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Abstract

A general description of mean field theories is made in view of their use for the description of static and dynamical properties
of exotic nuclei. Some pertinent examples of new physics appearing far from stability are presented such as quenching of shell
effects around the neutron drip line as well as the effect of the continuum in Hartree—Fock—Bogoliubov formalism when the
Fermi energy goes to zero. We also focus on the effective forces adjusted to investigate nuclear medium in these particular
extreme conditions. Some perspectives of new theoretical developments are suggested in order to guarantee the reliability of
future predictions in this new field of physicko cite this article: K. Bennaceur et al., C. R. Physique 4 (2003).
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Résumé

Théories de champ moyen et noyaux exotiqueApreés une présentation générale des théories de champ moyen, on s’attache
plus spécifiquement a I'étude de quelques applications originales dans le domaine des noyaux exotiques. Les principales
hypothéses de ces modéles sont discutées vis-a-vis des conditions extrémes de ce nouveau champ d'application. Quelques
perspectives sont suggérées ouvrant la voie de développements théoriques futurs indispensables a ce domaine de noyaux tres
loin de la stabilitéPour citer cet article: K. Bennaceur et al., C. R. Physique 4 (2003).
0 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Microscopic theories using the mean field approximation have been gaining, year after year, a high level of reliability for
the description of static and dynamic properties of atomic nuclei. Reasonable theoretical predictions can now be expected to
explain the properties of nuclei not only in their ground states but also in extreme conditions of spin or isospin far away from
the normal stability of the nuclear matter.

Static properties essentially involve ground states of nuclei — binding energies, radii, separation energies of one or two
nucleons, shell effects. — and are well described within Hartree—Fock or Hartree—Fock—Bogoliubov approaches including
pairing correlations. Dynamic properties more generally affect the excited states — single or collective excitations, giant
resonances, fission — for which it is necessary to go beyond the mean field approximation in order to obtain a correct
description of experimental data. These methods, such as the random phase approximation or the generator coordinate method,
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perform a particular mixing of configurations. And to be consistent they are all based on a set of wave functions issued from
a mean field calculation and in this way they can be generated as successive approximations of the general Time-Dependent
Hartree—Fock formalism.

Whether nonrelativistic, i.e., formulated with the Schrédinger equation or relativistic, i.e., using the Dirac equation [1],
all these models are using affective interactior{or aneffective Lagrangianas a basic input which is generally built in a
phenomenological way. Theffectivefeature must be considered as a way to bypass the main theoretical difficulties occurring
in ab initio calculations starting from realistic free nucleon—nucleon interaction. These effective forces follow some criteria of
simplicity and their parameters are determirete and for allto describe some bulk properties of the nuclear matter. The
oldest parametrizations of these effective interactions were determined from spherical nuclei in the valley of stability. However
in the new physics of these extreme conditions recently occurring thanks to radioactive beam facilities [2], one is bound to
reconsider these parametrizations.

2. A microscopic mean field theory: the Hartree—Fock theory

Microscopic mean field theories are based on the fundamental assumption that neutrons and protons inside the nucleus are
moving independently from each other under the influence of a potential averaging their interactions. This approximation finds
a steady experimental verification for instance in the shell model framework and the occurrence of magic numbers. A simple
calculation [3,4] enables to justify this approximation when evaluating the mean free path of a hucleon inside the nucleus which
turns out to be several times larger than the size of the nucleus. The explanation of this result is that the Pauli principle limits
strongly the possible final states in case of nucleon—nucleon collisions in the nucleus. As a matter of fact a nucleon does not see
the other ones but only feels the average potential which retains it inside the nucleus.

Beside the shell model, a mean field theory enables to derive the nuclear mean field microscopically. The main basic
ingredient is a microscopic Hamiltonian (hereafter non relativistic) which uses an effective two-body nucleon—nucleon (NN)
interactionvgff:

Ap2 1A
] eff
H=K+V=) 5t > Vel @)
i=1 i#j=1

In the Hartree—Fock method (HF), the ground state wave function of the nucleus is approximated by a Slater determinant
built on single-particle wave functions within the independent particle picture:

1

‘I’HF(rl,---,rA)=\/A—!det{%l(rl)‘¢a2(r2)‘~¢aA(rA)}~ 2
The single-particle orbitalg,, are obtained by minimization of the total energy of the nucleus:
(PHFIH [PHF)
Epp=— 1 3)
(PHFIPHF)
This variational principle leads to the system of Hartree—Fock equations [5]:
e _, .
h¢0t,’ = _%V +UHF[¢OZ] ¢0t,':80t,'¢a,'7 i=1...,4, (4)

where the HF mean fieltiyr[¢y ] itself depends upon the single-particle wave functippsgenerating thus a self-consistent
system of A nonlinear equations. This system can there be rewritten using the local part of the nucleon density matrix
(p(r,r')= Z,.A:l ¢;§’, (r¢q; (r')) in the case of a zero range force:

pr,ry=pr) = [hpor)]=0 = ¢o, ¢a, UnHFlgal. (5)

The self-consistent system of HF equations (Eq. (4)) is generally solved by iterations giving, at convergence, a set of single-
particle wave functiongy, their energies, and the HF mean fiel@yg[¢q]. This system ofdA = N + Z equations is solved
for all the A nucleons Z protons+ N neutrons) without any “inert core”. It does not contain any parameter fitted afterwards
on experimental data. Results such as masses, radii, binding energresthen directly comparable to experiment. The sole
ingredient is theeffective interaction/i‘;ﬁ. This interaction is built once for all following a well defined protocol.

With constraints, one can analyze the nucleus out of its ground state, seeking for instance shape isomers [6-11]. Fig. 1
displays an example of constrained HF (CHF) calculations for Magnesium isotopes where an axial quadrupole moment
constraintQ = Qq = r2Yy0 enables to follow the energy of the nucleus as a function of this degree of freedom. Different
minima occur for these Magnesium isotopes: a spherical shap%olfxlxy and 32Mg; a prolate one weakly deformed for
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Fig. 1. Deformation energies curves for the even—even Magnesium iszﬁ@‘p‘%ﬂg obtained within CHF calculations using the Skyrme

SllI effective force [28]. The deformation potential energies are plotted as a function of the axial deformation analyzed in terms of the mass
guadrupole moment of the nucleus. The ground state of each nucleus is taken as the origin of the energies. This figure is reprinted from Terasaki
et al. [12], with permission from Elsevier.

24Mg, and a more deformed one for exotic neutron rich nu%‘f’Mg to 40Mg for which two prolate and oblate minima are
in competition [12].

Fig. 2 displays some examples of the variety of shapes obtained with CHF calculatidhs-f@rnuclei with two constraints
on quadrupole moment®,g and Q2». The axial and triaxial deformations are thus investigated and the potential energy
surfaces are plotted using the us@gl y} representation. For the doubly magdi®®Sn nucleus one obtains a spherical shape
whereas more complex shapes occur for lighter nuclei: a competition between spherical and highly deformed shaB@Erforthe
nucleus; an oblate shape for tHéKr; a specific shape which is not precisely defined between spherical and weakly deformed
for the®0zn, 52Fe and*8Cr nuclei. In these cases, dynamical calculations beyond the mean field approximation will be required
to obtain the true ground state stable against quantum quadrupole fluctuations (see Section 3.3).

Fig. 3 shows the result of a double constrained CHF calculation both on the axial quadrupole and octupole moments for the
194pph nucleus. The potential energy surface is then plotted as a function of the axial quadrpgaled octupoled3g = r3Y30
moments. One can see clearly a spherical absolute minimum for the ground state of this nucleus and two other minima for
large prolate deformations: one second minimum, generating the superdeformed states, characterized by a strong octupole
softness which is responsible of the asymmetric fission in the case of the actinides; and even a third minimum, possibly for the
hyperdeformed states?

3. The effective interaction for mean field theories

The old problem of the determination of realistic nucleon—nucleon (NN) force (Eq. (1)) remains the key point of the
whole hadronic physics dedicated to the study of the static and dynamic properties of atomic nuclei. Since almost seventy
years, tremendous works has been developed to construct interactions to describe free NN scattering and some few nucleons
bound states. All these forces have to be renormalized to describe the interaction of nucleons inside the nucleus where the Pauli
principle limits strongly the final states during a two-body collision. The concepffettive interactiorenables to overcome
this problem in a phenomenological way.
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Fig. 2. Potential energy surfaces for soiie= Z nuclei obtained in CHF calculations and projection onto neutron and proton numbers. The
SLy4 effective force is used. The energy is plotted as a function of the axial quadrupole m@meand the triaxialQ2> moment which is
parametrized using the angle. Prolate shapes correspond-te- 0, oblate shapes tp = 60° and triaxial shapes to other valuesjof The
ground state energy is taken as the origin of the energies and the distance between two isocontours corresponds to 0.4 MeV.
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Fig. 3. Potential energy surface of th&*Pb nucleus obtained in a CHF calculation using two constraints. The energy is plotted as a function of
the axial quadrupole«34 b< Qg < +106 b) and octupole (& Q3g < 7000 frr?) moments. The ground state energy is taken as the origin
of the energies. This figure is reprinted from Meyer et al. [13], with permission from Elsevier.

In perturbative approaches of nuclear matter, a realistic free NN interaction is generally tested in symmetric infinite nuclear
matter within the Brueckner—Hartree—Fock (BHF) formalism. It consists in the constructiorGomatrix solution of the
Bethe—Goldstone equations [3,14] which can be written as:

G:V—VgG:V—VngV—i-m, (6)
e e e
whereQ is the Pauli operator eliminating occupied intermediate stateg @&nthe energy denominator. The total energy takes
the same form as in the HF approximation except thatGheatrix elements are replacing the 2-body matrix elements of the
interactionV':
n2k2 1
EZIZ ! +§ij§v<ij|G(E:ei+ej)|ij), @)

where the single-particle energigsare self-consistently defined at the lowest order ofGhmatrix expansion:
242

2k
e =" + Y (ijIG(E =e; +e¢))lij). (8)
j<F

For all realistic interactions, this order of approximation does not give a good convergence of the expansion (Eg. (6)) and
higher order contributions are required [3,15-18]. This situation is summarized with Fig. 4 where each symbol denotes the
saturation point of the symmetric infinite nuclear matter obtained at the lowest order for different realistic interactions. All these
points are lying on a line known as ti@oester line[19] far from the expecte@mpirical pointobtained from a liquid drop
expansion of the energy per particle. Taking into account higher order terms [19], @oester linecan be defined closer to
the expected equilibrium. In finite nuclei where the construction 6f matrix implies further approximations [16,20,21], the
situation is essentially the same [22].

An effective interaction [3,16,21,23] can be viewed as a phenomenological NN force which reproduces the main properties
of infinite nuclear matter especially the saturation point. This effective force play the rol& ahatrix, its matrix elements
replace theG matrix elements in Eq. (7). The general form and the parameters of the effective force contain higher order terms
and it is essential to exhibit the connection between pertinent terms of the force and specific properties of the nuclear fluid. One
can show for instance that taking into account medium effects, such as the Pauli blocking, will result in a density dependence
of the effective force.

There are two main groups of effective NN forces: finite range such as Gogny forces [24,25] or zero range such as Skyrme
interactions [26—31]. Both of them have a simple analytical form and involve a limited number of parameters determined on the
bulk properties of the nuclear matter and some nuclear data.
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Fig. 4. Left: energy per particle for symmetric nuclear matter as a function of the equilibrium density for a different realistic NN interactions in
BHF formalism. The empirical equilibrium point is marked by a green rectangle. Empty triangles (red and blue ones) give the results of lowest
order BHF calculation. For some interactions (empty blue triangles), calculations have also been done including higher order terms (filled blue
triangles).

Right: correlation between the compression modulus and the equilibrium density for a symmetric nuclear matter. The points represent different
nonrelativistic effective interactions and relativistic effective Lagrangian: red triangles: zero range Skyrme forces; filled green triaregles: fi
range Gogny forces; empty green triangles: other finite range forces; black square: finite range Brink—Boeker force; filled blue squares:
relativistic Lagrangian with linear coupling; empty blue squares: relativistic Lagrangian with nonlinear coupling.
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Fig. 5. Differencesr, — rp (in fm) between neutron and proton radii along the two isotopic series of Calcium and Tin. Spherical HFB
calculations are performed using Skyrme effective forces based on a standard SLy4-like parametrization [31] except that the symmetry energy
is varied from 28 to 38 MeV. The experimental data (vertical bars) are taken from Batty et al. [34].

These calculations are shown on the right of Fig. 4 in a plane defined by the compression niogdyluslated to the
curvature of the energy per particle at saturation, and the equilibrium demsifihe dispersion of the points indicates that
there is a correlation between these two quantities [32]. Negele and Vautherin [33] have shown that higher order contributions
in the G matrix expansion implies a density dependence of the interaction. This is confirmed by Fig. 4 where the points are
gathered around the standard valuekgf and pg with the exception of Brink—Boeker forces which do not include such a
density dependence. The same consideration applies to effective relativistic Lagrangian without nonlinear couplingrwith the
meson, whose main effects is to simulate the same higher order terms.
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Similarly to K~ which characterizes the curvature of the nuclear matter equation of state (EOS), the symmetry energy,
which is the(N — Z)/A coefficient in the Bethe—Weiszécker mass formula, is the curvature of this EOS with respect to the
isospin degree of freedom. It is the relevant parameter governing the properties of asymmetric nuclear matter and thus for the
physics of exotic neutron rich nuclei. Fig. 5 shows the connection between this symmetry engagyd(the difference between
neutron and proton radii in two isotopic series of Calcium and Tin nuclei for SLy4-like [31] forces for different valugs of
The comparison of the behavior of the differenegs- r;, with experiment suggests that the symmetry energy could be used
to constrain the parameters of effective interactions. However, such a procedure requires more experimental data especially
neutron radii which are actually too badly known to be used. In Calcium isotopes, the two radii which are known cannot
constrain the symmetry energy, the error bars are much too large. In the case of Tin isotopes, the fougeS 8htiMeV seem
to be excluded. However, correlations beyond the mean field approximation should be explored before drawing any definite
conclusions.

3.1. Pairing correlations and the Hartree—Fock—Bogoliubov theory

The Hartree—Fock approximation is well adapted for the description of doubly closed shell nuclei where there is a large
energy gap between the last occupied and the first unoccupied single-particle states. This gap guarantees the stability of
a nucleus with magic numbers of nucleons. However, the HF approximation cannot describe mid-shell nuclei where no
gap exists generating a ground state wave function which is degenerated with particle hole configurations. To construct a
correct ground state wave function, it is necessary to take into account pairing correlations responsible for instance for several
experimental signatures such as: (i) experimental specific spectra for even—even nuclei versus even—odd nuclei; (ii) even—odd
effect giving generally a weaker binding energy for an odd nucleus than the arithmetic average of the neighbors even—even
nuclei; (iii) collective vibrational character of the first Ztates for the even—even nuclei close to magic nuclei; (iv) difference
in the height of the fission barriers 83U and238U nuclei.

The Hartree—Fock—Bogoliubov method [3] (HFB) takes into account self-consistently these pairing correlations. Let us start
from the HF ground state wave function which can be written for an even—even nucleus as:

VHF) = ad, ag ataz ---10), 9)
whereaj creates one nucleon in tlgg state whereas&+ creates one nucleon in the time reverggdstate and where th@)
state is a vacuum of particle. In the HFB formalism one uses a simplified pair wave function of correlated nucleons [35]. The
independent particle HF stat@z(a™}) becomes an independent quasi-particle HFB state;("}) through the Bogoliubov—
Valatin transformation:

<n1>:B<ai>:<é]* UV><;*> (10)

The HFB ground state is now a vacuum of quasi-particles. The HEnsity (Eq. (5)) becomes an HFB generalized density
calculated from the normal and abnormal (pairing tensor) densities:

(P —kK _yxyT _y*xrT
R_<K* 1—p*)’ p=VV' k=VU". (11)
The vectorqU, V} are obtained by minimizing the total energy:

_ (¥HFBlH [¥HFB)

(12)
(PHFBIYHFB)
which leads to the following HFB system of equations:
BH=EB, M= (_”A* _fl*), (13)
where the HF mean fieldl (Eq. (4)) is calculated with the density (Eq. (11)) while the pairing field takes the form:
1 ff
Bay =5 D {ay Ve |B8)sp. (14)

B8

Thewpp state does not have a fixed number of particles and it is necessary to introduce a constraint on the nucleon numbers
(protons and neutrons) in the previous HFB system (Eq. (13))4Hiie mean field is replaced kiy— A 5 IV—AZZ whereN and
Z are the number of particle operators angdthe corresponding Lagrange multipliers. A more accurate protocol to control the
number of particles in the HFB formalism can be made when adding a second order constiaf{BR respectively) in the
HF field as proposed by Lipkin and Nogami [36]. Such a prescription (denoted hereafter HFBLN or HFBCSLN) which includes
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corrections to the total energy of the nucleus and to all one-body observables have been implemented by many authors [37].
It can be also used to generate a set of wave functions to perform first an exact projection onto the particle number and
second a study of quantum fluctuations along a collective coordinate using the Generator Coordinate Method (GCM) [38]
(see Section 3.3).

The A pairing field generally coupleg, and ¢; states withae £ 8. The BCS approximation consists in neglecting the
nondiagonal elements df, i.e., in imposing solutions that couple only time reverseahda:

Uy = uada, Vo = _Uozd’; (15)
The HFB system simplifies in two steps:

o first by solving an HF problem to generate the g, s},
e second by solving the well-known “gap equation” to obtain the quasi-particle energies and the occupation numbers
depending upon the Fermi energy

1 A
Aaz—zg;WMV“WV) (16)

d
Ey’
1 Sq — A 1 gq — A
Fomlartray @=5(1eft) E=g (1) @

o o

The BCS approximation makes the numerical calculations of even—even nuclei much easier. However, it fails for odd nuclei
and more generally in cases where the time-reversal invariance is broken. Nuclei far from stability and especially close to the
proton or neutron drip lines (where the corresponding Fermi energy comes approaches to zero) require also a full HFB treatment,
because the BCS approximation fails again when quasi-particle states couple HF states with positive energies [30,39-41].

Actually the HFB method, or its BCS approximation, needs an effective interaction to calculate#ieng field (Eqgs. (14)
and (16)). In case of a finite range effective interaction used in the particle-hole channel, i.e., to generate the HF rhethefield
same force is used in order to obtain a self-consistent treatment of the pairing correlations. This is the case of the Gogny force.
With a zero range interaction, one could do the same [30]. However one usually uses a different force in the particle-particle
channel: a seniority force or a zero range force with a volume [42] or a surface [43] form factor. The case of zero range effective
forces needs a specific attention. Zero range in coordinate space corresponds to infinite range in momentum space, thus a finite
window of pairing correlations activity has then to be defined around the Fermi energy to prevent unphysical divergences.

3.2. Near the drip lines: Hartree—Fock—Bogoliubov theory far from stability

3.2.1. Continuum effects

Close to the drip lines, nuclei are loosely bound and it is now known from experiment that exotic nuclei exhibit specific
properties such as skins and halos. These phenomena are due to the unusual spatial extension of the wave functions and to
the residual couplings between bound and scattering states. Therefore one has to pay a special attention to the resolution of
the mean field equations and to work in a space which includes both bound and scattering states. This could be achieved by
integrating the equations in a sufficiently large box for instance [30].

To illustrate the role of the single-particle continuum, we have built the following modeal fomeutron orbitals. We start
from the spherical HFB problem in coordinate representation:

( h(r) A(r) ) (U(r)) _ <E+A 0 ) (U(r)> (18)
—AF)* —h*(@r) V(r) 0 E— A Vi) )

Instead of solving this system in a fully self consistent way, we replace the diagonal part of the HF mean field by a fixed
model potential for which single-particle energies and wave functions are analytically knowsyfatates [41]. The pairing
field A(r) is computed self-consistently using a simple zero-range interaction. This model allows to investigate the effect of the
coupling between bound and scattering single-particle states in different cases. The potential parameters are adjusted in order
to study an hypothetical nucleus with < 82 with a 37, state which is either resonant (a), virtual (b) or loosely bound (c)
(see Table 1). The virtual state correspond to a pole of the S matrix on the negative energy axis (as it is for a bound state), but
the corresponding wave function is not square integrable.

When the system (18) is solved we construct the particle depsftpm the V. component of the quasi-particle wave
functions. The diagonalization @f yields the canonical states which govern the pairing properties of the system [3]:

Y = vV, (19)
the canonical energies, are defined as the diagonal matrix elements of the HF fiefdthe canonical basis.
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Properties of the HFB solutions in the three cases listed in the text. The neutron Fermi ehgrgies
and pairing gapsA ) are given in keV. The energies(in keV) and occupation numbet€ of the

3s1/2 canonical states are also reported

2
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Fig. 6. Left: canonical wave functions of the;3, state for the three cases discussed in the text: resonant (a), virtual (b) and loosely bound (c)

3s1/2 state in the fixed HF potential. The inset represent the modulus of the same wave functions in logarithmic scale.
Right: normsN,, of the lower component of the quasi-particle wave functions as a function of the energy for the same three cases (a), (b)

and (c). The insert shows the same quantities in logarithmic scale. See K. Bennaceur et al. [41] for more details.

As can be seen in Fig. 6, the canonica{ 3 wave function seems to be unaffected by the change in the HF spectrum from
(a) to (c). We see on Table 1 that the overall pairing intenst)y ) increases by about 300 keV. This evolution is explained by
the change in energy and the increase of theg8occupation. Apart from this increase of pairing intensity, there is no other
change in the pairing properties as the,3 state becomes bound.
On the right part of Fig. 6, we show the norm of the lower HFB compomégnt= [ Vnz(r) dr which enter in the particle
densityp. Since the lower HFB components are not mutually orthogaviatbannot be associated with occupation probabilities.
Thev? canonical occupation factors do play such a role, because the canonical states form a basis. Comparing thé/yalues of
(Fig. 6) andv? (Table 1), one sees that the canonicgl,3 collects all the occupation strength of the quasi-particle states in the
lower energy continuum. In the case (c), i.e., when the single-partigje State is bound, the corresponding canonical state is
partly built on it. The low energy continuum plays the role of the loosely bound states when this later is absent, in the cases (a)
and (b). In every case all quasi-particle states below about 5 MeV contribute significapfly to
The situation with the loosely bound state is not very different of the one meet close to the stability where BCS approaches
can be used, apart from the long tail of the wave function. On the other hand, when the single-partjcttaie is virtual or
resonant, no single-particle state could have been easily chosen in the HF spectrum to build the density and canonical states.
Despite of this deep difference in the HF spectrum, we see that the canonical states remain essentially the same. This illustrate
the important role which can be played by #¢, continuum which has to be taken as a real continuum (discretized, if needed).

3.2.2. Quenching of the shell effects
The validity of the effective interaction far from stability is still an open problem. In particular, the structure of the spin-

orbit force, the pairing part of the interaction and their interplay requires further studies. Possible modifications of the effective
interaction will have consequences on all observables. For instance, it is known that shell gaps and magic numbers vary with
deformation, a similar behavior might by expected as a function of isospin.

As an illustration we show in Fig. 7 the evolution of two semi magic systems: the ca&e-af0 isotopes (Zirconium) as a
function of N, and the case oV = 28 isotones as a function &f. Calculations have been made with the SLy4 interaction [31]
in the spherical HFB approximation. In the first cadle= 28 isotones, we see that the gap between tfigzland the 23,
states decreases from 5 MeV for proton rich nuclei to about 2 MeV close to the neutron drip line. The robustnesgze$ the 1
shell closure is then largely reduced and dynamical effect, beyond the mean field approximation, can mix configurations with
particle-hole excitations. As shown on the right-hand side of Fig. 7, the calculation predicts tAatth® magic number does

not collapse in very proton rich nuclei, on the contrary, tpg 2-1gg,> gap varies from 2.5 to 3 MeV.
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Fig. 8. Results of spherical HFB calculations with the SLy4 effective force iplighannel and with a volume (red) or a surface (blue) pairing
interaction [40,51] in thep channel. Left: neutron gag 5 for Tin isotopes. The strength of the two pairing interactions have been tuned to
give a neutron gap around 1.250 MeV4#Sn. Right: proton and neutron drip lines obtained with the same ingredients. The inset shows the
region 28< N < 50 where the volume pairing predicts a shell effect¥oe 32.

By looking at the behavior of thedg > and 137, states, we see that the states remain well confined inside the nucleus up
to at least 2.5 MeV. So the properties of the proton rich nuclei are mostly unchanged when approaching the drip line since the
density of state around the Fermi energy and the structure of the wave functions are not strongly affected by the continuum.

The calculations done here have been made using the SLy4 interaction which predicts different possible evolutions for the
magic gaps as a function of the isospin, but further investigations and comparison with experiments have to be done to determine
if such an interaction has a predictive power far from the stability. The vicinity of the continuum can increase the density of
state above the Fermi surface and then strongly modify the pairing properties of the nucleus, so can the spin-orbit part of the
interaction. The latter is probably the part of the interaction which has to be studied with the greater attention in the future
development of microscopic mean field models.

3.2.3. Pairing interaction near the drip lines

Our knowledge of the effective interaction in the pairing channel is rather scarce. Its details are not decisive for nuclei
close to the valley of stability but they lead to completely different predictions for neutron rich nuclei. This is illustrated by
Fig. 8 which presents spherical HFB calculations performed either with a volume type or a surface density dependent pairing
interaction. We see on the left part of the figure that the mean neutror gagoes not depend too much upon the choice of
the pairing interaction for nuclei witd < N < 84. On the other hand, the behavior is dramatically differenior 84 with a
disappearance of pairing fof = 90 andN = 126 in the case of the volume type pairing.

The right part of the figure shows thg = 0 andx, = 0 contours which correspond roughly to the line of particle emission,
i.e., the neutron and proton drip lines respectively. The proton drip line is almost insensitive to the nature of the pairing
interaction while the position of the drip line and the shell effects are completely different on the neutron rich side. This
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sensitivity to the details of the pairing interaction in the particle—partigh ¢hannel is due to the important density of states
around the Fermi surface in neutron rich nuclei. The nature of the effective pairing interaction is still subject of debate, see for
example the discussions in [44,45].

3.3. Beyond the mean field approximation: the Generator Coordinate Method

3.3.1. The GCM method

The HFB/HFBCS method does not always generate a good wave function for the ground state of the studied nucleus. This
is illustrated on Fig. 1 for the Magnesium isotopes where the wave functions of the absolute minima obtained in HFBCS
calculations can be sometimes degenerated.?Phigy nucleus appears to be rigid along tBecollective coordinate and the
spherical solution@ = 0) will give a good wave function consistently with the= 8 neutron magic number for this isotope.

One can also expect a well deformed solution for¥fdg and the36-40Mg nuclei even if for the latter a competition does exist
between a first prolate solution and an second oblate one. The situation is less favorablédigif€—3Mg and3*Mg nuclei

which present a large softness as a function of quadrupole deformation. FéMbeucleus, the wave functions obtained for

Q = —0.5p to Q = 0.5b are quasi degenerated and the ground state wave function of this nucleus will be a superposition of
solutions obtained for different values of.

The Generator Coordinate Method (GCM) [46] realizes such a mixing from a set of wave functions corresponding to one
or several collective coordinates [46,47]. The most refined version of the GCM [48] runs in two steps. The first one consists
to start from a set of HFBCSLN wave functiofig> (¢))} — associated to a collective coordingte- and to project them onto
correct particle numbers by means of the projetﬁpg [49]:

/2

-~ 1 i (N

Pry=2 / dep 9 N—No). (20)
—7/2

where the integral over th¢ gauge angle is performed with the weight factof%Vo. From the mean field wave functions
{I2(¢))} we build the nonorthogonal projected collective bdgy, (¢))} as:

PN (@) = Pio| @ (@)). (21)
In this basis the expectation val§ég) of the Hamiltonian of the nucleus is the projected deformation energy:

£ = (@ny @ HIPNy (@) (P(q)|H Pyy|®(q))
(@ Ny (@DIP Ny (@) (@(9)|Pno|®(9)
Several such potential energy surfaces have been presented in the Fig. 2 fdy somauclei.
In the second step one considers a more gengrbbdy wave function defined as a linear superposition of projected
HFBCSLN states with a weight functiofy (g):

(22)

) = [ daf; (@) @, (@), (23)

where the labej recalls that several statgg;) are obtained corresponding to the correlated ground state and to the collective
excited states. Within the GCM method, the weight function is determined by a variation of the total Eneith respect to
fi(@):
Wi H|¥;
Ej:< ]‘ | ]>. (24)
(P 1¥;)
This leads to the Hill-Wheeler equations [46]. Due to particle number projection, the ké&n&lsandH of the integral
operators entering these equations take the following form [48]:

9.\ 1 P iy
(N(ch)):; / d¢e—"”N°(q><q’>|<11) Vo (q)). (25)
H(q/sq) _7-[/2 H

The evaluation of thes&;’, g) dependent kernels is the most time consuming numerical part and is also the main reason
which limits the method to one or two collective variables. They involve a double integraV(ford Z respectively) of matrix
elements of one-body and two-body operators between all possible states of the collectiyeZtig3j$ [47]. Other kernels
involving multipole moment operators associated with various one-body observables are also needed for the computation of all
the properties of the collective GCM states.



566 K. Bennaceur et al. / C. R. Physique 4 (2003) 555-570

-40 0 40 80 120

Q_20 (b)

Fig. 9. Energy of GCM collective states of th&4Pb nucleus: levels are represented by short horizontal bars located at eigen energies and
average values of the quadrupole momény. Negative parity states are represented with a black dot. The static HFBCS axial quadrupole
deformation energy (solid curve) is given as a reference. The origin of the energies is fixed at the energy of the GCM ground state without the
octupole degree of freedom. See Meyer et al. [13] for more details.

3.3.2. Quadrupole and octupole mixingifPb

Quadrupole or octupole vibrations have been extensively investigated using the GCM method and we will present here two
examples. The first one concerns exotic shapes such as superdeformed (SD) or hyperdeformed (HD) shapes as shown on Fig. 9
for the194Pb nucleus. The HFBCS calculations performed along the quadrupole and octupole moments have exhibited several
minima (Fig. 3) and it is necessary to investigated their robustness agaigsind/or Q3¢ dynamical vibrations. Fig. 9 shows
the result of a two dimensional GCM analysis of the static potential energy surface previously shown on Fig. 3. Sige the
moment breaks the-parity the GCM generates two independent positive and negative parity spectra. These GCM states have
no well-defined angular momentum and can be considered as a band head of a rotational band. We obtain a positive parity state
for the ground state of th&*Pb and some positive and negative parity excited states which we interpret as quadrupole and
octupole multi phonon excitations. In the second minimum there are also a positive parity SD state as well as a negative one.
Let us recall that rotational bands built an these states have been experimentally seen [61,63] down to very low spins. On the
contrary, the HD third minimum is not deep enough to stabilize a HD GCM state and no such HD state has been observed.
Fig. 9 gives an estimation of the energy gain resulting from the mixing of quadrupole and octupole vibrations, namely around
1.7 MeV for the spherical ground state and around 2.5 MeV for both SD states.

3.3.3. Charge radii of Tin isotopes

The second example is a GCM analysis of the effect of quadrupole vibrations on the charge radii of Tin isotopes. HFB as
well as HFBCS calculations have been performed along the Tin isotopic serie frdifP8renucleus up to th¥8Sn nucleus,
i.e., roughly from the proton to the neutron drip lines. Recent experimental progresses have been made by F. Leblanc et al. and
the COMPLIS collaboration [64] to obtain the charge radii up to the doubly nﬂé’t}’%n nucleus. Fig. 10 shows the result
of HFB/HFBCS calculations of Tin charge radii. First one sees that the HFB versus HFBCS treatment of pairing correlations
does not influence significantly the results, neither does the particle number projection. On the contrary the dynamical effects
of quadrupole vibrations within a GCM calculation allow to explain a large part of the difference between HFB/HFBCS
calculations and the experimental data. These effects can be also exhibited on the binding energies of these nuclei as shown on
the right part of Fig. 10 where the energy difference betweemith# projected HFBCS and the GCM solutions for the ground
states are plotted as a function 4f The quadrupole vibrations occur to be minimum for the doubly m&#ign and32sn
nuclei and maximum in between.
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Fig. 10. Left: charge r.m.s. radii for Tin isotopes. Green curve: HFB results for even—even and odd isotopes; dot red curve: HFBCS results
for even—even isotopes; full red curv&, Z projected HFBCS results; blue curw¥, Z projected HFBCS plus quadrupole GCM results. The
experimental charge radii (red triangles) are from F. Leblanc et al. [64]. Right: energy difference betw®¥e thmjected-HFBCS and GCM
solutions. The SLy4 effective interaction is used.

4. Conclusions and outlook

The general assumptions of microscopic mean field theories have been presented and illustrated by some examples of
properties of nuclei far from stability. Nuclear correlations beyond mean field have been also investigated especially pairing
which is a key ingredient to obtain correct wave functions for open shell nuclei. The treatment of these pairing correlations
through the Hartree—Fock—Bogoliubov formalism has been discussed together with the question of the coupling to the
continuum for these exotic nuclei where the Fermi energy vanishes. Other methods to go beyond the mean field approximation
have been exposed such as the Generator Coordinate Method which enable to construct wave function for multi configurations.
Projection onto particle number has been implemented to obtain wave functions with a good nucleon numbers.

Moreover the concept of effective interaction was presented in the context nonrelativistic mean field theories. Some basic
features of these effective forces such as density dependence have been also discussed for the phenomenological Gogny or
Skyrme interactions. The most accurate density dependence of such an effective force still remains an open question [50] and
the new effective interactions recently proposed based on properties of neutron stars seem to be a first possible answer. Further
improvements of these forces are in progress particularly concerning a generalized density dependence and the use of new
experimental data on charge or neutron radii in connection with astrophysics.

The T = 1 pairing correlations — neutron—neutron or proton—proton — are the only one to be taken into account in the HFB
formalism which are neglecting the neutron—proton (n—p) pairing. Recent works [52] investigate these correlations in light
N = Z nuclei and tries thereby to give an accurate microscopic explanation of the Wigner energy [53]. It has not been yet
clearly proved unambiguously that this gain in energyie= Z nuclei is fully bound to this n—p pairing [54], other correlations
beyond the mean field approximation may give a significant contribution [55].

The main ingredient of aasonable effective NN interactigma correct description of the bulk properties of the nuclear
fluid: equilibrium density, binding energy per nucleon, compression modulus, effective mass. The connections between these
properties and the parameters of the nuclear equation of state (EOS) or those of the effective force are under control through
collective phenomena such as giant resonances generally more sensitive to the global behavior of the nuclear medium than
local shell effects. Isovector properties such as symmetry energy, isovector effective mass or pure neutron matter EOS are also
connected to the fundamental parameters of the effective force and could be studied through a better experimental knowledge
of collective modes in extreme conditions [56]. Some exotic modes “pigmy” mode, “soft dipole” mode [56], characteristics
of nuclei with large neutron skin have been theoretically predicted and a systematic experimental research of these collectives
modes should be now possible with new generation of radioactive beams.

In addition to the nuclear masses, the charge and neutron radii are also building blocks in the construction of effective forces.
In this respect, recent experimental measurements of charge radii along long isotopic series [64] are quite relevant. If it were
possible to obtain accurate measurements of neutron distributions in order to extract neutron radii [57,58] and the size of neutron
skins [59,60], one would have at disposal a complete set of experimental constraints for a better understanding of an effective
interaction in extreme conditions of isospin.
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The predictions concerning the evolution of the shell effects in extreme conditions of deformation and/or spin was certainly
one of the greatest successes of the mean field theories for fission isomers as well as for the superdeformation phenomena and
the high spin physics [61]. It is also important to investigate the behavior of these shell structures in extreme conditions of
isospin, as well as for super heavy nuclei for which available predictions differ between relativistic and nonrelativistic mean
field theories. The evolution of these shell effects for exotic nuclei [62] is in close connection with the spin-orbit term of the
effective force and a better parametrization of this term in relation with relativistic theories has still to be done. Experimental
results concerning single-particle spectra for long isotopic series of spherical nuclei such as Nickel or Tin isotopes should enable
a better control of this degree of freedom in theoretical models.

The results obtained within microscopic — nonrelativistic as well as relativistic — mean field theories make these theoretical
models out to be a main piece to investigate the structure of atomic nuclei. The reliability of these approaches, mainly
estimated for their prediction power, constitutes the starting point of numerous experimental progress, indeed of plans for
future accelerators dedicated to the study of nuclei under extreme conditions. However it is fundamental never to forget that
all these models use some basic ingredients, an effective interaction for instance, for which one has to check the pertinence
towards the formulated problem. The progress of these approaches is closely bound to the progress made to improve these
effective forces, this latter itself dependent of new experimental data.
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