

Available online at www.sciencedirect.com

C. R. Physique 4 (2003) 715-720

Physique de la matière condensée

Études RMN haute résolution et RPE des composés Ba_3C_{60} et Ba_6C_{60}

Abdellah Rezzouk^{a,*}, Driss Dafir^b, Youssef Errammach^c, Férid Rachdi^c

^a LPS, Fac. des sciences Dhar El Mehraz, BP 1796, Atlas FES, Maroc
^b Laboratoire de métallurgie, FST Beni-Mellal, Maroc
^c GDPC, Université Montpellier, 2, place Eugène Bataillon, cc 26, 34095 Montpellier, France

Reçu le 18 mars 2002 ; accepté le 30 avril 2003

Présenté par Guy Laval

Résumé

Nous présentons les études RPE et RMN haute résolution du ¹³C des composés Ba_xC_{60} avec x = 3 et 6. Le spectre RMN du composé Ba_3C_{60} présente une raie isotrope à 156 ppm et celui du composé Ba_6C_{60} montre une raie large autour de 135 ppm. Cette dernière présente une structure formée de trois composantes indiquant la présence de trois sites de carbone inéquivalents dans le Ba_6C_{60} . Ce résultat met en évidence l'existence d'un ordre orientationnel des molécules de ce composé et confirme les données des mesures de diffraction des rayons X. La raie de résonance RMN de Ba_6C_{60} présente un fort déplacement diamagnétique qui est interprété en terme de moment de transition dans un système à gap indirect. Nos mesures RPE confirment le caractère isolant des deux composés étudiés. *Pour citer cet article : A. Rezzouk et al., C. R. Physique 4 (2003).* © 2003 Académie des sciences. Publié par Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Abstract

High-resolution NMR and EPR investigations of Ba₃C₆₀ and Ba₆C₆₀. We report the results of ¹³C MAS NMR and EPR measurements on Ba₃C₆₀ and Ba₆C₆₀ fullerides. Using high resolution NMR, we were able to identify an isotropic line around 156 ppm for Ba₃C₆₀ and a broad isotropic one with three components at 132, 134.6, 139.9 ppm for Ba₆C₆₀ compound. The latter line is consistent with orientationally ordered C₆₀ molecules leading to three unequivalent carbon sites in agreement with X-ray studies. A strong diamagnetic shift was observed for the NMR line of Ba₆C₆₀ that is interpreted in terms of transition moment in an indirect gap system. EPR results confirm the insulating nature of both studied compounds. *To cite this article:* A. Rezzouk et al., C. R. Physique 4 (2003).

© 2003 Académie des sciences. Publié par Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Mots-clés : Magnétisme ; Structure ; Fullerènes ; RMN du ¹³C ; RPE

Keywords: Magnetism; structure; Fullerene; ¹³C NMR; EPR

Abridged English version

Synthesis of complex fullerides involving not only alkali metals but also alkali-earth metals enables us to control the crystal structure and the pristine solid C_{60} band filling (the t_{1u} [1–3] or t_{1g} [4–9] level) independently. In the alkaline earth series Ba_4C_{60} [8] and $K_3Ba_3C_{60}$ [4] have been found as superconducting phases. In the series of Ba_xC_{60} we have synthesized the

* Auteur correspondant.

Adresses e-mail: rezzouk@yahoo.fr (A. Rezzouk), ferid@gdpc.univ-montp2.fr (F. Rachdi).

^{1631-0705/\$ –} see front matter © 2003 Académie des sciences. Publié par Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

 Ba_3C_{60} and Ba_6C_{60} which we analyzed by EPR and ¹³C MAS NMR. These two compounds were prepared by mixing a stoichiometric amount of C_{60} and Ba in a glove box and were transferred and sealed under vacuum in a quartz tube. The sample was then heated at 500–800 °C for several days.

The Ba₃C₆₀ cristallizes in a A15 structure [12] with three equivalent Ba ions. As for A₆C₆₀ [10,11], LDA calculations suggest that Ba₃C₆₀ is an insulator, with a gap of about 0.35 eV [13,14]. This corresponds to a complete charge transfer to the C₆₀ molecules. The Ba₆C₆₀ cristallizes by analogy with A₆C₆₀, in a bcc lattice with 6 equivalent Ba ions located at distorted tetrahedral positions [1]. In Fig. 1, we plot the full ¹³C MAS NMR spectrum of Ba₃C₆₀ compound. By spinning the sample at 2.4 kHz, a single isotropic line appears around 156 ppm. This result indicates that as for K₆C₆₀ [11], the charges transfer in Ba₃C₆₀ is also almost complete, leading to C_{60}^{6-} ion formation. This explains the insulating behaviour for this phase [15]. A paramagnetic shift of about 13 ppm with respect to the pristine C₆₀ is observed in Ba₃C₆₀, which is readily rationalized by considering the small energy gap between the filled t_{1u} states (homo) and the empty t_{1g} state (lumo) levels. According to second order perturbation theory [16], the observed paramagnetic shift (Van Vleck paramagnetic) might be compatible with an interpretation that this paramagnetic shift is inversely proportional to the HOMO-LUMO gap. As can be seen in Fig. 1 the Ba₃C₆₀ isotropic line does not show the three unequivalent carbons sites components as expected by X-ray studies [22]. This can be due to a strong dipolar coupling between Baryum ions and the C₆₀ carbons.

In Fig. 3, we plot the full ¹³C MAS NMR spectrum of Ba_6C_{60} compound, showing in addition to the isotropic lines a whole series of equally spaced spinning sidebands. As can be clearly seen, the Ba_6C_{60} compound present 3 isotropic lines at 132, 134.6, 139.9 ppm (Table 1) consistent with an orientationally ordered C_{60} molecules leading to 3 equivalent carbon sites, $C_1:C_2:C_3$ in agreement with X-ray data [18]. Relatives positions and intensities of isotropic lines in Ba_6C_{60} are reported in Table 1. For Ba_6C_{60} compound, the sidebands extend over roughly 300 ppm indicating a large chemical shift anisotropy (CSA). A diamagnetic shift of about 9 ppm with respect to C_{60} resonance line was observed for the C_{60}^{12-} ions, indicating a strong screening of C_{60} carbons with the transferred electrons.

The EPR results on both compounds indicate an insulating behaviour. Consequently, we have shown that the charge transfer in the two studied compounds is essentially total, leading to the observed ¹³C resonance shifts characteristic for the basically molecular property of the C_{60}^{6-} and the C_{60}^{12-} ions.

1. Introduction

Les études entreprises sur les composés d'intercalation du C_{60} avec les alcalino-terreux (AE_xC₆₀) montrent que ces systèmes présentent de nombreuses phases de type binaire [1–3] ou ternaire [4], de structure cristalline bien définie. Dans le cas des composés binaires, les phases x = 3, 4, 5 et 6 ont été observées avec le baryum [5–8]. Dans le cadre d'un modèle rigide de la bande électronique, les différentes phases observées correspondent à un remplissage progressif des orbitales lumo (plus basse orbitale moléculaire non occupée, t_{1u}) et LUMO + 1 (t_{1g}) [9] qui sont triplement dégénérées. Il est à noter que Ba₄C₆₀ [8] et le système ternaire K₃Ba₃C₆₀ [4] qui sont conducteurs à température ambiante, présentent la transition vers l'état supraconducteur à des températures voisines de 6 K. L'étude de ces composés constitue une approche originale des problèmes abordés sur ce type de matériaux notamment en ce qui concerne la modification de la structure de bande électronique en fonction de la concentration en dopant. L'intérêt du dopage avec les alcalino-terreux est d'aller au-delà du transfert de 6 électrons à la molécule de C₆₀ obtenu avec les alcalins lourds. Le premier niveau non occupé t_{1u} de la molécule peut contenir 6 électrons, au-delà les électrons sont transférés au niveau t_{1g} qui peut lui aussi contenir 6 électrons. Les propriétés de ce niveau t_{1g} sont assez mal connues, alors qu'il est bien établi que la structure de bande est peu modifiée par le transfert des électrons au niveau t_{1u} ; ce problème est discuté dans le cas de t_{1g} , comme nous le verrons par la suite. Le choix d'intercalation du C₆₀ avec le baryum vient du fait que ce dernier a le même rayon cationique que le potassium (1,38 Å) avec la capacité de transférer deux électrons par atome du métal inséré dans le solide C₆₀.

Dans cette Note, nous présenterons nos résultats (RMN et RPE) relatifs à deux composés de C_{60} dopés avec du baryum : Ba₃C₆₀ correspondant au niveau t_{1g} complètement vide et Ba₆C₆₀ correspondant à t_{1g} complètement rempli. Ces résultats présentent l'intérêt de déterminer les propriétés de ces composés qui restent encore mal définies, notamment à cause de la difficulté d'obtenir des échantillons monophasés. Le but poursuivi dans cette étude est de vérifier le caractère isolant des deux composés étudiés et ceci en accord avec un simple modèle de bande rigide.

2. Préparation des échantillons et les techniques de mesures

Nous avons préparé les composés Ba_3C_{60} et Ba_6C_{60} sous forme de poudre en mélangeant directement des quantités stœchiométriques de Ba avec du C_{60} sous atmosphère d'Argon en boîte à gants. Le mélange est ensuite introduit dans un

tube de cuivre préalablement traité puis scellé sous vide secondaire ($P = 2 \times 10^{-6}$ Torr). Ce dernier est ensuite mis dans un tube de quartz puis scellé sous vide. On introduit ensuite l'échantillon dans un four pour un recuit à des températures comprises entre 500 et 800 °C pendant une semaine. Les spectres RMN ont été enregistrés sur un spectromètre ASX200 de la société Bruker avec une fréquence de Larmor de 50,3 Mhz pour le ¹³C. Les mesures ont été réalisées à température ambiante en tournant l'échantillon à l'angle magique à une fréquence de 2,4 Khz. Une séquence de pulse $\pi/2$ -acquisition avec un temps de répétition de 30 s a été utilisée pour tous les spectres. Les mesures RPE des composés étudiés ont été réalisées avec un spectromètre ER200D bande X de la société Bruker équipé d'un cryostat à circulation d'hélium permettant d'effectuer des mesures dans la gamme de température de 4 K à 300 K.

3. Résultats et discussion

3.1. Ba₃C₆₀

Ce composé adopte la structure A15 (cubique centré déformé) où les 3 ions baryum, cristallographiquement équivalents, occupent le site tétraédrique, de paramètre de maille a = 11.34 Å environ celui de la phase A_6C_{60} (A = K, Rb, Cs) [10–12] où la structure est cubique centrée (Fig. 1). Des calculs de structure électronique basés sur l'approximation de la Densité Locale (LDA) [13,14] montrent, comme pour les systèmes A₆C₆₀, que le composé Ba₃C₆₀ est également isolant avec un gap direct de 0,35 eV indiquant que le transfert de charge est complet. Le transfert de charge dans ce composé a pour conséquence la suppression du désordre orientationnel observé dans le C₆₀ pur. Les molécules dans la phase saturée sont bloquées et ceci est dû à un fort couplage coulombien entre les anions C_{60}^{6-} et les cations Ba²⁺. Le spectre RMN du composé Ba₃C₆₀ présente une raie isotrope à 156 ppm (Fig. 1). Le spectre statique correspondant présente une large étendue d'anisotropie d'environ 300 ppm à température ambiante. Les composés A_6C_{60} [15] présentent le même type de spectres RMN avec une raie isotrope à la même position en fréquence que le Ba₃C₆₀. Ceci montre que le transfert de charge dans ce dernier est également complet et par conséquent le niveau t_{1u} est complètement rempli, conduisant au caractère isolant de ce composé. Contrairement aux composés A_6C_{60} , la raie isotrope du composé Ba_3C_{60} ne présente pas de composantes bien définies associées aux 3 sites de carbones inéquivalents identifiés par les mesures de diffraction des rayons X [12]. Ceci peut être lié à la différence de structure entre A_6C_{60} et Ba_3C_{60} , à un plus grand désordre dans ce dernier ou à un plus fort couplage dipolaire entre les ions Ba^{2+} et les carbones du C₆₀. Le déplacement de 13 ppm vers les bas champs observé par rapport à la position de la raie isotrope du C₆₀ pur est attribué aux 6 électrons transférés à la molécule de C_{60} . En effet, les électrons additionnels amènent des contributions diamagnétique et paramagnétique aux carbones de la molécule où l'effet paramagnétique peut être dominant dans ce cas sachant que le gap d'énergie entre les niveaux t_{1u} et t_{1g} dans ce composé saturé est très faible (paramagnétisme de Van Vleck) [16].

Nous avons également effectué des mesures RPE du composé Ba_3C_{60} dans l'intervalle de température 4 K $\leq T \leq 300$ K. A température ambiante le spectre RPE obtenu présente un signal fin et symétrique de largeur de raie $\Delta H_{pp} = 5$ Gauss. Les résultats obtenus montrent que ΔH_{pp} est indépendante de la température et que la susceptibilité magnétique χ est de type curie (Fig. 2). Nous pensons que le signal observé de faible intensité provient d'impuretés paramagnétiques dans l'échantillon,

Fig. 1. Spectre RMN MAS du ¹³C des composés (a) Ba₃C₆₀ et (b) K₆C₆₀ [15]. On présente la structure A15 de la phase Ba₃C₆₀. Fig. 1. ¹³C MAS NMR spectra of (a) Ba₃C₆₀, (b) K₆C₆₀ [15]. Inset shows the Ba₃C₆₀ phase in the A15 structure.

Fig. 2. Evolution en fonction de la température, de χ et ΔH_{pp} du composé Ba₃C₆₀. Fig. 2. Temperature evolution of χ and ΔH_{pp} of Ba₃C₆₀ compound.

car sachant que le niveau t_{1u} est saturé, on peut s'attendre à ce que les électrons transférés soient tous appariés ce qui devrait conduire à l'absence d'un signal RPE. Nous ne sommes pas en mesure d'attribuer le signal observé à une phase bien identifiée. Cependant, on peut suggérer que l'absence d'un signal RPE assez large et de forte intensité tels que ceux obtenus avec les composés métalliques A_3C_{60} (A = K, Rb, Cs) [15], est une bonne indication du caractère isolant du composé Ba_3C_{60} .

3.2. Ba₆C₆₀

Ce composé adopte la même structure, cc de paramètre de maille a = 11,17 Å [6], et le même groupe d'espace Im $\overline{3}$ [23] que les A₆C₆₀ (Fig. 3). Les 6 baryums, cristallographiquement équivalents, au nombre de quatre par face, occupent les sites tétraédriques distordus. Le spectre RMN du ¹³C, avec rotation à l'angle magique, du composé Ba₆C₆₀ présente une raie isotrope centrée autour de 135 ppm et qui est formée de trois composantes (Fig. 3). L'observation de bandes de rotation sur 300 ppm est la signature d'une large étendue d'anisotropie de ce spectre. Ceci indique l'absence de mouvement des molécules de C₆₀ dans ce composé suite à un fort couplage coulombien avec les ions baryum.

A noter que, contrairement aux composés A_6C_{60} , la raie isotrope de Ba_6C_{60} (Fig. 3) est déplacée de 9 ppm dans le sens diamagnétique par rapport à la raie isotrope de C_{60} pur. Ce type de déplacement est observé pour la première fois dans les composés d'intercalation du C_{60} qui présentent généralement des raies RMN du ¹³C déplacées vers les bas champs par rapport à la résonance du C_{60} . Pour comprendre l'origine de ce comportement, rappelons que pour les molécules ayant un spin total nul, la susceptibilité moléculaire s'écrit :

$$\chi = \frac{Le^2}{6\,mc^2} \sum \bar{r}^2 + \frac{2}{3}L \sum \frac{|m_0(n',n)|^2}{h\upsilon(n',n)}.$$

Le premier terme est la contribution diamagnétique inhérente à toute substance et le deuxième terme est la contribution paramagnétique appelée paramagnétisme de Van Vleck [16]. Ce paramagnétisme dépend du gap lumo-homo de la molécule, hv(n', n), et du moment de transition $m_0(n', n)$. Les valeurs du gap d'énergie ne sont pas définies dans Ba₆C₆₀. Nous pensons que le déplacement diamagnétique important du signal RMN du Ba₆C₆₀ est essentiellement lié au moment de transition $m_0(n', n)$ qui est nul dans le cas d'un gap indirect (cas de Ba₆C₆₀ [17]) et non nul dans le cas d'un gap direct (cas de Ba₃C₆₀). Donc, contrairement au composé Ba₃C₆₀ où le paramagnétisme de spin apparaît dans la signature RMN, le paramagnétisme de Van Vleck n'a pas d'influence dans le composé Ba₆C₆₀ puisque le moment de transition $m_0(n', n)$ est nul dans ce cas. Ceci peut être une explication directe du déplacement diamagnétique observé dans le signal RMN de Ba₆C₆₀. On note aussi, que cette raie isotrope présente une structure formée de 3 composantes (Fig. 3) indiquant la présence de 3 carbones inéquivalents. Ce résultat confirme l'existence dans ce composé d'un ordre orientationnel des molécules en accord avec les mesures de diffraction des

Fig. 3. Spectre RMN MAS du ¹³C du composé Ba₆C₆₀. On présente la structure cristalline, cc, de la phase Ba₆C₆₀. Fig. 3. ¹³C MAS NMR spectra of Ba₆C₆₀. Inset shows the Ba₆C₆₀ phase in the bcc structure.

Tableau 1 Intensités et positions relatives des raies de résonance ${}^{13}C$ de la phase Ba₆C₆₀ Table 1 Relatives positions and intensities of the isotropic lines in the Ba₆C₆₀ phase

Ba ₆ C ₆₀			
Carbones inéquivalents	Position (ppm)	Intensité observée	Intensité calculée [18]
C1	132	13	12
C ₂	134,6	18	24
$\overline{C_3}$	139,6	28	24

rayons X [18]. Ces études ont montré l'existence de 3 sites de carbones inéquivalents C_1 , C_2 , C_3 avec des intensités relatives 12:24:24. Ainsi on s'attend à ce que le spectre RMN du ¹³C obtenu avec rotation à l'angle magique de l'échantillon soit constitué de 3 raies avec les rapports d'intensités 1:2:2. Les résultats de déconvolution réunis dans le Tableau 1 confirment bien cette hypothèse. Une comparaison des intensités observées (Tableau 1) et calculées nous a permis d'attribuer clairement la résonance dont l'intensité est la plus faible aux carbones C_1 qui sont les moins nombreux. Les carbones C_2 et C_3 contribuent aux deux autres résonances. Nous pensons que les raies aux positions 134,6 m :139,6 ppm correspondent aux carbones $C_2 : C_3$. Pour interpréter les positions en fréquences des 3 composantes C_1 , C_2 et C_3 , nous pensons que la répartition de la charge transférée sur la molécule de C_{60} est telle qu'une forte densité de charge doit se trouver sur les carbones C_1 entraînant un fort écrantage à l'origine du déplacement diamagnétique plus grand de ce carbone par rapport aux deux autres qui sont moins écrantés. Ceci est en accord avec les résultats du calcul de la distribution de charge basé sur l'approximation LDA [19], et qui montre que cette distribution est non uniforme et que la densité électronique est plus importante sur les 12 carbones C_1 sont les plus proches des ions Ba^{2+} .

Certaines controverses concernant la nature de transport dans Ba_6C_{60} ont été rapportées dans la littérature. Kraus et collaborateurs [8] ont montré que la supraconductivité observée dans la phase Ba_6C_{60} était due essentiellement à la présence de Ba_4C_{60} dans son échantillon. Récemment, Iwasa et collaborateurs [19] ont suggéré la présence d'une phase non métallique majoritaire dans Ba_6C_{60} . Cependant, le calcul de la distribution de charge basé sur l'approximation LDA fait par Saito et Oshiyama [20,21], montre que Ba_6C_{60} présente un caractère semi-métallique dû au chevauchement entre la bande de valence (t_{1g}) et la bande de conduction (h_g) . Tandis que le calcul basé sur l'approximation LDA faite par Erwin et Pederson [17] montre que Ba_6C_{60} est une phase isolante qui se caractérise par un gap indirect. Nos mesures RPE du composé Ba_6C_{60} montrent un signal faible (non présenté ici) de largeur $\Delta H_{pp} = 9$ G indépendant de la température et dont l'intensité a un

comportement de type Curie. Par analogie avec le composé Ba_3C_{60} , nous pensons que le signal observé provient d'impuretés paramagnétiques dans l'échantillon et que l'absence d'un signal RPE mettant en évidence le caractère métallique de ce composé, est une confirmation du caractère isolant de Ba_6C_{60} .

4. Conclusion

L'utilisation de la RMN haute résolution du ¹³C a permis de montrer que le composé Ba_3C_{60} , qui possède le même degré de transfert de charge que les A_6C_{60} , présente la même signature RMN. ceci confirme qu'il s'agit dans les deux cas d'ions C_{60}^{6-} et que les caractéristiques du composé étudié sont dominées par les électrons transférés. Ceci est en accord avec les études RPE qui confirment le caractère isolant de ce composé. Les 3 carbones inéquivalents dans la structure de la raie isotrope du spectre RMN ne sont pas résolus dans Ba_3C_{60} . Ceci peut s'expliquer par la différence de structure entre Ba_3C_{60} et A_6C_{60} , d'un plus grand désordre dans Ba_3C_{60} ou d'un plus fort couplage dipolaire entre le baryum et les carbones du C_{60} . Le déplacement paramagnétique observé est attribué aux 6 électrons additionnels avec une contribution paramagnétique due au paramagnétisme de Van Vleck. Le spectre RMN haute résolution du ¹³C du composé Ba_6C_{60} présente une raie isotrope centrée à 135 ppm et formée de trois composantes attribuées aux 3 carbones magnétique observé dans ce composé peut être interprété en terme de moment de transition dans un système à gap indirect. Enfin l'étude RPE montre l'absence d'un signal de type métallique dans ce composé.

Références

- A.R. Kortan, N. Kopylov, S. Glarum, E.M. Gyorgy, A.P. Ramirez, R.M. Fleming, O. Zhou, F.A. Thiel, P.L. Trevorard, R.C. Haddon, Nature (London) 360 (1992) 566–602.
- [2] A.R. Kortan, N. Kopylov, S. Glarum, E.M. Gyorgy, A.P. Ramirez, R.M. Fleming, F.A. Thiel, R.C. Haddon, Nature (London) 355 (1992) 529–532.
- [3] R.C. Haddon, G.P. Kochanski, A.T. Fiory, C. Morris, Science 258 (1992) 1636–1640.
- [4] Y. Iwasa, H. Hayashi, T. Furudate, T. Mitani, Phys. Rev. B 54 (1996) 14960–14962.
- [5] G.K. Wertheim, D.N.E. Buchanan, J.E. Rowe, Chem. Phys. Lett. 206 (1993) 193-205.
- [6] M. Baenitz, M. Heinze, K. Lüders, H. Werner, R. Schlögl, M. Weiden, G. Sparn, F. Steglich, Solid State Commun. 96 (1995) 539–544.
- [7] M.C. Böhm, H. Werner, R. Schlögl, J. Schulte, Solid State Commun. 99 (1996) 577-582.
- [8] M. Kraus, M. Kanowski, M. Baenitz, H. Werner, R. Schlögl, E.-W. Scheidt, H.-M. Vieth, K. Lüders, Fullrene Science & Technology 3 (1995) 113–115.
- [9] R.C. Haddon, et al., Nature 350 (1991) 320-325.
- [10] M. Mehring, F. Rachdi, G. Zimmer, Philos. Mag. Roy. Soc. 141 (1994) 8631-8637.
- [11] F. Rachdi, L. Hajji, M. Mehring, J.E. Fischer, Solid State Commun. 100 (1996) 493-496.
- [12] A.R. Kortan, N. Kopylov, R.M. Fleming, O. Zhou, F.A. Thiel, R.C. Haddon, K.M. Rabe, Phys. Rev. B 47 (1993) 13070–13076.
- [13] M. Knufer, F. Stepaniak, J.H. Weaver, Phys. Rev. B 49 (1994) 7620-7625.
- [14] I. Turek, J. Hafner, Phys. Rev. B 48 (1993) 14925–14932.
- [15] C. Goze, Thèse, Montpellier, 1996.
- [16] V. Vleck, Oxford University Press, 1952.
- [17] S.C. Erwin, M.R. Pederson, Phys. Rev. B 47 (1993) 14657-14660.
- [18] O. Zhou, J.E. Fischer, N. Coustel, S. Kgeia, Q. Zhu, A.R. McGhie, W.J. Romanow, J.P. McCauley, A.R. Smith III, D.E. Cox, Nature 351 (1991) 461–464.
- [19] Y. Iwasa, S. Taga, T. Mitani, Y. Maniwa, K. Tanigaki, B. Gogia, H. Suematsu, Synth. Metals 92 (1997) 3308–3317.
- [20] S. Saito, A. Oshiyama, Phys. Rev. Lett. 71 (1993) 121–124.
- [21] S. Saito, A. Oshiyama, J. Phys. Chem. Solids 54 (1993) 1759–1765.
- [22] O. Zhou, Thèse, Pensylvanie, 1992.
- [23] Y. Iwasa, H. Hayashi, T. Furudate, M. Kawaguchi, T. Mitani, Synth. Metals 86 (1997) 2309–2310.