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Abstract

We consider a vesicle, bound on one side to a pipette and sticking on the other side to a flat plate. When a pullingf

is applied to the pipette, the radiusRc of the contact patch decreases, and jumps to zero at a critical value of the forc
present here an extension of the Evans theory for these processes. Then we discuss the dynamics of separation for
cases: (a) nonspecific adhesion; and (b) specific adhesion induced by mobile proteins.To cite this article: F. Brochard-Wyart,
P.-G. de Gennes, C. R. Physique 4 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

On considère une vésicule qui, aspirée par une pipette d’un côté, adhère de l’autre sur une surface plane. Lorsqu’
la pipette avec une forcef , le rayon du contact adhésif décroît, et s’annule brusquement à une valeur critique de la fo
présente ici une extension de la théorie d’Evans pour interpréter ces processus de détachement. Puis l’on discute la
de la séparation pour deux cas distincts : (a) adhésion non spécifique ; et (b) adhésion spécifique par des protéines moPour
citer cet article : F. Brochard-Wyart, P.-G. de Gennes, C. R. Physique 4 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

A common way to test the strength of an adhesive contact of a cell on a substrate is to measure the force of de
The experiment is shown in Fig. 1 (here, the cell adheres to a plate, but it can also adhere on another cell). The exp
performed as follows: the suction pressure�P is increased step by step. At each step, the pipette is pulled. If�P < �Pc, the
contact is maintained, and the vesicle is extracted from the pipette: adhesion wins. At�P = �Pc, the cell separates from th
substrate and remains attached to the pipette. The forcefc = �PcπR2

p, whereRp is the pipette radius, is called the ‘breaki
force’.

We discuss here in Section 2 howfc is related to the separation energyW . To model the cell, we consider a vesic
which sticks on a substrate. The adhesion may be nonspecific (i.e., depletion forces [1,2], electrostatic [3], or van d
attraction), or specific [4–7]: a vesicle, decorated with mobile cellular adhesion proteins (‘stickers’), is facing a wall
with the corresponding receptors.

* Corresponding author.
E-mail address: Francoise.Brochard-Wyart@curie.fr (F. Brochard-Wyart).
1631-0705/03/$ – see front matter 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
doi:10.1016/S1631-0705(03)00048-3
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Fig. 1. (a) A vesicle, held to the pipette under an increasing aspiration pressure�P , sticks to a wall. As the pipette is moved outwards: (b
�P < �Pc, the vesicle pipette junction becomes too weak and the finger is pulled out; or (c) if�P > �Pc, the junction is strong and the vesic
is ultimately detached from the wall. We show how this method is applied to break nonspecific bonds between cells (courtesy of Yeh
and S. Dufour).

The paper is organised as follows: we first reconstruct the equilibrium state with no applied external force. Then
assuming equilibrium, we see how the contact resists to an applied force, and suddenly breaks. This analysis is cla
principles can be found in papers by E. Evans and coworkers [8,9]. However, we have attempted to present it in ve
terms. In the last sections, we describe the dynamics of detachment abovefc.

2. Unstressed contact(f = 0)

The free vesicle (Fig. 2(a)) maintained with the pipette before attachment is composed of a ‘finger’ of lengthh0 and a
spherical part (radiusRv0). The tensionγ is imposed by the suction pressure�P = P0 − Pp [10]:

�P = 2γ

(
1

Rp
− 1

R

)
∼= 2

γ

Rp
. (1)
v0
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Fig. 2. (a) Free vesicle under aspiration by a micropipette maintained at a prescribed membrane tensionγ ; (b) adhesion of the vesicle to
wall in the absence of external forces: the vesicle is spherical; (c) vesicle stretched under a forcef : the shape (reminiscent of droplets hung
a fiber), is onduloidal.

The ‘bound’ vesicle (Fig. 2(b)) includes again a finger of lengthh plus a truncated sphere. The contact angleθE can be deduced
from a capillary force balance

γSV − γSL = γ cosθE, (2)

whereγij are the substrate/vesicle, the substrate/liquid and the vesicle surface tension. The separation energyW = γ + γSL −
γSV is directly related toθE from Eq. (2)

W = γ (1− cosθE). (3)

The contact radius isRc = Rv sinθE and the equilibrium distance between the plate and the pipette isde = Rv(1+ cosθE).

2.1. Remarks on the free energy

The contribution of the finger to the volume balance is negligible. The finger provides a reservoir of area: in the pre
a finger, we may change the areaA of the truncated sphere without any work performed in the finger (because of the pr
balance equation (1)). We may thus write the free energy (at constant volume) in the form:

F= γ A − πR2
cW + constant. (4)

For smallθ the areaA of the truncated sphere differs from the areaAi without contact (and with the same volume) by

A = Ai

(
1+ θ4

16

)
= 4πR2

v0

(
1+ θ4

16

)
. (5)

We also haveRc = Rvθ . Inserting this into Eq. (4) we arrive at:

f = 4πγ R2
v0

θ4

16
− πWR2

vθ2 + const. (6)

Optimizing this with respect toθ gives

1

2
γ θ2 = W (7)

and this is the Young equation (3) (for smallθ).

3. Unbinding = statics

The pipette is now used not only to create a finger, but also to stretch the vesicle and to unbind it. The pipette
from the plate with a forcef (Fig. 2(c)). The free part becomes elongated, with a lengthd = de + δ. The extensionδ(f ) has
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been calculated in detail in [8,9]. Using this calculation, red blood cells have been operated as soft spring to pull on o
molecular bond [8]. Very roughlyδ ≈ f/γ (omitting logarithmic factors).

Our aim here is to study howRc decreases with the external forcef . In [9], both the pipette radiusRp and the contact radiu
Rc were kept constant. For the sticking vesicle, what is maintained constant is the pipette radiusRp and the Young angleθE
(Eq. (2)), imposed by a balance of forces.

The contour of the vesicle is a surface of constant curvature (because the pressure inside is uniform) and look
profile of a droplet deposited on a fiber [10,11]. The profile can be derived from a balance of forces. On any sectio
vesicle (radiusr , angleθ shown in Fig. 2(c)), the projection of the force along the symmetry axis is constant and equal tf . It
contains a surface term and a bulk pressure term:

2πrγ sinθ − πr2γ C = f. (8)

For f = 0, the solution is a sphere(C = C0 = 2/Rv).
For f �= 0, we write Eq. (8) at both ends, and at the apex where the cross section radius is maximal (r = R, θ = π/2).

f = 2πRpγ sinθp − πR2
pCγ, (9)

f = 2πRcγ sinθE − πR2
cCγ, (10)

f = 2πRγ − πR2γ C. (11)

We setf̄ = f/(2πRγ ). Eq. (11) givesC = 2
R

(1− f̄ ) and Eq. (10) becomes:

f̄ = Rc

R
sinθE − R2

c

R2
(1− f̄ ) ∼= Ψ θE − Ψ 2(1− f̄ ),

where we putΨ = Rc/R. The relationf̄ (Ψ ) is

f̄ = Ψ θE − Ψ 2

1− Ψ 2
. (12)

The result is plotted in Fig. 3(a). For smallθE, Ψ is small and we may replace the denominator by unityf (Ψ ) as a maximum
for: Ψ ∼= θE/2

fmax= πR
1

2
γ θ2

E = πRW. (13)

The maximal force is related to the maximal radiusR (not Rc!) and to the adhesion energyW .
Eq. (15) defines the rupture force. It is the intersection off (R) by the line of slope 2πW (Fig. 3(b)).

(i) If W 
 γ, f̄ = W/γ is very small and the profile is almost spherical. From [9],R ∼= Rv − fmax/(4πγ ), i.e., R/Rv ≈
1− W/(2γ ). This leads to:

frupt ∼= πRvW

(
1− W

2γ

)
∼= πRvW.

(ii) If W � γ , the relationR(f ) must be calculated numerically.

(a) (b)

Fig. 3. (a) Plot of the force versus contact radius (in reduced units (Eq. (12))). Abovef̄max = 1
4θ2

E, the contact is destroyed abruptly; (b) t
intersection of the curve relating the force to the apex radiusR with the line of slopeπW gives the rupture forcefR .
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Detachment of contact/versus extraction from the pipette

As shown in Fig. 1, what is measured is not the forcef acting on the pipette, but the critical pressure�Pc. If �P < �Pc,
the vesicle is extruded because the aspiration forcefa

fa = πR2
p�P = 2πRpγ

is smaller than the rupture force. On the other hand, as soon as�P � �Pc, the break arises at the wall. Thusfa(�Pc) = πWR

allows us to measureW .

4. Dynamics of unbinding: the case of nonspecific adhesion

4.1. The rate equation

If we pull on the pipette with a certain forcēf (in reduced units), we induce a contact angleθ(t) different from the
equilibrium valueθe. The radius of the contact patchRc(t) = RvΨ (t) decreases. The dissipation by viscous flow near
contact line creates a force opposing the noncompensated Young forceF

F = γ (cosθe − cosθ) ∼= 1

2
γ

(
θ2 − θ2

E
)
. (14)

The viscous force is of the form [11]

−k
η

θ

dRc

dt
= −kηRv

1

θ

dΨ

dt
, (15)

where the factorθ−1 describes the strong dissipation present for narrow wedges.η is the solution viscosity andk is a numerical
constant (ignoring logs)

Rv

V ∗
dΨ

dt
= −θ

(
θ2 − θ2

E
)
, (16)

whereV ∗ = γ /kη2.
We expressθ in terms ofψ by the force equation (12), which can be expressed

θ = Ψ + f̄ /Ψ. (17)

4.2. The case of weak forces

If f̄ < θ2
e/4 = f̄c, there is an equilibrium patch. We can linearize Eq. (16) in the vicinity of the equilibrium conditions

then find an exponential relaxation, with a relaxation time

τ = Rv

8V ∗θE

(
f̄c − f̄

)−1/2 (
f̄ → f̄c

)
(18)

whenf̄ <̃ 0.9f̄c, this time is short (seconds). But when̄f becomes very close tōfc, there is a critical slowing down.

4.3. The case of strong forces

We now assume that the pulling force is far beyond thresholdf̄ >̃ 2f̄c. Then the patch shrinks to zero: we focus our atten
on the late stages, whereψ is small, and Eq. (16) reduces to

− Rv

V ∗
dΨ

dt
= − f̄ 3

Ψ 3
. (19)

The law of decay in this regime is:

Ψ = Ψ0

(
1− t

τl

)1/4
, (20)

where

τl = 1

4

Rv

V ∗
Ψ 4

0

f̄ 3
≈ 1

4

Rc

V ∗θ3
E

(
fc

f

)3
(21)

sinceΨ0 = θE.
Thus the whole process is completed in a finite time. For usual conditions,τl is equal to a few seconds.
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5. Dynamics of unbinding with specific stickers

We now discuss the case of specific adhesion, where a population of ‘stickers’ have built a dense adhesive patc
internal concentration (number of stickers/unit area)Γi which is high and fixed. The adhesion energy is then large: to obs
an unbinding, we must choose a high surface tensionγ (through the aspiration pressure (Eq. (1))).

The stickers are torn out at the periphery of the adhesive contact. The gain of mechanical energyf dδ/dt is transferred into
heat, when sites near the contact line are detached. On the other hand, the viscous dissipation due to the flow of su
water is now negligible.

For each binder/receptor beginning to be separated by a vertical distancez, we expect a rate equation of the form [12]

dz

dt
= V0 e−(B−ϕa)κT = V1 eϕa/κT (22)

whereV0 is a typical thermal velocity (of order 10 m·s−1), B the barrier energy (B ≈ 10 kT), ϕ is the pull out force on one
binder and ‘a’ molecular length. Eq. (22) can be rewritten in the form

aϕ = kT ln
Vz

V1
, (23)

where the vertical velocityVz = V dz
dx

= −dR
dt

dz
dx

. Following [12], we can construct the entropy loss due to the retraction o
patch as an integral over all sites near the line that are partially detached. Per unit length,

TṠ = γ (1− cosθ)V = Γi

∫
dx ϕVz. (24)

Omitting coefficients of order unity, and again assuming (for simplicity) thatθ is small, the balance of force can be writt
as:

zm

a
kT Γi*n

V

V1
= 1

2
γ θ2, (25)

wherezm is the maximum length of a bonded pair, and a is a molecular diameter.
We extractθ from Eq. (12). For smallψ , this reduces toθ = f̄ /ψ . The rate equation is then

−Rv

V1

dΨ

dt
= exp

(
f̄ 2

εΨ 2

)
, (26)

whereε = 2kT Γizm/γ a is a parameter of order unity (sinceγ is large)
We setu = f̄ 2/2εψ2 and t̃ = t/τ , with τ = (Rv/V1)(f̄ /(ε1/2).
The solution of Eq. (31) (neglecting logarithmic corrections) is:

f̄ 2

ε

(
1

ψ2
i

− 1

ψ2

)
= ln

(
1− t

τs

)
, (27)

where

τs = f

2πγ V1ε1/2
e−f 2/4π2γ 2R2

ciε.

Here also, the time for detachment is finite.τs is maximal forf ≈ fcε/θE.

Remark 1. Eq. (26) can be understood if one assumes that the forcef is distributed on the stickers at the periphery of
contact, on a band of width*s ≈ a/θ , proportional tof −1.

Remark 2. The tear out process controls the dynamics of unbinding if the specific timeτs is larger than the hydrodynamic tim
τ*. One must compare the ‘wetting’ velocityW/η to V1: viscous dissipation is dominant ifW/η < V1, i.e., for weak adhesion
or small energy barriers.

6. Conclusions

(i) It would be most useful to monitor not only the aspiration pressure but also the forcef on the pipette. The threshold forc
fc for separation is:

fc = πRvW
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and allows for a direct measurement ofW .
(ii) For nonspecific adhesion, or weak links (small activation energy), if we impose a forcef significantly larger thanfc, we

predict a separation timeτ* controlled by hydrodynamic friction (Eq. (21)).
(iii) For strong specific adhesion, the separation timeτs should be extremely sensitive to the pulling force (Eq. (27)). T

regime is expected ifτs > τ*, i.e., for a ‘wetting’ velocityW/η > V1 = V0 e−B/kT , whereB is an activation energy.

Tear out processes limit the rupture if the activation energy is large, while hydrodynamic losses are dominant f
adhesion or viscous solutions.
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