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Exotic nuclei/Les noyaux exotiques

Pairing and quartetting in exotic nuclei
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Abstract

A review is given of pair correlations in nuclei with an emphasis on the symmetry character of the superfluid solutio
depends on (i) the isospin of the nucleus and (ii) the relative strength of theT = 0 andT = 1 pairing forces. The most gener
SO(8) model which accommodates neutrons and protons as well asT = 0 andT = 1 pairing, is solvable in three limits: onl
T = 0 pairing, onlyT = 1 pairing and equal strengths in the two channels. In these limits, the superfluid ground-state s
of N = Z nuclei exhibits a quartet structure. The competition between superfluidity and magicity is discussed with refe
integrable models.To cite this article: P. Van Isacker, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Appariement dans les noyaux exotiques.Cette contribution passe en revue les différentes solutions superfluides qui e
dans le noyau. Une attention particulière est consacrée à leur charactère de symétrie qui dépend (i) de l’isospin du
(ii) du rapport des forces d’appariementT = 0 et T = 1. Un modèle général avec neutrons et protons et avec apparie
T = 0 et T = 1 est analytiquement soluble dans trois limites : sans appariementT = 0, sans appariementT = 1 et avec
forces d’appariement égales. Les solutions analytiques démontrent l’existence d’une solution superfluide avec une
en quartettes pour les noyauxN = Z. La compétition entre fluidité et magicité est examinée dans le contexte d’un m
intégrable.Pour citer cet article : P. Van Isacker, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Pairing correlations in nuclei

The discussion of pairing correlations in nuclei has been inspired traditionally by the treatment of superfluidity in con
matter [1,2]. The superfluid phase in these systems is characterised by the presence of a large number of identical
a single quantum state, which is called the condensate. In superconductors the bosons are pairs of electrons wit
momenta that form at the Fermi surface; in superconducting nuclei they are pairs of valence nucleons with opposit
momenta. The approximations made in BCS theory are less appropriate in nuclei since the number of nucleons is com
small. On the other hand, pairing phenomena are potentially more interesting in nuclei since two types of nucleo
neutrons and protons. This gives rise to a richer symmetry structure and a more complex condensate. The different s
of the superfluid solution are reviewed in Section 2 under the assumption that the valence nucleons (either of one type
different types) occupy a set of degenerate single-particle levels. Section 3 takes a closer look at the structure of the con
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1631-0705/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-0705(03)00054-9
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the presence of neutrons and protons, and shows that it has a quartet structure. The effect of lifting the single-particle d
is discussed in Section 4. Some closing remarks are made in Section 5.

2. Symmetry structure of superfluid solutions

2.1. SU(2)superfluidity

The most basic situation with regard to pairing in nuclei is encountered whenn identical nucleons occupy a set of degener
single-particle states. For convenience in the subsequent discussion,ls coupling is used (withs = 1

2) to label a single-particle

state. (Similar results are obtained injj coupling.) A nucleon creation operator is then denoted asa
†
lmlsms

. The nucleons are
assumed to interact through a pairing force of the form

VSU(2) = −g0S0+S0−, (1)

with

S0+ =
√

1

2

∑
l

√
2l + 1

(
a

†
ls

× a
†
ls

)(00)
00 , S0− = (

S0+
)†

. (2)

The notationS refers to the fact that these are nucleon pairs coupled toL = 0 while the superscript 0 inS0± refers to spin
S = 0. Since the nucleons are identical, only one pair state is allowed by the Pauli principle, that is, the spin-antipara
for either neutrons or protons (see Fig. 1). Therefore, this pairing mode is calledspin singlet. The Hamiltonian (1) has an SU(2
dynamical symmetry and by virtue of this symmetry can be solved analytically [3]. The ground state has a superfluid
of the form (for even and oddn, respectively)

(
S0+

)n/2|o〉, a
†
lmlsms

(
S0+

)(n−1)/2|o〉, (3)

where |o〉 represents the vacuum (i.e., the doubly-magic core nucleus). The conserved quantum number that eme
these considerations isseniority [4], the number of nucleons not in pairs coupled toL = 0. The superfluid solution of th
pairing Hamiltonian (1) leads naturally to three characteristic features of semi-magic nuclei: the constant excitation
(independent ofn) of the first-excited 2+ state in even–even isotopes, the linear variation of pair removal or two-nu
separation energies as a function ofn and the odd–even staggering in the nuclear binding energy.

2.2. SO(5)superfluidity

This type of superfluidity arises for a system of neutrons and protons. It is assumed that the pairing interaction is
invariant which implies that it is the same in the three possibleT = 1 channels, neutron–neutron, neutron–proton and pro
proton, and that (1) can be rewritten as

VSO(5) = −g0S01+ · S01− , (4)

Fig. 1. The different types of pairs made up by neutrons (blue) and protons (red), with antiparallel (top) and parallel (bottom) sp



P. Van Isacker / C. R. Physique 4 (2003) 529–535 531

s
ith
of the
6] than

reaks

ral

ion,
for

ical size

d by the
algebraic

tion of

are the

llowing

of
ical
where the dot indicates a scalar product in isospin. In terms of the nucleon operatorsa
†
lmlsmstmt

, which now carry also isospin

indices (witht = 1
2), the pair operators are

S01+,µ =
√

1

2

∑
l

√
2l + 1

(
a

†
lst

× a
†
lst

)(001)
00µ , S01−,µ = (

S01+,µ

)†
, (5)

where the superscripts 0 and 1 inS01±,µ refer to spinS = 0 and isospinT = 1. The indexµ (isospin projection) distinguishe
neutron–neutron (µ = +1), neutron–proton (µ = 0) and proton–proton (µ = −1) pairs. There are thus three different pairs w
S = 0 andT = 1 (top line in Fig. 1) but they are trivially related through isospin symmetry. The dynamical symmetry
Hamiltonian (4) is SO(5) which makes the problem analytically solvable although in a much more laborious way [5,
in SU(2). The quantum number, besides seniority, that emerges from this analysis isreduced isospin[7], which is the isospin
of the nucleons not in pairs coupled toL = 0. As a consequence of the neutron–proton quadrupole interaction which b
seniority and is responsible for deformation, SO(5) superfluidity has not found widespread application in nuclei.

2.3. SO(8)superfluidity

For a neutron and a proton there exists a different paired state withparallel spins (bottom line of Fig. 1). The most gene
pairing interaction for a system of neutrons and protons thus involves aspin-singletand aspin-triplet term,

VSO(8) = −g0S01+ · S01− − g1S10+ · S10− , (6)

where theS = 1, T = 0 pair operators are defined as

S10+,µ =
√

1

2

∑
l

√
2l + 1

(
a

†
lst × a

†
lst

)(010)
0µ0 , S10−,µ = (

S10+,µ

)†
. (7)

The index µ is the spin projection in this case and distinguishes different spatial orientations of theS = 1 pair. The
pairing Hamiltonian (6) now involves two parametersg0 andg1, the strengths of the spin-singlet and spin-triplet interact
respectively. While in the previous cases the single strength parameterg0 just defines an overall scale, this is no longer so
SO(8). Specifically, superfluid solutions with an intrinsically different structure are obtained for different ratiosg0/g1.

In general, the eigenproblem associated with the interaction (7) can only be solved numerically which, given the typ
of a nuclear shell-model space, can be a formidable task. However, for specific choices ofg0 andg1 the solution ofVSO(8)

can be obtained analytically [8]. The analysis reveals the existence of SO(8), which is the ‘enveloping’ algebra forme
pair operators (5) and (7), their commutators, the commutators of these among themselves, and so on until a closed
structure is obtained. Closure is attained with the number operatorn̂, the spin and isospin operatorsSµ andTµ and the Gamow–
Teller-like operatorsYµν which are vectors in spin and isospin, and these together form SO(8) [8,9]. (The explicit defini
these operators can be found, e.g., in [10].)

The symmetry character of the interaction (7) is obtained by studying the subalgebras of SO(8). Of relevance
subalgebras SOS(5) ≡ {S10±,µ, n̂, Sµ}, SOS(3) ≡ {Sµ}, SOT (5) ≡ {S01±,µ, n̂, Tµ}, SOT (3) ≡ {Tµ} and SO(6) ≡ {Sµ,Tµ,Yµν},
which can be placed in the following lattice of algebras:

SO(8) ⊃



SOS(5) ⊗ SOT (3)

SO(6)

SOT (5) ⊗ SOS(3)


 ⊃ SOS(3) ⊗ SOT (3). (8)

By use of the explicit form of the generators of SO(8) and its subalgebras, and their commutation relations [9], the fo
relations can be shown to hold:

S10+ · S10− = 1

2
C2

[
SOS(5)

] − 1

2
C2

[
SOS(3)

] − 1

8
(2Ω − n)(2Ω − n + 6),

S10+ · S10− + S01+ · S01− = 1

2
C2

[
SO(8)

] − 1

2
C2

[
SO(6)

] − 1

8
(2Ω − n)(2Ω − n + 12),

S01+ · S01− = 1

2
C2

[
SOT (5)

] − 1

2
C2

[
SOT (3)

] − 1

8
(2Ω − n)(2Ω − n + 6), (9)

wheren is the nucleon number andΩ ≡ ∑
l (2l + 1) is the orbital shell size (i.e.,Ω = 1,3,6, . . . for the s, p, sd, . . . shell).

This shows that the interaction (7) in the three cases (i)g0 = 0, (ii) g1 = 0 and (iii)g0 = g1, can be written as a combination
Casimir operators of algebras belonging to achain of nested algebrasof the lattice (8). (They can be considered as dynam
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Table 1
Favoured irreducible representations of different pairing Hamiltonians for even–even (EE) odd–mass (OE) and odd–odd (OO) nucle

Nucleus v T = 0 pairing T = 0 & T = 1 pairing T = 1 pairing

SOS (5) SOS (3) SO(8) SO(6) SOT (5) SOT (3)

EE 0 (Ω − T ,ΩT ) s(ΩT ) (Ω000) (T 00) (Ω0) T

OE 1
2 (Ω − T ,ΩT ) s( 1

2) (Ω − 1
2 , 1

2
1
2

1
2) (T 1

2
1
2) (Ω − 1

2 , 1
2) T

OON = Z 0 (Ω0) S = 1 (Ω000) (100) (Ω0) T = 1
OON �= Z 0 (Ω − T ,ΩT ) s(ΩT − 1) (Ω000) (T + 1,00) (Ω0) T + 1

2 (Ω − T ,ΩT ) s(ΩT − 1) (Ω − 1,111) (T 10) (Ω − 1,1) T

With ΩT = min(T ,Ω − T ) ands(x) = max(ΩT + T − n/2, x mod 2).

symmetries of the SO(8) model in the sense explained, e.g., in [11,12].) As a consequence, in the three casesg0 = 0, g1 = 0
andg0 = g1, eigenvalues are known analytically1 as a sum of those of the different Casimir operators which are given by

〈
C2[SO(8)]〉 = ω1(ω1 + 6) + ω2(ω2 + 4) + ω3(ω3 + 2) + ω2

4,〈
C2[SO(6)]〉 = σ1(σ1 + 4) + σ2(σ2 + 2) + σ2

3 ,〈
C2[SO(5)]〉 = υ1(υ1 + 3) + υ2(υ2 + 1),〈
C2[SO(3)]〉 = S(S + 1) or T (T + 1). (10)

If one is interested in the properties of the superfluid ground state, the remaining task is the determination of thefavoured
representations of the different algebras, that is, of the labelsωi , σi , υi , S, and/orT of the ground state. The physical meaning
these labels is as follows. TheS andT are the total spin and total isospin. The SOT (5) labels(υ1υ2) are known from the SO(5
formalism forT = 1 pairing [5,6]:υ1 = Ω − 1

2v andυ2 = t , wherev is the seniority andt is the reduced isospin. A simila
formalism involving the algebra SOS(5) can be developed forT = 0 pairing by interchanging the role ofS andT and leads
to an associated seniorityv and the concept ofreduced spins which is the spin of the nucleons not in pairs coupled toL = 0.
The SO(6) labels(σ1σ2σ3) characterise a supermultiplet [13] and they are equivalent to SU(4) labels. Finally, the SO(8)
(ω1ω2ω3ω4) are known from the solution of the full pairing problem [9]. Specifically,ω1 = Ω − 1

2v and the remaining thre
labels are thereduced supermultiplet labels(i.e., the supermultiplet labels of the nucleons not in pairs coupled toL = 0).

With use of the above physical interpretation the results for the favoured representations shown in Table 1 can be
Although the derivation of these favoured representations may seem complex, the final result is simple and analytic. T
expectation value of a given pairing Hamiltonian (withg0 = 0, g1 = 0 or g0 = g1) in the ground state, it suffices to apply t
appropriate formula in (9) and to calculate the expectation values (10) with the labels as given in Table 1.

The favoured representation in even–even nuclei always corresponds to seniorityv = 0 while in odd–mass nuclei it ha
v = 1

2. In odd–odd nuclei the favoured seniority is not unique: it is alwaysv = 0 for N = Z but otherwise can be eitherv = 0
or v = 2, depending onn andΩ .

Table 1 summarises the properties of the superfluid ground state. From it can be deduced the familiar features of sp
superfluidity in semi-magic nuclei but it equally well reveals the spin-aligned structure typical of spin-triplet superflui
3He [14]. Since a realistic shell-model Hamiltonian has valuesg0 ≈ g1 [15], the solution obtained forg0 = g1 should be the
correct starting point for nuclei. Its quartet properties are discussed in the next section.

3. Quartetting and singlet+ triplet pairing

A very special kind of SO(8) solution occurs for the ground state ofN = Z nuclei. For example, in the SO(6) limit of th
SO(8) model, which corresponds to equalT = 0 andT = 1 pairing strengths, the exact ground-state solution can be wr
as [16]

(
S10+ · S10+ − S01+ · S01+

)n/4|o〉. (11)

This shows that the superfluid solution acquires a quartet structure in the sense that it reduces to a condensate of bo
each correspond to four nucleons. Since the boson in (11) is a scalar in spin and isospin, it can be thought of as anα particle;
its orbital character, however, might be different from that of an actualα particle. A quartet structure is also present in the t

1 In fact, the caseg0 = −g1 is also solvable but it has little physical relevance.
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SO(5) limits of the SO(8) model, which yields a ground-state wave function of the type (11) with either the first or the
term suppressed. Thus, a reasonableansatzfor theN = Z ground-state wave function of the SO(8) pairing interaction (6) w
arbitrary strengthsg0 andg1 is

(
cosθ S10+ · S10+ − sinθ S01+ · S01+

)n/4|o〉, (12)

whereθ is a parameter which depends on the ratiog0/g1.
The justification for the use of (12) as a trial state is that, for the specific valuesθ = 0,π/4,π/2, it gives theexactground-

state wave function in the three limits of the SO(8) model. Outside these limits the parameterθ must be determined either b
minimising the expectation value ofVSO(8) in the trial state [16] or by maximising the overlap with the exact wave function [
Both procedures lead to essentially identical values forθ and to a quartet trial state which is very close to the exact wave fun
(deviations of only a fraction of a percent [17]). Similar results are obtained for excited states.

In summary, theα-like condensate (12) provides an excellent approximation to theN = Z ground state of the pairin
Hamiltonian (6) for any combination ofg0 andg1. The important (and as yet unanswered) question is now: To what exten
this quartet structure survive other terms that are present in a realistic shell-model Hamiltonian, in particular, possibl
particle splittings? With that question in mind, we now turn to the discussion of superfluidity in the presence of a single
mean field.

4. Superfluidity versus magicity

The shell structure of the atomic nucleus can be deduced from various observables such as [18] excitation energie
even nuclei, nucleon separation energies, nuclear level densities and (interaction) cross sections. Of these observab
gives the most direct information on shell structure and is available for a large number of nuclei. Fig. 2 shows, as a
of neutron numberN and proton numberZ, the quantityEx(2+

1 ) A1/3 whereEx(2+
1 ) is the energy of the first-excited 2+

state andA = N + Z is the mass number of the nucleus. The figure shows this quantity for all even–even nuclei withN,Z � 8
for which Ex(2+

1 ) is known experimentally [19]. This excitation energy is multiplied withA1/3 to account for the gradua
decrease of the strength of the nucleon interaction with mass number, and the resulting quantity is normalised to o
discards the light nuclei (sayN,Z < 28) where the situation is made complex by very specific and detailed shell effec
figure shows immediately the occurrence of shell stabilisation for the magic numbers 28, 40, 50, 82 and 126. It als
three types of nuclear structure (the so-called tripartite division of nuclei [20]): deformed nuclei (red) with a very low-ly+

1
level, vibrational nuclei (yellow to green) where this level occurs at higher energy and semi-magic nuclei (green to blue
it is higher still. (This tripartite division is confirmed by a similar plot of the ratioEx(4+

1 )/Ex(2+
1 ) which is a more sensitive

indicator of nuclear structural character.)

Fig. 2. The energy of the first-excited 2+ state in all nuclei withN,Z � 8 where it is known experimentally. The excitation energy is multipl
with A1/3 and subsequently normalised to one. The value of the resulting quantity is indicated by the colour coding shown on the lef
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Fig. 3. The two-nucleon separation energyS2n as an indicator of SU(2) superfluidity. If there are no pairing correlations among the ide
nucleons occupying the levels shown on the left, the separation energy, as a function of nucleon number, behaves as in (a). Superfl
to the behaviour shown in (b). The measured two-neutron separation energies in (c) show that the superfluid solution is appropriate
isotopes with active neutrons in the 50–82 shell.

The third class of nuclei is the realm of the traditional SU(2) pairing models. Within this class, nuclei display an ad
variety in structure which is indicative of the presence or absence of pairing correlations among the identical valence n
One way to probe these correlations is from the energy of the first 2+ state. A more sensitive test of SU(2) pairing correlatio
is from the two-nucleon separation energyS2n, the energy required to extract two nucleons from a nucleus (see Fig. 3).
system of identical nucleons which occupy a set of non-degenerate single-particle levels as shown on the left of the fi
complete absence of pairing correlations leads to a jagged behaviour ofS2n as a function ofn (see Fig. 3(a)). The other extrem
strong pairing correlations among nucleons distributed over closely spaced single-particle levels, is represented in Fig.
latter behaviour derives from the superfluid character of the even–even ground state (3) which leads to the following e
for the two-nucleon separation energy:

S2n = 1

2
g0(Ω − 2n), (13)

that is, a smooth decrease as the nucleon number increases. Fig. 3(c) shows the two-neutron separation energies mea
tin isotopes, as a function of neutron number. As far as the 50–82 shell is concerned, the data agree with the superfluid
At N = 82 a large jump inS2n is observed. This indicates that superfluidity is confined to the 50–82 shell and does no
into the next shell. In consequence, the isotope132Sn is doubly magic.

The competition between magicity (from large single-particle gaps) and superfluidity (from strong pairing corre
thus emerges as the defining feature of semi-magic nuclei [21]. Traditionally, the nuclear pairing problem with non-de
single-particle levels has been treated with the BCS technique imported from condensed-matter physics. Nevertheles
of the non-conservation of particle number, this might be a questionable approximation in nuclei. An exact method to
problem of particles distributed over non-degenerate levels interacting through a pairing force has been known since
but, surprisingly, passed almost unnoticed despite its enormous potential impact. Only recently Richardson’s work
properly recognised as well as generalised to other classes of integrable pairing models [23].

In Richardson’s model the pairing interaction (1) is supplemented with a single-particle term:

HSU(2) =
∑

l

εl n̂l − g0S0+S0−, (14)

wheren̂l is the operator that counts the number of nucleons in orbitl andεl is the single-particle energy of that orbit. Th
solvability of the Hamiltonian (14) arises as a result of the symmetry SU(2) × SU(2) × · · · where each SU(2) algebra pertai
to a specificl. Whether the solution of (14) can be called superfluid depends on the differencesεl − εl′ in relation to the
strengthg0. Nevertheless, the solution is known in closed form for all possible choices ofεl . For example, for an even numb
of particlesn the Hamiltonian (14) has a ground state of the form (up to a normalisation factor)

n/2∏
α=1

(∑
l

1

2εl − eα
S0+(l)

)∣∣o〉
, (15)

whereS0+(l) is anS pair in orbit l,

S0+(l) = √
2l + 1

(
a

†
ls

× a
†
ls

)(00)
00 . (16)

Theeα are the solutions of then/2 non-linear equations

1− g0
∑

l

2l + 1

2εl − eα
− 4g0

∑
β( �=α)

1

eβ − eα
= 0, α = 1,2, . . . ,

n

2
. (17)
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A characteristic feature of the ground state (15) is that it no longer consists of a superposition ofidentical bosons since the
coefficients(2εl − eα)−1 vary asα runs from 1 ton/2. This represents a departure from the concept of superfluidity.

It is clear that one may attempt to generalise Richardson’s approach to the systems discussed in Section 2, that is
and SO(8) superfluidity with non-degenerate single-particle levels giving rise to SO(5) × SO(5) × · · · and SO(8) × SO(8) × · · ·
models. Although this has been achieved to some extent, much remains to be studied about the ensuing solutions.

5. Final remarks

Over the years overwhelming evidence has been gathered which confirms the existence of a nuclear superfluid
semi-magic nuclei. The theoretical reasons for its existence can be traced back to the nature of theT = 1 interaction among
identical nucleons which, to a good approximation, conserves SU(2) symmetry and the associated seniority quantum
The breaking of seniority as a consequence of single-particle splittings generated by the nuclear mean field, rep
departure from the superfluid solution. This departure is well understood in terms of an analytically solvable model. Th
situation in semi-magic nuclei is that single-particle splittings within a major shell are sufficiently small for superflui
prevail but that single-particle splittings across major shells are sufficiently large to destroy it.

Once the valence shell contains both neutrons and protons, the character of the nucleon–nucleon interaction d
changes and induces a severe breaking of the seniority quantum number. As a result, one cannot expect a ground
superfluid type (12) but, at best, hope for a large component of it. A related question is the value of the variational parθ

in the trial state (12). Sinceg0 ≈ g1 one would naively expectθ ≈ π/4 and thus a sizeable contribution of the first term. T
would be of particular interest since it corresponds to the elusive spin-triplet superfluidity. Several studies have shown,
that the size of this component is adversely affected by the spin-orbit splitting (see, e.g., [24]) and possibly also by oth
in the shell-model Hamiltonian. The question whether and, if so, how this component can be probed experimentally is
open.

Acknowledgements

I wish to thank Ani Aprahamian for valuable comments on the work reported here.

References

[1] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106 (1957) 162;
J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108 (1957) 1175.

[2] A. Bohr, B.R. Mottelson, D. Pines, Phys. Rev. 110 (1958) 936.
[3] A.K. Kerman, Ann. Phys. (N.Y.) 12 (1961) 300.
[4] G. Racah, Phys. Rev. 63 (1943) 367.
[5] K.T. Hecht, Nucl. Phys. A 102 (1967) 11.
[6] K.T. Hecht, Nucl. Phys. A 493 (1989) 29.
[7] B.H. Flowers, Proc. R. Soc. A 212 (1952) 248.
[8] B.H. Flowers, S. Szpikowski, Proc. Phys. Soc. 84 (1964) 673.
[9] S.C. Pang, Nucl. Phys. A 128 (1969) 497.

[10] P. Van Isacker, Rep. Progr. Phys. 62 (1999) 1661.
[11] F. Iachello, A. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge, 1987.
[12] A. Frank, P. Van Isacker, Algebraic Methods in Molecular and Nuclear Physics, Wiley-Interscience, New York, 1994.
[13] E.P. Wigner, Phys. Rev. 51 (1937) 106.
[14] E.R. Dobbs, Helium Three, Oxford University Press, Oxford, 2000.
[15] M. Dufour, A.P. Zuker, Phys. Rev. C 54 (1996) 1641.
[16] J. Dobes, S. Pittel, Phys. Rev. C 57 (1998) 688.
[17] Yu.V. Palchikov, J. Dobes, R.V. Jolos, Phys. Rev. C 63 (2001) 034320.
[18] A. Bohr, B.R. Mottelson, Nuclear Structure. I Single-Particle Motion, Benjamin, New York, 1969.
[19] R.R. Kinsey, National Nuclear Data Center, http://www.nndc.bnl.gov/nndc/nudat/.
[20] N.V. Zamfir, R.F. Casten, D.S. Brenner, Phys. Rev. Lett. 72 (1994) 3480.
[21] O. Sorlin, et al., Phys. Rev. Lett. 88 (2002) 092501.
[22] R.W. Richardson, Phys. Lett. 3 (1963) 277.
[23] J. Dukelsky, C. Esebbag, P. Schuck, Phys. Rev. Lett. 87 (2001) 066403.
[24] O. Juillet, S. Josse, Eur. Phys. J. A 8 (2000) 291.


