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Abstract

This paper is a review of the theoretical and experimental studies devoted so far to the electronic structure of pur
nanotubes, including single-wall, multiwall, and ropes of single-wall nanotubes. A universal picture of the band stru
single-wall nanotubes is obtained by exploiting a particular helical symmetry. A brief description of the optical propertie
nanotubes is also presented. Potential applications of carbon nanotubes in nanoelectronics are described.To cite this article:
Ph. Lambin, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Structure électronique des nanotubes de carbone. Cet article est une revue des acquis théoriques et expérimentau
la structure électronique des nanotubes de carbone, à la fois pour les tubes monofeuilles, multifeuillets et les fais
nanotubes. Une vue unifiée de la structure de bandes électroniques des nanotubes monofeuillets est obtenue par
d’une symétrie hélicoïdale particulière. Une brêve description des propriétés optiques des nanotubes est aussi prés
applications possibles des nanotubes de carbone en nanoélectronique sont décrites.Pour citer cet article : Ph. Lambin, C. R.
Physique 4 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

One of the most spectacular properties of single-wall carbon nanotubes is that they can be metallic or semi-co
depending on their helicity [1–4]. Possible applications of nanotubes in nano-electronic devices will exploit that prop
On a more fundamental point of view, the fact that the nanotubes are one-dimensional systems brings interesting ph
More exactly, carbon nanotubes are quasi one-dimensional systems: the atoms are located on a cylindrical surfac
dimensional space; they do not form a one-dimensional chain, like for instance in polyacetylene. This remark is im
because the Peierls instability that is responsible for alternating simple and double bonds in polyacetylene for examp
open a gap of 1.4 eV there [6], is inoperant in the case of carbon nanotubes [1,7,8]. Other one-dimensional effects are
to occur in metallic nanotubes, such as the breakdown of the usual Fermi liquid description in favour of Tomonaga–L
behavior dominated by collective excitations [9].

This paper is a review of the usual, one-electron properties of pure carbon nanotubes. After a rapid survey of the el
graphene zone folding theory (Section 2), a unified picture of the electron band structure of single-wall nanotubes
is presented in Section 3. The consequences of the band structure on optical properties of SWNTs are briefly o
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1631-0705/$ – see front matter 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Section 4. The electronic properties of ropes of single-wall nanotubes and of multiwall nanotubes are reviewed in S
A short description of possible applications of SWNTs in nanoelectronics is the subject of Section 6.

2. Zone folding of the π bands of graphene

Conceptually, a single-wall nanotube is a rolled-up stripe of graphene from which it retains part of its electronic st
Close to the Fermi energy, the band structure of graphene is dominated by theπ states formed by the interacting 2pz orbitals
normal to the graphene sheet [10]. Since there are two atoms in the unit cell of graphene, there are twoπ bands, a bonding
(π ) one and an anti-bonding (π∗) one. These bands cross each other at the corners of the hexagonal first-Brillouin zoneK

points. For symmetry reasons, the Fermi level coincides with the energy of the crossing. Graphene is a zero-gap semic
its density of states (DOS) at the Fermi energyEF is zero and increases linearly on both sides ofEF . A contour plot of theπ
band in the reciprocal plane of graphene is shown in Fig. 1.

In a nanotube, cyclic boundary conditions apply around the circumference. In the planar development of the(n,m) nanotube,
the circumference is the wrapping vector�Ch = n�a1 + m�a2, where�a1 and�a2 are two primitive translation vectors of graphen
which by convention make an angle of 60◦ between them. In the two-dimensional graphene sheet, the wave function
end point of�Ch is the one at the origin multiplied by the Bloch factor exp(i�k · �Ch). Assuming that the graphene wavefunctio
remain valid in the rolled up structure, the cyclic boundary conditions impose exp(i�k · �Ch) = 1. That condition discretizes th
Bloch vector�k along equidistant lines�Ch · �k = �2π perpendicular to�Ch, and therefore parallel to the nanotube axis, where� is
an integer number. These discretization lines are drawn in Fig. 1. Along each of these lines, theπ andπ∗ bands of graphene ar
probed. These two bands are always separated by a gap unless one of the discretization line passes through a cornK of the
first-Brillouin zone. The nanotube is then a metal because it contains two bands that cross the Fermi level. This happ
nK1 + mK2 = �, whereK1 andK2 are the coordinates of aK point in the basis of the reciprocal unit vectors of graphe
Taking for instanceK1 = 1/3 andK2 = −1/3 leads to the condition thatn − m must be a multiple of 3 to obtain a metall
nanotube [2]. Otherwise it is a semiconductor.

The band gapEg of semiconductor nanotube is easy to estimate when it is assumed that the dispersion of theπ andπ∗
bands is isotropic and linear around aK point:

E = ±h̄vF δk (1)

Fig. 1. Contour plot of the bondingπ band in the reciprocal plane of graphene. TheΓ point is at the center of the figure, the cornersK

of the first Brillouin zone are indicated by the black dots, theM points are indicated by the crosses. The thick lines across the drawin
discretization lines of the the Bloch vector for the (5,3) nanotube. The two arrows indicate the axial direction of the armchair (A) and
(Z) nanotubes.

Fig. 1. Lignes de contour de la bandeπ liante dans l’espace réciproque du graphène. Le pointΓ est au centre de la figure, les sommetsK de
la première zone de Brillouin sont indiqués par des ronds noirs et les pointsM par des croix. Les lignes grasses qui traversent la figure son
lignes de discrétisation du vecteur de Bloch pour le nanotube (5,3). Les deux flèches indiquent la direction axiale des tubes ‘armch
zig–zag (Z).
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Table 1
Electronic properties of the single-wall nanotube(n,m). In the formulasd andθ are the diameter
and chiral angle,dCC = 0.142 nm is the nearest-neighbor distance in graphite,Eg is the band
gap of the semiconducting tubes,cg ≈ 3.1 eV [18],n(EF ) is the density of states per atom at
the Fermi level for the metallic tubes, andγ0 = 2.9 eV is theπ -electron interaction. The last line
gives the positions of the van Hove singularities close to the Fermi level (� = 1,2,3, . . .), which
are symmetrically located on both sides ofEF .

n − m �=M(3) n −m = M(3) �= 0 n − m = 0

semiconductor small-gap semiconductor metal
Eg = 2γ0dCC/d Eg = cg |cos(3θ)|(dCC/d)

2 n(EF ) = 2
√

3dCC/(π
2γ0d)

|E2�−1| = (3� − 2)γ0dCC/d |E�| = 3�γ0dCC/d |E�| = 3�γ0dCC/d

|E2�| = (3� − 1)γ0dCC/d

with vF the Fermi velocity. In the above formula,δk is the distance of the Bloch vector to theK point andE is the energy with
respect to the Fermi level. As can be seen in Fig. 1, the closest distance of the discretization lines to aK point is one third the
separation between these lines, which is the reciprocal of the nanotube radius 1/R. By settingδk = 1/3R in the above equation
one obtainsEg = 2h̄vF /3R. In theπ orbital tight-binding approximation [10],

h̄vF = 3γ0dCC/2, (2)

whereγ0 is the absolute value of theppπ hopping interaction (2.9 eV [11]) anddCC is the CC distance (0.142 nm). Th
expression leads to the band gap given in Table 1. It is inversely proportional to the nanotube diameter [12].

In a metallic nanotube, theπ andπ∗ bands that cross at theK point contribute 1/π |dE/dk| each to the density of state
Due to the linear dispersion of these bands, the density of states is a constant around the Fermi level (see Table 1).
coming from the next discretization lines that pass at a distance 1/R from theK point have their energy at leasth̄vF /R away
from the Fermi level. This means that the metallic nanotubes have a plateau of constant density of states aroundEF in an
interval of width 2̄hvF /R, three times as large as the band gap of a semiconductor with same radius. All these predictio
the density of states of the nanotube have been confirmed experimentally by scanning tunneling spectroscopy (STS
The linear dispersion of theπ andπ∗ bands nearEF in the armchair nanotubes has also been demonstrated experiment
the same technique [15,16].

The density of states of a nanotube is characterized by a series of van Hove singularities that occur at ener
that dE/dk = 0, whereE is the energy of a band. Around the Fermi level, where the linear dispersion of Eq. (1) is
minima or maxima of the two bands sampled along a discretization line take place at the closest distance to theK point. For
a semiconductor, the closest distance is(� + 1/3)/R or (� + 2/3)/R, whereas for a metal, it is�/R, with � an integer. The
positions of the van Hove singularities deduced from these relations are given in Table 1.

The above analysis based on the zone folding of graphene is essentially correct except that it neglect two effects.
linear and isotropic dispersion of theπ andπ∗ bands is only true in a close neighborhood of theK points. At some distanc
from aK point, the energy contour lines are no longer circles but exhibit a trigonal anisotropy, see Fig. 1. This means
formula of Table 1 are only valid for large diameters. Second, the effects of curvature were neglected. In a cylindrical g
theπ orbitals are locally oriented along the normal to the nanotube and are not parallel to each other like in graphe
mix with theσ orbitals of neighboring sites. This mixing, although small [7], lifts the degeneracy of theπ andπ∗ states at the
K point and a small gap opens in these nanotubes for whichn − m = M(3) [17–19], except for the armchair nanotubes(n,n)

where the crossing of the bands atEF is still allowed due to theCnv symmetry for all Bloch wave vectors [8,20]. Effects
this small gap have been detected by far-infrared spectroscopy [21] and transport measurements [22]. The small gap
maximum in the zig–zag nanotubes (see Table 1), has been measured experimentally by STS [23].

3. Band structure of single-wall nanotubes

Soon after the discovery of the carbon nanotubes, band structure calculations of SWNTs have been performed w
density functional theory using either localized orbitals [1] or plane-wave expansions [24,25]. Comparisons were m
simplest tight-binding calculations. The latter were shown to be unable to reproduce strong effects ofσ–π hybridization in
nanotubes with diameter below 0.6 nm [25], which shift down theπ∗ bands [26]. For nanotubes with diameters around 1.2
and above, the tight-binding band structure and density of states were shown to be fairly correct up to∼1.5 eV above the Ferm
level [20,26–29].

The tight-binding theory has the advantage that it is simple and the results it leads to are easily interpreted. In th
Koster formalism, the tight-binding Hamiltonian requires a few parameters that can be fitted to ab-initio calculation
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justed to experimental data. All the tight-binding calculations illustrated in this section were performed with the par
of Mintmire and White [20]. This model incorporates the four valence orbitals of C in an orthogonal basis with first-ne
interactions.

Carbon nanotubes are periodic systems along their axis. Except for the zig–zag and armchair geometry, the transla
can be large, with the consequence that the number of atoms per unit cell is large. The nanotubes possess screw opera
considerably reduce the number of atoms to use in band structure calculations [12].

In Fig. 2, the chain of atoms marked by the thick lines becomes a helix in the rolled up structure. This particula
makes an angleπ/6+ θ with respect to the axial direction, whereθ is the chiral angle of the nanotube. With the helical sche
adopted here, the complete nanotube can be generated fromn (m � 0) or n − |m| (m < 0) such diatomic helices (whenm is
negative, the chain running along the dashed line marked with theφ angle must be used, see Fig. 2) [30]. To move from
atom represented by a circle in Fig. 2 to the next one along the same helix, it suffices to operate a primitive translation

�h = �a2 (m � 0) or �h = �a2 − �a1 (m < 0). (3)

On the rolled-up cylinder, this operation corresponds to a translationτ = 3n′dCC/2c along the axis, followed by a rotatio
α = ±π(n′ + 2m′)/c2 about the axis, where the+ sign corresponds tom � 0 and the− sign tom < 0. In these expression

c =
√
n2 + m2 + nm, n′ = n andm′ = m whenm � 0, n′ = n+ m andm′ = −m whenm< 0.

It is possible to use the screw operationŝ defined byτ and α in a generalized Bloch theorem, which states t
ŝψ = exp(iκτ)ψ , with ψ a wave function of the nanotube, and−π/τ � κ � +π/τ [20]. If again curvature effects are ignore
ψ is a Bloch function of graphene with some wavevector�k, the screw operation on the cylinder corresponds to the prim
translation�h (Eq. (3)) of graphene and̂sψ = exp(i�k · �h)ψ in the planar development. As a result,

κτ = �k · �h. (4)

When the screw operation is applied to connect an atomj to the atomi in the unit cell, the rotationα must be operated on th
orbitals of atomj . With the screw operation defined here above, the unit cell contains 2n′ atoms (two per helix). As mentione
above, other choices of helical symmetry are possible, which can reduce the number of atoms to as little as two [12
advantage here is thatτ is always of the order of the C–C distancedCC, which makes easy the comparison of the band struct
of nanotubes with various chiralities. In fact, one is led to a unified description of the nanotube band structure, as we n

Fig. 3 shows the tight-binding band structure of a few nanotubes with different chiralities. For the (10,10) armchair na
the electronic bands are represented in the first-Brillouin zone. For all the others, the screw operation introduced h
was applied to represent the band structure in an extended zone. For the metallic nanotubes, displayed on the right-h
the figure, the crossing of theπ andπ∗ bands is taking place close to the 2/3 of theΓ X zone. Except for the(10,10) tube, the
band crossing is avoided due to the curvature effects described in Section 2, but the splitting of the bands is hardly s
figure. The semiconducting nanotubes all have a direct gap, also located close to the 2/3 of theΓX zone. The reason for this
a consequence of Eqs. (3) and (4), given that at the cornerK of the graphene first Brillouin zone, one has�kK · �h = ±2π/3. As

Fig. 2. Two-dimensional graphene sheet showing the circumferenceCh and the true periodT of the (n,m) nanotube, together with the chir
angleθ . The zig–zag chain of atoms highlighted by thick lines becomes an helix in the rolled up structure. It is composed of two atom
with circles and squares.n such helices completely define the atomic structure of the nanotube whenm � 0.

Fig. 2. Feuile bi-dimensionnelle de graphène montrant la circonférenceCh et la période vraieT du nanotube(n,m), ainsi que l’angle chiralθ .
La chaîne zig–zag d’atomes mise en évidence par les lignes grasses devient une hélice sur le tube. Elle est composée de deux ato
par des cercles et des carrés.n hélices de ce type définissent complètement la structure atomique du nanotube lorsquem � 0.
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Fig. 3. Tight-binding band structure of six single-wall carbon nanotubes. The Bravais primitive cell was used for the(10,10) nanotube. For the
other tubes, the screw operation described in the text was applied to represent the band structure in an extended Brillouin zone. The
on the left-hand side are semiconducting, the ones on the right-hand side are metallic, except for the small gap induced by curvature(13,−2)
and(13,7). This band gap is 0.037 eV in the case of the small nanotube(13,−2) (d = 0.95 nm). The Fermi level is at zero energy.

Fig. 3. Structure de bandes en liaisons fortes de six nanotubes monofeuillets. La cellule primitive de Bravais a été utilisée pour le
(10,10). Pour les autres tubes, l’opération vis décrite dans le texte a été appliquée pour représenter la structure de bandes dans une z
Les nanotubes situés à gauche de la figure sont des semi-conducteurs, ceux à droite sont des métaux si l’on fait abstraction de la
interdite ouverte par la courbure dans les tubes(13,−2) et (13,7). Cette bande interdite est de 0.037 eV dans le cas du petit nanotube(13,−2)
(d = 0.95 nm). Le niveau de Fermi est au zéro d’énergie.
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Fig. 4. Tight-binding density of states of the six nanotubes considered in Fig. 3. The Fermi energy is at 0.

Fig. 4. Densités d’états en liaisons fortes des six nanotubes considérés à la Fig. 3. Le niveau de Fermi est en 0.

it is also clear in Fig. 3, theπ andπ∗ bands converge to nearly the same energy at theX point,∼ ±2.8 eV, which correspond
to theppπ interaction. In graphene, theπ andπ∗ bands have that energy at theM point. According to Eqs. (3) and (4), theM
point corresponds to theX zone boundary of the nanotube, since�kM · �h = ±π .

The densities of states of the same nanotubes as in Fig. 3 are shown in Fig. 4. The density of states is characte
series of van Hove singularities that are real fingerprints of the nanotube. Indeed, the precise location of these peaks c
to identify a nanotube from its STS spectrum [32]. Near the Fermi level, their positions follow approximately the expr
given in Table 1 [27,33]. Except for the armchair geometry, there is a splitting of the van Hove peaks on both sides of
plateau of the metallic nanotubes, which is due to the trigonal symmetry of theπ andπ∗ bands around theK point [34]. The
magnitude of the splitting is maximum for the zig–zag configuration. All the nanotubes present a DOS peak at about±2.8 eV.
These peaks are the consequence of the accumulation of bands at theX point. They are reminiscent of the peak that the D
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of graphene possesses at the energy of theppπ interaction, due to the saddle point of theπ andπ∗ bands at theM point of the
first Brillouin zone (see Fig. 1).

A geometrical deformation of a nanotube affects its band structure. For instance, a uniaxial stress changes the band
nanotube [35,36], simply because it modifies the bond lengths unequivalently, depending on the orientation of the bo
respect to the axis. It has no qualitative effects on an armchair nanotube, which remains metallic because the mirror sy
not affected by a uniaxial strain. A twist, by contrast, opens a gap at Fermi level of the armchair tubes [37]. Bending a n
increases the mixing of theσ andπ states and increases the DOS below the Fermi energy in the armchair nanotube
Local defects (impurity, vacancy, Stone–Wales defect, pentagon–heptagon pair, cap,...) may induce strong perturb
the electronic structure [38], especially in armchair nanotubes. Backscattering of Bloch waves by a defect may ind
to oscillations of the density of states due to quantum interferences [39]. These oscillations have been detected by
tunneling spectroscopy [16,40].

4. Optical properties

Resonances in the Raman scattering cross section [41] and the positions of strong absorption bands i
spectroscopy [42,43] of a nanotube are determined by electronic transitionsv� → c�′ between valence and conduction ban
For symmetry reasons, transitions with�′ �= � have a much smaller intensity than those with�′ = �, at least in achira
nanotubes [44]. The joint density of states (JDOS) can therefore be approximated by

ρ(hν) = 2
∑
κ

∑
�

δ
(
Ec,�(κ)− Ev,�(κ)− hν

)
. (5)

The bands close to the Fermi level have essentially aπ character with nearly electron–hole symmetry, which me
Ev,� ≈ −Ec,�. As a result,ρ(hν) ≈ (1/2)n(hν/2) wheren is the density of states. As a consequence, the JDOS has
at energies twice those of the van Hove singularities. The transition energies+E�� = 2E� increase with decreasing diamet
For small tubes, they also depend on the chirality [42]. Within the graphene zone-folding approximation and linear di
law (Eq. (1)), the joint density of states can be obtained analytically [27]. The expression per length unit of nanotube is

ρ(hν) ≈ ρ0 + 2

πh̄vF

∑
�

g�
hν√

(hν)2 − +E2
��

θ(hν − +E��), (6)

whereθ is the Heaviside function (0 for a negative argument, 1 for a positive argument),ρ0 = 0 or 2/πh̄vF for a semiconducto
or a metal, respectively, andg� is the degeneracy of the bands, 1 or 2 for a semiconducting or a metallic nanotube, respe
Comparison with the curves plotted in Fig. 5 shows that this last equation gives acceptable results forhν < 2.5 eV.

Fig. 5. Tight-binding joint density of states of five nanotubes with similar diameters. The curves were smoothed by a Lorentzian broa
0.07 eV FWHM. From bottom to top:(10,9), (13,6), (17,0), (10,10) and(13,7). The last two nanotubes are metallic.

Fig. 5. Densité d’états jointe de cinq nanotubes de diamètres voisins. Les courbes ont été adoucies par un élargissement lorentzien
FWHM. De bas en haut :(10,9), (13,6), (17,0), (10,10) et (13,7). Les deux derniers nanotubes sont métalliques.
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The joint densities of states (Eq. (5)) of five nanotubes with similar diameter around 1.4 nm are plotted in Fig. 5.
value of the diameter, the semiconducting tubes have a pair of peaks at 0.6 (band gap) and 1.2 eV, and other resona
2.3 eV. The metallic tubes have a strong spike at 1.7 eV (width of the metallic plateau) and other peaks above 3 eV
experimental side, typical absorption spectra of nanotube ropes show two main bands centered on 0.75 and 1.3 eV,
to +E11 and+E22 transitions in semiconducting tubes, and a third peak at 1.9 eV due to the metallic nanotubes
Recently, individual SWNTs isolated in cylindrical micelles were prepared in water solution. Their absorbance spectra
a series of narrow peaks arising from specific tube diameters, corresponding to the+E11 band gap and the+E22 transition
in semiconductor nanotubes [46]. As a final remark, the intensity of the Raman lines of ropes of single-wall nanotub
strongly when the laser excitation energy varies between 1.5 to 2.2 eV, which is due to a resonant enhancement of th
components when the incoming or outgoing light energy matches the+E11 transition [11].

5. Electronic properties of ropes of single-wall nanotubes and multiwall nanotubes

In ropes of SWNTs, intertube interactions, although small, are sufficient to reduce the symmetry and to mo
electron density of states of the coupled system compared to that of the isolated tubes. Early first-principle calcula
a highly-symmetric arrangement of(6,6) nanotubes on a triangular lattice indicated that this crystalline system is a zer
semiconductor [47]. In a close packed triangular lattice of(10,10) nanotubes, ab-initio calculations revealed the presence
pseudo-gap of 0.1 eV width at the Fermi level [48]. Due to the reduction of symmetry, there is no crossing ofπ andπ∗ bands
anymore for wave vectors parallel to the axis, but the bands disperseversus the component of the Bloch vector normal to t
axis and they overlap each other. This is why a real gap does not form. This pseudo-gap is already present when
nanotubes are packed on a triangle [28]. It has been detected by STS measurements on ropes of SWNTs [23]. Inter
crystalline rope of(10,0) nanotubes is predicted to be metallic because the dispersion of the bands in directions norm
axis is sufficient to close the gap of the isolated(10,0) nanotube [26].

On the experimental side, the electronic structure of multiwall nanotubes (MWNT) is less documented than for
walled tubes. Valence-band photoemission indicates that a MWNT resembles semimetallic graphite [49]. Howev
semiconducting and metallic characteristics were found by STS measurements performed on individual MWNTs [50,
observation probably indicates that the STM probes only the external layer of the nanotube [52]. Furthermore, the ST
may vary strongly from one place to another on the same tube [53], which may be due to the presence of defects.

On the theory side, multiwall nanotubes have been the subject of several studies. Band-structure calculations h
performed exclusively for monochiral systems, most particularly zig–zag and armchair. Early tight-binding calcu
performed for double-wall nanotubes (DWNT) showed that the interlayer interactions can couple some of the electro

Fig. 6. Details of the band structure and density of states of (a) the two-wall(6,6)@(11,11) nanotube and (b) the five-wa
(6,6)@(11,11)...@(26,26) nanotube (adapted from [55]; published with permission of World Scientific).

Fig. 6. Détails de la structure de bandes et de la densité d’états électroniques du (a) nanotube bifeuillet(6,6)@(11,11) et (b) nanotube à cinq
feuillets (6,6)@(11,11)...@(26,26) (adapté de [55] ; publié avec la permission de World Scientific).
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of the layers when they are commensurate [54], as for example in(5,5)@(10,10) or (9,0)@(18,0). Further calculations
demonstrated that a system like(5,5)@(10,10) can be a metal or a semimetal, depending on the relative position of one
with respect to the other [55,56]. When the(5,5) and(10,10) coaxial layers have no mirror plane in common, the cross
between theπ andπ∗ bands at the Fermi level becomes forbidden by group theory, and the coupled system may b
in a semimetallic state [55]. As a result, a pseudo-gap opens near the Fermi level [56]. The argument from group th
fortiori valid for non-commensurate systems like(6,6)@(11,11), which have no common rotational symmetry. But there,
interlayer interaction becomes so small, due to the incommensurability, that there is very little coupling between the
the two layers, see Fig. 6.

In general, the effects of the interlayer coupling on the density of states are small. The DOS of the two-wall and the
nanotubes shown in Fig. 6 are merely the sum of the densities of states of the constituent single-wall nanotubes. Th
quite true even for commensurate MWNTs like(5,5)@(10,10)@(15,15) [28]. Calculations also indicate that DWNTs mixin
metallic and semiconducting layers retain the basic properties of the uncoupled constituents [54]. The intertube int
only induce a small continuous distribution of states in the band gap of the semiconducting layer [52].

6. Applications

The fact that metallic and semiconducting nanotubes can be joined together on the same molecule [39,57] open
to realize pure carbon devices that can behave like a Schottky diode [58]. Such a junction often appears in the f
kinked structure due to the presence of pentagon-heptagon pair that is needed to interconnect two nanotubes wit
helicities [59], although straight junctions have also been identified [60]. In a junction between a semiconductor and a
nanotube, the current can flow easily in one direction and much less easily in the other direction [61,62], with the ad
that switching between these two states is very fast. And indeed rectifying current-voltage characteristics have been
in a kinked single-wall nanotube [63]. Here, the rectification is that of a n-type semiconductor connected to a me
Kinked multiwall nanotubes have also been observed with an asymmetric current-voltage curve, which is attributed to a
between two semiconductors with different band gaps [65].

Since nanotubes are one-dimensional objects, dipole charges that may form at a metal-semiconductor junctio
generate a macroscopic electric field like in the case of planar junction between three-dimensional materials [62]. This g
property has important effects in metallic contacts with a nanotube, which behave like Schottky barriers and may
the current-voltage characteristics of the system [66–68]. This means that measuring the intrinsic transport prope
nanotube device is extremely difficult. An additional perturbation comes from the contamination of the interface be

Fig. 7. (a) Schematic view of a nanotube FET device with its three metallic electrodes (adapted from [72]). (b) Hysteresis behavior of
current in a SWNT FET exposed to airversus gate voltage at a constant 10 mV bias (adapted from [76]).

Fig. 7. (a) Vue schématique d’un dispositif FET à nanotube avec ses trois électrodes métalliques (adaptée de [72]). (b) Hystérèse
de drain dans un FET à nanotube monofeuillet exposé à l’air en fonction de la tension de porte pour une différence de potentiel so
maintenue à 10 mV (adapté de [76]).
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carbon nanotube and the contact electrodes by impurities and oxygen molecules, for the latter are responsible for i
p-type characteristic on a semiconducting nanotube [69].

The most spectacular potential application of semiconducting nanotubes in nanoelectronics [5] is their use as three
devices that work like field-effect transistors (FET) [70,71]. Here, a nanotube is attached to two metallic electrode line
respectively as a source and a drain. The nanotube is separated from a third electrode, the gate, by a thin insulating
Fig. 7(a). Due to the difference of work function between the nanotube and the contact electrodes, Shottky barriers ar
with a bending of the valence and conduction bands of the nanotube, and the device has a very small conductivity fo
drain–source bias. The conductivity of the nanotube can increase by several orders of magnitude by varying the gate
few volts across a threshold value. This is because the gate electric field reduces the width of the Schottky barriers an
reaches a threshold value, the gate field injects charge carriers on the nanotube by capacitive effects [66,67]. In toda
the insulating oxide layer between the gate and the nanotube is very thin [72,73]. Thanks to a high coupling to the n
the gate signal can now be amplified to a level such that the output voltage of a first transistor can control the input of
one. This important technological improvement, plus the fact that both p-type, n-type, and ambipolar carbon nanot
transistors can be realized, makes it possible to integrate the nanotubes into elementary logical gates [72,74].

Semiconducting SWNTs can also display memory effects [68]: it has been discovered that the drain current of a n
FET exposed to air can present an hysteresis loop when the gate voltage varies continuously between a nega
(conducting p-type semiconductor) to a positive value (non-conducting device) and back to negative values [75
Fig. 7(b). It seems that charges trapped on oxidation related defects are responsible for a sizable offset of the ga
threshold required to switch from high to low and from low to high conductivity states. As a result, the conductance
nanotube at low gate potential presents two stable values that may differ by a few orders of magnitude, depending o
a large positive or negative voltage pulse was initially applied to the gate electrode. By keeping track of its gate voltag
for several days, the device works like a programmable ROM memory.

Many efforts remain to be made to transpose these prototype transistors and memories to practical device applica
challenge is of course to control the electronic properties of the nanotubes, to manipulate and assemble thousands
predetermined positions on contact lines during a real device fabrication. The fact that the metallic components (appro
one third of the nanotubes) in a bundle can be burnt off by sending an appropriate pulse of current through them [77]
transformed into semiconductors by oxidation [76] is already a big step forward in the control process.
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