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Abstract

A general description of mean field theories is made in view of their use for the description of static and dynamical pr
of exotic nuclei. Some pertinent examples of new physics appearing far from stability are presented such as quenchin
effects around the neutron drip line as well as the effect of the continuum in Hartree–Fock–Bogoliubov formalism w
Fermi energy goes to zero. We also focus on the effective forces adjusted to investigate nuclear medium in these
extreme conditions. Some perspectives of new theoretical developments are suggested in order to guarantee the re
future predictions in this new field of physics.To cite this article: K. Bennaceur et al., C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Théories de champ moyen et noyaux exotiques.Après une présentation générale des théories de champ moyen, on s’a
plus spécifiquement à l’étude de quelques applications originales dans le domaine des noyaux exotiques. Les p
hypothèses de ces modèles sont discutées vis-à-vis des conditions extrêmes de ce nouveau champ d’application
perspectives sont suggérées ouvrant la voie de développements théoriques futurs indispensables à ce domaine de
loin de la stabilité.Pour citer cet article : K. Bennaceur et al., C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Microscopic theories using the mean field approximation have been gaining, year after year, a high level of reliab
the description of static and dynamic properties of atomic nuclei. Reasonable theoretical predictions can now be ex
explain the properties of nuclei not only in their ground states but also in extreme conditions of spin or isospin far aw
the normal stability of the nuclear matter.

Static properties essentially involve ground states of nuclei – binding energies, radii, separation energies of on
nucleons, shell effects. . . – and are well described within Hartree–Fock or Hartree–Fock–Bogoliubov approaches inc
pairing correlations. Dynamic properties more generally affect the excited states – single or collective excitation
resonances, fission. . . – for which it is necessary to go beyond the mean field approximation in order to obtain a c
description of experimental data. These methods, such as the random phase approximation or the generator coordina

* Corresponding author.
E-mail address:jmeyer@ipnl.in2p3.fr (J. Meyer).
1631-0705/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-0705(03)00060-4



556 K. Bennaceur et al. / C. R. Physique 4 (2003) 555–570

ed from
ependent

ion [1],
a
urring

iteria of
The
owever
ound to

ucleus are
ion finds
A simple
us which
ple limits
es not see

in basic
n (NN)

erminant

nt
matrix

of single-

ards
ole

1]. Fig. 1
moment
ferent
r

perform a particular mixing of configurations. And to be consistent they are all based on a set of wave functions issu
a mean field calculation and in this way they can be generated as successive approximations of the general Time-D
Hartree–Fock formalism.

Whether nonrelativistic, i.e., formulated with the Schrödinger equation or relativistic, i.e., using the Dirac equat
all these models are using aneffective interaction(or aneffective Lagrangian) as a basic input which is generally built in
phenomenological way. Theeffectivefeature must be considered as a way to bypass the main theoretical difficulties occ
in ab initio calculations starting from realistic free nucleon–nucleon interaction. These effective forces follow some cr
simplicity and their parameters are determinedonce and for allto describe some bulk properties of the nuclear matter.
oldest parametrizations of these effective interactions were determined from spherical nuclei in the valley of stability. H
in the new physics of these extreme conditions recently occurring thanks to radioactive beam facilities [2], one is b
reconsider these parametrizations.

2. A microscopic mean field theory: the Hartree–Fock theory

Microscopic mean field theories are based on the fundamental assumption that neutrons and protons inside the n
moving independently from each other under the influence of a potential averaging their interactions. This approximat
a steady experimental verification for instance in the shell model framework and the occurrence of magic numbers.
calculation [3,4] enables to justify this approximation when evaluating the mean free path of a nucleon inside the nucle
turns out to be several times larger than the size of the nucleus. The explanation of this result is that the Pauli princi
strongly the possible final states in case of nucleon–nucleon collisions in the nucleus. As a matter of fact a nucleon do
the other ones but only feels the average potential which retains it inside the nucleus.

Beside the shell model, a mean field theory enables to derive the nuclear mean field microscopically. The ma
ingredient is a microscopic Hamiltonian (hereafter non relativistic) which uses an effective two-body nucleon–nucleo
interactionV eff

ij
:

H =K + V =
A∑
i=1

p2
i

2m
+ 1

2

A∑
i �=j=1

V eff
ij . (1)

In the Hartree–Fock method (HF), the ground state wave function of the nucleus is approximated by a Slater det
built on single-particle wave functions within the independent particle picture:

ΨHF(r1, . . . , rA)= 1√
A! det

{
φα1(r1) · φα2(r2) · · ·φαA(rA)

}
. (2)

The single-particle orbitalsφα are obtained by minimization of the total energy of the nucleus:

EHF = 〈ΨHF|H |ΨHF〉
〈ΨHF|ΨHF〉 . (3)

This variational principle leads to the system of Hartree–Fock equations [5]:

hφαi =
{
− h̄2

2m
∇2 +UHF[φα]

}
φαi = εαi φαi , i = 1, . . . ,A, (4)

where the HF mean fieldUHF[φα] itself depends upon the single-particle wave functionsφα generating thus a self-consiste
system ofA nonlinear equations. This system can there be rewritten using the local part of the nucleon density
(ρ(r, r ′)=∑A

i=1φ
∗
αi
(r)φαi (r

′)) in the case of a zero range force:

ρ(r, r)= ρ(r) ⇒ [
h,ρ(r)

]= 0 ⇒ φα, εα, UHF[φα]. (5)

The self-consistent system of HF equations (Eq. (4)) is generally solved by iterations giving, at convergence, a set
particle wave functionsφα , their energiesεα and the HF mean fieldUHF[φα]. This system ofA = N + Z equations is solved
for all theA nucleons (Z protons+ N neutrons) without any “inert core”. It does not contain any parameter fitted afterw
on experimental data. Results such as masses, radii, binding energies. . . are then directly comparable to experiment. The s
ingredient is theeffective interactionV eff

ij
. This interaction is built once for all following a well defined protocol.

With constraints, one can analyze the nucleus out of its ground state, seeking for instance shape isomers [6–1
displays an example of constrained HF (CHF) calculations for Magnesium isotopes where an axial quadrupole
constraintQ = Q20 = r2Y20 enables to follow the energy of the nucleus as a function of this degree of freedom. Dif
minima occur for these Magnesium isotopes: a spherical shape for20Mg and 32Mg; a prolate one weakly deformed fo
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Fig. 1. Deformation energies curves for the even–even Magnesium isotopes20–40Mg obtained within CHF calculations using the Skyrm
SIII effective force [28]. The deformation potential energies are plotted as a function of the axial deformation analyzed in terms of
quadrupole moment of the nucleus. The ground state of each nucleus is taken as the origin of the energies. This figure is reprinted fro
et al. [12], with permission from Elsevier.

24Mg, and a more deformed one for exotic neutron rich nuclei36Mg to 40Mg for which two prolate and oblate minima a
in competition [12].

Fig. 2 displays some examples of the variety of shapes obtained with CHF calculations forN = Z nuclei with two constraints
on quadrupole momentsQ20 andQ22. The axial and triaxial deformations are thus investigated and the potential e
surfaces are plotted using the usual{β,γ } representation. For the doubly magic100Sn nucleus one obtains a spherical sh
whereas more complex shapes occur for lighter nuclei: a competition between spherical and highly deformed shapes fo80Zr
nucleus; an oblate shape for the72Kr; a specific shape which is not precisely defined between spherical and weakly def
for the60Zn,52Fe and48Cr nuclei. In these cases, dynamical calculations beyond the mean field approximation will be re
to obtain the true ground state stable against quantum quadrupole fluctuations (see Section 3.3).

Fig. 3 shows the result of a double constrained CHF calculation both on the axial quadrupole and octupole momen
194Pb nucleus. The potential energy surface is then plotted as a function of the axial quadrupoleQ20 and octupoleQ30 = r3Y30
moments. One can see clearly a spherical absolute minimum for the ground state of this nucleus and two other m
large prolate deformations: one second minimum, generating the superdeformed states, characterized by a stron
softness which is responsible of the asymmetric fission in the case of the actinides; and even a third minimum, possib
hyperdeformed states?

3. The effective interaction for mean field theories

The old problem of the determination of realistic nucleon–nucleon (NN) force (V in Eq. (1)) remains the key point of th
whole hadronic physics dedicated to the study of the static and dynamic properties of atomic nuclei. Since almos
years, tremendous works has been developed to construct interactions to describe free NN scattering and some few
bound states. All these forces have to be renormalized to describe the interaction of nucleons inside the nucleus wher
principle limits strongly the final states during a two-body collision. The concept ofeffective interactionenables to overcom
this problem in a phenomenological way.
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s. The
Fig. 2. Potential energy surfaces for someN = Z nuclei obtained in CHF calculations and projection onto neutron and proton number
SLy4 effective force is used. The energy is plotted as a function of the axial quadrupole momentQ20 and the triaxialQ22 moment which is
parametrized using theγ angle. Prolate shapes correspond toγ = 0, oblate shapes toγ = 60◦ and triaxial shapes to other values ofγ . The
ground state energy is taken as the origin of the energies and the distance between two isocontours corresponds to 0.4 MeV.
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Fig. 3. Potential energy surface of the194Pb nucleus obtained in a CHF calculation using two constraints. The energy is plotted as a fun
the axial quadrupole (−34 b<Q20< +106 b) and octupole (0<Q30 < 7000 fm3) moments. The ground state energy is taken as the o
of the energies. This figure is reprinted from Meyer et al. [13], with permission from Elsevier.

In perturbative approaches of nuclear matter, a realistic free NN interaction is generally tested in symmetric infinite
matter within the Brueckner–Hartree–Fock (BHF) formalism. It consists in the construction of aG matrix solution of the
Bethe–Goldstone equations [3,14] which can be written as:

G= V − V
Q

e
G= V − V

Q

e
V
Q

e
V + · · · , (6)

whereQ is the Pauli operator eliminating occupied intermediate states ande is the energy denominator. The total energy ta
the same form as in the HF approximation except that theG matrix elements are replacing the 2-body matrix elements o
interactionV :

E =
∑
i

h̄2k2
i

2m
+ 1

2

∑
ij<F

〈
ij |G(E = ei + ej )|ij

〉
, (7)

where the single-particle energiesei are self-consistently defined at the lowest order of theG matrix expansion:

ei = h̄2k2
i

2m
+
∑
j<F

〈
ij |G(E = ei + ej )|ij

〉
. (8)

For all realistic interactions, this order of approximation does not give a good convergence of the expansion (Eq.
higher order contributions are required [3,15–18]. This situation is summarized with Fig. 4 where each symbol den
saturation point of the symmetric infinite nuclear matter obtained at the lowest order for different realistic interactions. A
points are lying on a line known as theCoester line[19] far from the expectedempirical pointobtained from a liquid drop
expansion of the energy per particle. Taking into account higher order terms [19], a newCoester linecan be defined closer t
the expected equilibrium. In finite nuclei where the construction of aG matrix implies further approximations [16,20,21], t
situation is essentially the same [22].

An effective interaction [3,16,21,23] can be viewed as a phenomenological NN force which reproduces the main p
of infinite nuclear matter especially the saturation point. This effective force play the role of aG matrix, its matrix elements
replace theG matrix elements in Eq. (7). The general form and the parameters of the effective force contain higher ord
and it is essential to exhibit the connection between pertinent terms of the force and specific properties of the nuclear
can show for instance that taking into account medium effects, such as the Pauli blocking, will result in a density dep
of the effective force.

There are two main groups of effective NN forces: finite range such as Gogny forces [24,25] or zero range such a
interactions [26–31]. Both of them have a simple analytical form and involve a limited number of parameters determine
bulk properties of the nuclear matter and some nuclear data.
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Fig. 4. Left: energy per particle for symmetric nuclear matter as a function of the equilibrium density for a different realistic NN interac
BHF formalism. The empirical equilibrium point is marked by a green rectangle. Empty triangles (red and blue ones) give the results
order BHF calculation. For some interactions (empty blue triangles), calculations have also been done including higher order terms
triangles).
Right: correlation between the compression modulus and the equilibrium density for a symmetric nuclear matter. The points represen
nonrelativistic effective interactions and relativistic effective Lagrangian: red triangles: zero range Skyrme forces; filled green triangnite
range Gogny forces; empty green triangles: other finite range forces; black square: finite range Brink–Boeker force; filled blue
relativistic Lagrangian with linear coupling; empty blue squares: relativistic Lagrangian with nonlinear coupling.

Fig. 5. Differencesrn − rp (in fm) between neutron and proton radii along the two isotopic series of Calcium and Tin. Spherica
calculations are performed using Skyrme effective forces based on a standard SLy4-like parametrization [31] except that the symme
is varied from 28 to 38 MeV. The experimental data (vertical bars) are taken from Batty et al. [34].

These calculations are shown on the right of Fig. 4 in a plane defined by the compression modulusK∞, related to the
curvature of the energy per particle at saturation, and the equilibrium densityρ0. The dispersion of the points indicates th
there is a correlation between these two quantities [32]. Negele and Vautherin [33] have shown that higher order con
in theG matrix expansion implies a density dependence of the interaction. This is confirmed by Fig. 4 where the po
gathered around the standard values ofK∞ andρ0 with the exception of Brink–Boeker forces which do not include suc
density dependence. The same consideration applies to effective relativistic Lagrangian without nonlinear coupling wσ
meson, whose main effects is to simulate the same higher order terms.



K. Bennaceur et al. / C. R. Physique 4 (2003) 555–570 561

energy,
to the

us for the
n
of
used
especially
cannot

y definite

a large
stability of
here no
nstruct a
or several
even–odd
ven–even
nce

t us start

35]. The

sity

numbers

l the

cludes
Similarly to K∞ which characterizes the curvature of the nuclear matter equation of state (EOS), the symmetry
which is the(N − Z)/A coefficient in the Bethe–Weiszäcker mass formula, is the curvature of this EOS with respect
isospin degree of freedom. It is the relevant parameter governing the properties of asymmetric nuclear matter and th
physics of exotic neutron rich nuclei. Fig. 5 shows the connection between this symmetry energy (aI ) and the difference betwee
neutron and proton radii in two isotopic series of Calcium and Tin nuclei for SLy4-like [31] forces for different valuesaI .
The comparison of the behavior of the differencesrn − rp with experiment suggests that the symmetry energy could be
to constrain the parameters of effective interactions. However, such a procedure requires more experimental data
neutron radii which are actually too badly known to be used. In Calcium isotopes, the two radii which are known
constrain the symmetry energy, the error bars are much too large. In the case of Tin isotopes, the forces withas � 35 MeV seem
to be excluded. However, correlations beyond the mean field approximation should be explored before drawing an
conclusions.

3.1. Pairing correlations and the Hartree–Fock–Bogoliubov theory

The Hartree–Fock approximation is well adapted for the description of doubly closed shell nuclei where there is
energy gap between the last occupied and the first unoccupied single-particle states. This gap guarantees the
a nucleus with magic numbers of nucleons. However, the HF approximation cannot describe mid-shell nuclei w
gap exists generating a ground state wave function which is degenerated with particle hole configurations. To co
correct ground state wave function, it is necessary to take into account pairing correlations responsible for instance f
experimental signatures such as: (i) experimental specific spectra for even–even nuclei versus even–odd nuclei; (ii)
effect giving generally a weaker binding energy for an odd nucleus than the arithmetic average of the neighbors e
nuclei; (iii) collective vibrational character of the first 2+ states for the even–even nuclei close to magic nuclei; (iv) differe
in the height of the fission barriers of235U and238U nuclei.

The Hartree–Fock–Bogoliubov method [3] (HFB) takes into account self-consistently these pairing correlations. Le
from the HF ground state wave function which can be written for an even–even nucleus as:

|ΨHF〉 = a+
α1
a+
ᾱ1
a+
α2
a+
ᾱ2

· · · |0〉, (9)

wherea+
α creates one nucleon in theφα state whereasa+

ᾱ
creates one nucleon in the time reversedφᾱ state and where the|0〉

state is a vacuum of particle. In the HFB formalism one uses a simplified pair wave function of correlated nucleons [
independent particle HF state ({a, a+}) becomes an independent quasi-particle HFB state ({η,η+}) through the Bogoliubov–
Valatin transformation:(

η

η+
)

=B

(
a

a+
)

=
(
U V

V ∗ U∗
)(

a

a+
)
. (10)

The HFB ground state is now a vacuum of quasi-particles. The HFρ density (Eq. (5)) becomes an HFB generalized den
calculated from the normal and abnormal (pairing tensor) densities:

R =
(
ρ −κ

κ∗ 1− ρ∗
)
, ρ = V ∗V T, κ = V ∗UT. (11)

The vectors{U,V } are obtained by minimizing the total energy:

EHFB = 〈ΨHFB|H |ΨHFB〉
〈ΨHFB|ΨHFB〉 , (12)

which leads to the following HFB system of equations:

BH =EB, H =
(

h ∆

−∆∗ −h∗
)
, (13)

where the HF mean fieldh (Eq. (4)) is calculated with theρ density (Eq. (11)) while the pairing field∆ takes the form:

∆αγ = 1

2

∑
βδ

〈
αγ |V eff|βδ〉κδβ . (14)

TheΨHFB state does not have a fixed number of particles and it is necessary to introduce a constraint on the nucleon
(protons and neutrons) in the previous HFB system (Eq. (13)). ThehHF mean field is replaced byh−λN N̂−λZẐ, whereN̂ and
Ẑ are the number of particle operators andλq the corresponding Lagrange multipliers. A more accurate protocol to contro
number of particles in the HFB formalism can be made when adding a second order constraint onN̂ 2 (Ẑ 2 respectively) in the
HF field as proposed by Lipkin and Nogami [36]. Such a prescription (denoted hereafter HFBLN or HFBCSLN) which in
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corrections to the total energy of the nucleus and to all one-body observables have been implemented by many au
It can be also used to generate a set of wave functions to perform first an exact projection onto the particle num
second a study of quantum fluctuations along a collective coordinate using the Generator Coordinate Method (GC
(see Section 3.3).

The∆ pairing field generally couplesφα andφβ̄ states withα �= β. The BCS approximation consists in neglecting
nondiagonal elements of∆, i.e., in imposing solutions that couple only time reversedα andᾱ:

Uα = uαφα, Vα = −vαφ
∗̄
α. (15)

The HFB system simplifies in two steps:

• first by solving an HF problem to generate the set{φα, εα},
• second by solving the well-known “gap equation” to obtain the quasi-particle energies and the occupation n

depending upon the Fermi energyλ.

∆α = −1

4

∑
γ

〈
αᾱ|V eff|γ γ 〉∆γ

Eγ
, (16)

Eα =
√
(εα − λ)2 +∆2

α, u2
α = 1

2

(
1+ εα − λ

Eα

)
, v2

α = 1

2

(
1− εα − λ

Eα

)
. (17)

The BCS approximation makes the numerical calculations of even–even nuclei much easier. However, it fails for od
and more generally in cases where the time-reversal invariance is broken. Nuclei far from stability and especially clo
proton or neutron drip lines (where the corresponding Fermi energy comes approaches to zero) require also a full HFB t
because the BCS approximation fails again when quasi-particle states couple HF states with positive energies [30,39

Actually the HFB method, or its BCS approximation, needs an effective interaction to calculate the∆ pairing field (Eqs. (14)
and (16)). In case of a finite range effective interaction used in the particle-hole channel, i.e., to generate the HF mean fih, the
same force is used in order to obtain a self-consistent treatment of the pairing correlations. This is the case of the Go
With a zero range interaction, one could do the same [30]. However one usually uses a different force in the particle
channel: a seniority force or a zero range force with a volume [42] or a surface [43] form factor. The case of zero range
forces needs a specific attention. Zero range in coordinate space corresponds to infinite range in momentum space, t
window of pairing correlations activity has then to be defined around the Fermi energy to prevent unphysical divergen

3.2. Near the drip lines: Hartree–Fock–Bogoliubov theory far from stability

3.2.1. Continuum effects
Close to the drip lines, nuclei are loosely bound and it is now known from experiment that exotic nuclei exhibit s

properties such as skins and halos. These phenomena are due to the unusual spatial extension of the wave funct
the residual couplings between bound and scattering states. Therefore one has to pay a special attention to the re
the mean field equations and to work in a space which includes both bound and scattering states. This could be ac
integrating the equations in a sufficiently large box for instance [30].

To illustrate the role of the single-particle continuum, we have built the following model fors1/2 neutron orbitals. We star
from the spherical HFB problem in coordinate representation:(

h(r) ∆(r)

−∆(r)∗ −h∗(r)

)(
U(r)

V (r)

)
=
(
E + λ 0

0 E − λ

)(
U(r)

V (r)

)
. (18)

Instead of solving this system in a fully self consistent way, we replace the diagonal part of the HF mean field by
model potential for which single-particle energies and wave functions are analytically known fors1/2 states [41]. The pairing
field∆(r) is computed self-consistently using a simple zero-range interaction. This model allows to investigate the effe
coupling between bound and scattering single-particle states in different cases. The potential parameters are adjust
to study an hypothetical nucleus withN � 82 with a 3s1/2 state which is either resonant (a), virtual (b) or loosely bound
(see Table 1). The virtual state correspond to a pole of the S matrix on the negative energy axis (as it is for a bound s
the corresponding wave function is not square integrable.

When the system (18) is solved we construct the particle densityρ from theV component of the quasi-particle wa
functions. The diagonalization ofρ yields the canonical states which govern the pairing properties of the system [3]:

ρψn = v2
nψn, (19)

the canonical energiesεn are defined as the diagonal matrix elements of the HF fieldh in the canonical basis.
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Table 1
Properties of the HFB solutions in the three cases listed in the text. The neutron Fermi energiesλN
and pairing gaps〈∆N 〉 are given in keV. The energiesε (in keV) and occupation numbersv2 of the
3s1/2 canonical states are also reported

Case λN 〈∆N 〉 ε3s1/2 v2
3s1/2

(a) −314 1146 2148 0.0321
(b) −348 1298 1043 0.1002
(c) −488 1421 390 0.2083

Fig. 6. Left: canonical wave functions of the 3s1/2 state for the three cases discussed in the text: resonant (a), virtual (b) and loosely bo
3s1/2 state in the fixed HF potential. The inset represent the modulus of the same wave functions in logarithmic scale.
Right: normsNn of the lower component of the quasi-particle wave functions as a function of the energy for the same three case
and (c). The insert shows the same quantities in logarithmic scale. See K. Bennaceur et al. [41] for more details.

As can be seen in Fig. 6, the canonical 3s1/2 wave function seems to be unaffected by the change in the HF spectrum
(a) to (c). We see on Table 1 that the overall pairing intensity〈∆N 〉 increases by about 300 keV. This evolution is explained
the change in energy and the increase of the 3s1/2 occupation. Apart from this increase of pairing intensity, there is no o
change in the pairing properties as the 3s1/2 state becomes bound.

On the right part of Fig. 6, we show the norm of the lower HFB componentNn = ∫
V 2
n (r)dr which enter in the particle

densityρ. Since the lower HFB components are not mutually orthogonal,Nn cannot be associated with occupation probabilit
Thev2 canonical occupation factors do play such a role, because the canonical states form a basis. Comparing the vaNn

(Fig. 6) andv2 (Table 1), one sees that the canonical 3s1/2 collects all the occupation strength of the quasi-particle states i
lower energy continuum. In the case (c), i.e., when the single-particle 3s1/2 state is bound, the corresponding canonical sta
partly built on it. The low energy continuum plays the role of the loosely bound states when this later is absent, in the
and (b). In every case all quasi-particle states below about 5 MeV contribute significantly tov2.

The situation with the loosely bound state is not very different of the one meet close to the stability where BCS app
can be used, apart from the long tail of the wave function. On the other hand, when the single-particle 3s1/2 state is virtual or
resonant, no single-particle state could have been easily chosen in the HF spectrum to build the density and canon
Despite of this deep difference in the HF spectrum, we see that the canonical states remain essentially the same. Th
the important role which can be played by thes1/2 continuum which has to be taken as a real continuum (discretized, if nee

3.2.2. Quenching of the shell effects
The validity of the effective interaction far from stability is still an open problem. In particular, the structure of the

orbit force, the pairing part of the interaction and their interplay requires further studies. Possible modifications of the
interaction will have consequences on all observables. For instance, it is known that shell gaps and magic numbers
deformation, a similar behavior might by expected as a function of isospin.

As an illustration we show in Fig. 7 the evolution of two semi magic systems: the case ofZ = 40 isotopes (Zirconium) as
function ofN , and the case ofN = 28 isotones as a function ofZ. Calculations have been made with the SLy4 interaction
in the spherical HFB approximation. In the first case,N = 28 isotones, we see that the gap between the 1f7/2 and the 2p3/2
states decreases from 5 MeV for proton rich nuclei to about 2 MeV close to the neutron drip line. The robustness of tf7/2
shell closure is then largely reduced and dynamical effect, beyond the mean field approximation, can mix configurat
particle-hole excitations. As shown on the right-hand side of Fig. 7, the calculation predicts that theZ = 40 magic number doe
not collapse in very proton rich nuclei, on the contrary, the 2p1/2–1g9/2 gap varies from 2.5 to 3 MeV.



564 K. Bennaceur et al. / C. R. Physique 4 (2003) 555–570

e

ing
ed to
ws the

us up
since the
nuum.
s for the

determine
nsity of
art of the
e future

r nuclei
ted by
t pairing
of

ion,
pairing

e. This
Fig. 7. Single-particle HF energies given by SLy4 for the isotonic chainN = 28 (left) and for the isotopic chain of Zirconium (right). Th
dashed lines represent the corresponding Fermi energiesλ.

Fig. 8. Results of spherical HFB calculations with the SLy4 effective force in thephchannel and with a volume (red) or a surface (blue) pair
interaction [40,51] in thepp channel. Left: neutron gap∆N for Tin isotopes. The strength of the two pairing interactions have been tun
give a neutron gap around 1.250 MeV in120Sn. Right: proton and neutron drip lines obtained with the same ingredients. The inset sho
region 28<N < 50 where the volume pairing predicts a shell effect forN = 32.

By looking at the behavior of the 2d5/2 and 1g7/2 states, we see that the states remain well confined inside the nucle
to at least 2.5 MeV. So the properties of the proton rich nuclei are mostly unchanged when approaching the drip line
density of state around the Fermi energy and the structure of the wave functions are not strongly affected by the conti

The calculations done here have been made using the SLy4 interaction which predicts different possible evolution
magic gaps as a function of the isospin, but further investigations and comparison with experiments have to be done to
if such an interaction has a predictive power far from the stability. The vicinity of the continuum can increase the de
state above the Fermi surface and then strongly modify the pairing properties of the nucleus, so can the spin-orbit p
interaction. The latter is probably the part of the interaction which has to be studied with the greater attention in th
development of microscopic mean field models.

3.2.3. Pairing interaction near the drip lines
Our knowledge of the effective interaction in the pairing channel is rather scarce. Its details are not decisive fo

close to the valley of stability but they lead to completely different predictions for neutron rich nuclei. This is illustra
Fig. 8 which presents spherical HFB calculations performed either with a volume type or a surface density dependen
interaction. We see on the left part of the figure that the mean neutron gap∆N does not depend too much upon the choice
the pairing interaction for nuclei withZ �N � 84. On the other hand, the behavior is dramatically different forN > 84 with a
disappearance of pairing forN = 90 andN = 126 in the case of the volume type pairing.

The right part of the figure shows theλn = 0 andλp = 0 contours which correspond roughly to the line of particle emiss
i.e., the neutron and proton drip lines respectively. The proton drip line is almost insensitive to the nature of the
interaction while the position of the drip line and the shell effects are completely different on the neutron rich sid
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sensitivity to the details of the pairing interaction in the particle–particle (pp) channel is due to the important density of sta
around the Fermi surface in neutron rich nuclei. The nature of the effective pairing interaction is still subject of debate
example the discussions in [44,45].

3.3. Beyond the mean field approximation: the Generator Coordinate Method

3.3.1. The GCM method
The HFB/HFBCS method does not always generate a good wave function for the ground state of the studied nucl

is illustrated on Fig. 1 for the Magnesium isotopes where the wave functions of the absolute minima obtained in
calculations can be sometimes degenerated. The20Mg nucleus appears to be rigid along theQ collective coordinate and th
spherical solution (Q= 0) will give a good wave function consistently with theN = 8 neutron magic number for this isotop
One can also expect a well deformed solution for the24Mg and the36–40Mg nuclei even if for the latter a competition does ex
between a first prolate solution and an second oblate one. The situation is less favorable for the22Mg, 26–30Mg and34Mg nuclei
which present a large softness as a function of quadrupole deformation. For the28Mg nucleus, the wave functions obtained f
Q = −0.5b to Q = 0.5b are quasi degenerated and the ground state wave function of this nucleus will be a superpo
solutions obtained for different values ofQ.

The Generator Coordinate Method (GCM) [46] realizes such a mixing from a set of wave functions corresponding
or several collective coordinates [46,47]. The most refined version of the GCM [48] runs in two steps. The first one
to start from a set of HFBCSLN wave functions{|Φ(q)〉} – associated to a collective coordinateq – and to project them ont
correct particle numbers by means of the projectorP̂N0 [49]:

P̂N0 = 1

π

π/2∫
−π/2

dφ eiφ(N̂−N0), (20)

where the integral over theφ gauge angle is performed with the weight factor e−iφN0 . From the mean field wave function
{|Φ(q)〉} we build the nonorthogonal projected collective basis{|ΦN0(q)〉} as:∣∣ΦN0(q)

〉= P̂N0

∣∣Φ(q)
〉
. (21)

In this basis the expectation valueE(q) of the Hamiltonian of the nucleus is the projected deformation energy:

E(q)= 〈ΦN0(q)|Ĥ |ΦN0(q)〉
〈ΦN0(q)|ΦN0(q)〉

= 〈Φ(q)|Ĥ P̂N0|Φ(q)〉
〈Φ(q)|P̂N0|Φ(q)〉 . (22)

Several such potential energy surfaces have been presented in the Fig. 2 for someN = Z nuclei.
In the second step one considers a more generalN -body wave function defined as a linear superposition of proje

HFBCSLN states with a weight functionfj (q):

|Ψj 〉 =
∫

dqfj (q)
∣∣ΦN0(q)

〉
, (23)

where the labelj recalls that several states|Ψj 〉 are obtained corresponding to the correlated ground state and to the col
excited states. Within the GCM method, the weight function is determined by a variation of the total energyEj with respect to
f ∗
j
(q):

Ej = 〈Ψj |Ĥ |Ψj 〉
〈Ψj |Ψj 〉 . (24)

This leads to the Hill–Wheeler equations [46]. Due to particle number projection, the kernelsI, N andH of the integral
operators entering these equations take the following form [48]:( I(q′, q)

N (q′, q)
H(q′, q)

)
= 1

π

π/2∫
−π/2

dφ e−iφN0
〈
Φ(q′)

∣∣( 1̂
N̂

Ĥ

)
eiφN̂ ∣∣Φ(q)

〉
. (25)

The evaluation of these(q′, q) dependent kernels is the most time consuming numerical part and is also the main
which limits the method to one or two collective variables. They involve a double integral (forN andZ respectively) of matrix
elements of one-body and two-body operators between all possible states of the collective basis{|Φ(q)〉} [47]. Other kernels
involving multipole moment operators associated with various one-body observables are also needed for the computa
the properties of the collective GCM states.
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Fig. 9. Energy of GCM collective states of the194Pb nucleus: levels are represented by short horizontal bars located at eigen energ
average values of the quadrupole momentQ20. Negative parity states are represented with a black dot. The static HFBCS axial quad
deformation energy (solid curve) is given as a reference. The origin of the energies is fixed at the energy of the GCM ground state w
octupole degree of freedom. See Meyer et al. [13] for more details.

3.3.2. Quadrupole and octupole mixing in194Pb
Quadrupole or octupole vibrations have been extensively investigated using the GCM method and we will present

examples. The first one concerns exotic shapes such as superdeformed (SD) or hyperdeformed (HD) shapes as show
for the194Pb nucleus. The HFBCS calculations performed along the quadrupole and octupole moments have exhibite
minima (Fig. 3) and it is necessary to investigated their robustness againstQ20 and/orQ30 dynamical vibrations. Fig. 9 show
the result of a two dimensional GCM analysis of the static potential energy surface previously shown on Fig. 3. SinceQ30
moment breaks thez-parity the GCM generates two independent positive and negative parity spectra. These GCM sta
no well-defined angular momentum and can be considered as a band head of a rotational band. We obtain a positive p
for the ground state of the194Pb and some positive and negative parity excited states which we interpret as quadrup
octupole multi phonon excitations. In the second minimum there are also a positive parity SD state as well as a neg
Let us recall that rotational bands built an these states have been experimentally seen [61,63] down to very low spin
contrary, the HD third minimum is not deep enough to stabilize a HD GCM state and no such HD state has been o
Fig. 9 gives an estimation of the energy gain resulting from the mixing of quadrupole and octupole vibrations, namely
1.7 MeV for the spherical ground state and around 2.5 MeV for both SD states.

3.3.3. Charge radii of Tin isotopes
The second example is a GCM analysis of the effect of quadrupole vibrations on the charge radii of Tin isotopes.

well as HFBCS calculations have been performed along the Tin isotopic serie from the100Sn nucleus up to the168Sn nucleus,
i.e., roughly from the proton to the neutron drip lines. Recent experimental progresses have been made by F. Leblanc
the COMPLIS collaboration [64] to obtain the charge radii up to the doubly magic132Sn nucleus. Fig. 10 shows the res
of HFB/HFBCS calculations of Tin charge radii. First one sees that the HFB versus HFBCS treatment of pairing corr
does not influence significantly the results, neither does the particle number projection. On the contrary the dynamic
of quadrupole vibrations within a GCM calculation allow to explain a large part of the difference between HFB/H
calculations and the experimental data. These effects can be also exhibited on the binding energies of these nuclei a
the right part of Fig. 10 where the energy difference between theN/Z projected HFBCS and the GCM solutions for the grou
states are plotted as a function ofA. The quadrupole vibrations occur to be minimum for the doubly magic100Sn and132Sn
nuclei and maximum in between.
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Fig. 10. Left: charge r.m.s. radii for Tin isotopes. Green curve: HFB results for even–even and odd isotopes; dot red curve: HFBC
for even–even isotopes; full red curve:N,Z projected HFBCS results; blue curve:N , Z projected HFBCS plus quadrupole GCM results. T
experimental charge radii (red triangles) are from F. Leblanc et al. [64]. Right: energy difference between theN ,Z projected-HFBCS and GCM
solutions. The SLy4 effective interaction is used.

4. Conclusions and outlook

The general assumptions of microscopic mean field theories have been presented and illustrated by some ex
properties of nuclei far from stability. Nuclear correlations beyond mean field have been also investigated especiall
which is a key ingredient to obtain correct wave functions for open shell nuclei. The treatment of these pairing corr
through the Hartree–Fock–Bogoliubov formalism has been discussed together with the question of the couplin
continuum for these exotic nuclei where the Fermi energy vanishes. Other methods to go beyond the mean field appr
have been exposed such as the Generator Coordinate Method which enable to construct wave function for multi confi
Projection onto particle number has been implemented to obtain wave functions with a good nucleon numbers.

Moreover the concept of effective interaction was presented in the context nonrelativistic mean field theories. So
features of these effective forces such as density dependence have been also discussed for the phenomenologica
Skyrme interactions. The most accurate density dependence of such an effective force still remains an open questio
the new effective interactions recently proposed based on properties of neutron stars seem to be a first possible answ
improvements of these forces are in progress particularly concerning a generalized density dependence and the u
experimental data on charge or neutron radii in connection with astrophysics.

TheT = 1 pairing correlations – neutron–neutron or proton–proton – are the only one to be taken into account in t
formalism which are neglecting the neutron–proton (n–p) pairing. Recent works [52] investigate these correlations
N = Z nuclei and tries thereby to give an accurate microscopic explanation of the Wigner energy [53]. It has not b
clearly proved unambiguously that this gain in energy inN =Z nuclei is fully bound to this n–p pairing [54], other correlatio
beyond the mean field approximation may give a significant contribution [55].

The main ingredient of areasonable effective NN interactionis a correct description of the bulk properties of the nucl
fluid: equilibrium density, binding energy per nucleon, compression modulus, effective mass. The connections betwe
properties and the parameters of the nuclear equation of state (EOS) or those of the effective force are under contr
collective phenomena such as giant resonances generally more sensitive to the global behavior of the nuclear me
local shell effects. Isovector properties such as symmetry energy, isovector effective mass or pure neutron matter EO
connected to the fundamental parameters of the effective force and could be studied through a better experimental k
of collective modes in extreme conditions [56]. Some exotic modes “pigmy” mode, “soft dipole” mode [56], charact
of nuclei with large neutron skin have been theoretically predicted and a systematic experimental research of these c
modes should be now possible with new generation of radioactive beams.

In addition to the nuclear masses, the charge and neutron radii are also building blocks in the construction of effectiv
In this respect, recent experimental measurements of charge radii along long isotopic series [64] are quite relevant.
possible to obtain accurate measurements of neutron distributions in order to extract neutron radii [57,58] and the size o
skins [59,60], one would have at disposal a complete set of experimental constraints for a better understanding of an
interaction in extreme conditions of isospin.
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The predictions concerning the evolution of the shell effects in extreme conditions of deformation and/or spin was c
one of the greatest successes of the mean field theories for fission isomers as well as for the superdeformation phen
the high spin physics [61]. It is also important to investigate the behavior of these shell structures in extreme cond
isospin, as well as for super heavy nuclei for which available predictions differ between relativistic and nonrelativisti
field theories. The evolution of these shell effects for exotic nuclei [62] is in close connection with the spin-orbit term
effective force and a better parametrization of this term in relation with relativistic theories has still to be done. Exper
results concerning single-particle spectra for long isotopic series of spherical nuclei such as Nickel or Tin isotopes shou
a better control of this degree of freedom in theoretical models.

The results obtained within microscopic – nonrelativistic as well as relativistic – mean field theories make these th
models out to be a main piece to investigate the structure of atomic nuclei. The reliability of these approaches
estimated for their prediction power, constitutes the starting point of numerous experimental progress, indeed of
future accelerators dedicated to the study of nuclei under extreme conditions. However it is fundamental never to fo
all these models use some basic ingredients, an effective interaction for instance, for which one has to check the p
towards the formulated problem. The progress of these approaches is closely bound to the progress made to imp
effective forces, this latter itself dependent of new experimental data.
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