave fo Ay \ f
since¥p = 6.

Thus the whole process is completed in a finite time. For usual conditipissequal to a few seconds.
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5. Dynamics of unbinding with specific stickers

We now discuss the case of specific adhesion, where a population of ‘stickers’ have built a dense adhesive patch, with an
internal concentration (number of stickers/unit arEayvhich is high and fixed. The adhesion energy is then large: to observe
an unbinding, we must choose a high surface tengighrough the aspiration pressure (Eq. (1))).

The stickers are torn out at the periphery of the adhesive contact. The gain of mechanicalfadgdyyis transferred into
heat, when sites near the contact line are detached. On the other hand, the viscous dissipation due to the flow of surrounding
water is now negligible.

For each binder/receptor beginning to be separated by a vertical distameeexpect a rate equation of the form [12]

E =V e—(B—(pa)KT =V e(pa/KT (22)

whereVj is a typical thermal velocity (of order 10-8T1), B the barrier energyK ~ 10 kT), ¢ is the pull out force on one
binder and &’ molecular length. Eq. (22) can be rewritten in the form

V7
ap =kTIn V;_’ (23)

where the vertical velocity, = ng% = —%’[i gf. Following [12], we can construct the entropy loss due to the retraction of the

patch as an integral over all sites near the line that are partially detached. Per unit length,
TS:y(l—cos@)V:E/dx¢Vz. (24)

Omitting coefficients of order unity, and again assuming (for simplicity) éhiatsmall, the balance of force can be written
as:

Zm V l 2
—kTTldn— = -y0°, 25
p i nVl ZV (25)

wherezm is the maximum length of a bonded pair, and a is a molecular diameter.
We extract) from Eq. (12). For small, this reduces té = f /. The rate equation is then

Ry dw 2
_ — p( 26
vy dr M ez )’ (26)

wheree = 2kT I;zm/ya is a parameter of order unity (singeis large)
We setu = f2/2ey2 andi = /7, with T = (Ry/ V1) (f/(e1/2).
The solution of Eq. (31) (neglecting logarithmic corrections) is:

fPr1ro1yN t
(e =n- ) (27’

where
S
2my V1el/2
Here also, the time for detachment is finitgis maximal for f ~ fce/6k.

Remark 1. Eqg. (26) can be understood if one assumes that the ffrisedistributed on the stickers at the periphery of the
contact, on a band of widths ~ a/6, proportional tof ~1.

Remark 2. The tear out process controls the dynamics of unbinding if the specificrtiisgarger than the hydrodynamic time
7¢. One must compare the ‘wetting’ velocity /n to Vy: viscous dissipation is dominantW/n < Vq, i.e., for weak adhesion
or small energy barriers.

6. Conclusions

(i) It would be most useful to monitor not only the aspiration pressure but also the foooethe pipette. The threshold force
fc for separation is:

fC:T[RVW
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and allows for a direct measurementWt

(i) For nonspecific adhesion, or weak links (small activation energy), if we impose a fostgnificantly larger tharyc, we
predict a separation timg controlled by hydrodynamic friction (Eqg. (21)).

(iii) For strong specific adhesion, the separation tirgeshould be extremely sensitive to the pulling force (Eq. (27)). This
regime is expected ifs > 7y, i.e., for a ‘wetting’ velocityW/n > V; = Vge B/%T whereB is an activation energy.

Tear out processes limit the rupture if the activation energy is large, while hydrodynamic losses are dominant for small
adhesion or viscous solutions.
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