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Abstract

CMB data analysis is in general performed through two main steps: map-making of the time data streams and power
extraction from the maps. The latter basically consists in the separation between the variance of the CMB and that of th
the map. Noise must therefore be deeply understood so that the estimation of CMB variance (the power spectrum) is
General techniques to make maps from time streams and to extract the power spectrum from them are presented in
We will see that exact, maximum likelihood solutions are in general too slow and hard to deal with to be used in
experiments such as Archeops and should be replaced by approximate, iterative or Monte Carlo approaches that lead
precision.To cite this article: J.-Ch. Hamilton, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Fabrication de cartes de CMB et estimation du spectre de puissance. L’analyse de données CMB consiste en généra
deux étapes : fabrication de cartes à partir des données temporelles et extraction du spectre de puissance à partir de
dernière étape consiste essentiellement en une séparation entre les variance du CMB et du bruit sur la carte. Le bru
conséquent être parfaitement compris afin que l’estimation de la variance du CMB (le spectre de puissance) soit no
Je présente dans cet article des techniques générales pour fabriquer des cartes à partir de données temporelles e
le spectre de puissance. Nous verrons que les méthodes exactes, maximisant la vraisemblance, sont en général tr
difficiles à manipuler pour être utilisables dans les expériences récentes comme Archeops. On doit donc les remplac
méthodes approximatives, itératives ou reposant sur des simulations Monte Carlo qui conduisent à une précision co
Pour citer cet article : J.-Ch. Hamilton, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The cosmological information contained in the Cosmic Microwave Background (CMB) anisotropies is encoded
angular size distribution of the anisotropies, hence in the angular power spectrum and notedC�. It is of great importance
to be able to compute theC� spectrum in an unbiased way. The simplest procedure to obtain the power spectrum is
construct a map of the CMBA from the data timelines giving the measured temperature in one direction of the sky foll
given scanning strategy on the sky; this is known as the map-making process. TheC� from this map can be extracted; this is t

E-mail address: hamilton@in2p3.fr (J.-Ch. Hamilton).
1631-0705/$ – see front matter 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/S1631-0705(03)00108-7
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power spectrum extraction. Various effects usually present in the CMB data make these two operations nontrivial. T
effect is related to the unavoidable presence of instrumental and photon noise. Noise in the timelines is correlated an
as low frequency drifts that are still present in the map. A good map-making process minimizes these drifts, but in mo
they are still present in the map. They have to be accounted for in the power spectrum estimation, as the signal power
is nothing but an excess variance in the map at certain angular scales compared to the variance expected from the
CMBA power spectrum will therefore be unbiased only if the noise properties are known precisely.

This article presents the usual techniques that allow an unbiased determination of both the CMBA maps and power
In Section 2 we will describe the data model and the data statistical properties required for the techniques presented
valid. Sections 3 and 4 deal with map-making and power spectrum estimation techniques, respectively.

2. Data model

The initial data are time ordered information (TOI) taken along the scanning strategy pattern of the experiment. The
measures the temperature of the sky in a given direction through an instrumental beam. This is equivalent to sayin
underlying sky is convolved with this instrumental beam and that the instrument measures the temperature in a single
of aNp pixellised convolved sky notedT. TheNt elements TOI notedd may therefore be modelled as:

d =A · T + n. (1)

The pointing matrixA relates each time sample to the corresponding pixel in the sky.A is aNt × Np matrix that contains a
single 1 in each line as each time sample is sensitive to only one pixel is the convolved sky.1 The noise TOIn in general has a
nondiagonal covariance matrixN given by:2

N = 〈
n · nt

〉
. (2)

The most important property of the noise, that will be used widely later, is that ithas to be Gaussian and piece-wise stationa
Both assumptions are crucial as they allow major simplifications of the map-making and power spectrum estimation p
namely Gaussianity means that all the statistical information on the noise is contained in its covariance matrix and st
means that all information is also contained in its Fourier power spectrum, leading to major simplifications of the cov
matrix: the noise depends only on the time difference between two samples andN is therefore a Toeplitz matrixNij =N|i−j |
completely defined by its first line and is very close to being circulant.3 Such a matrix is diagonal in Fourier space. Its first l
is given by the autocorrelation function of the noise, that is, the inverse Fourier transform of its Fourier power spectr� is
the convolution operator):4

Ni0 = 〈n � n〉 ≡ 〈
F−1[∣∣F(n)

∣∣2]〉. (3)

3. Map-making techniques

The map-making problem is that of finding the best estimateT̂ of T from Eq. (1) givend andA. The noisen is, of course,
unknown. We will address the two main approaches to this problem, the first being the simplest one and the second
the optimal one. An excellent detailed review on map-making techniques for the experts is [1].

3.1. Simplest map-making: coaddition

The simplest map-making that one can think about is to neglect the effects of the correlation of the noise. One
average the data falling into each pixel without weighting them. This procedure is optimal (it maximises the likelihood
noise in each data sample is independent, that is, if the noise is white. In a matrix notation, this simple map-makin
written:

T̂ = [
At ·A]−1 ·At · d, (4)

1 Different forms forA can however be used in case of differential measurements or more complex scanning strategies.
2 the symbols〈 〉 mean that we take the ensemble average over an infinite number of realisations.
3 Saying that the matrix is circulant is an additionnal hypothesis, but a very good approximation for large matrices.
4 F denotes the Fourier transform (in practice, a FFT algorithm is used).
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where the operatorAt just projects the data into the correct pixel and[At ·A] counts the sample falling into each pixel. Th
simple map-making has the great advantage of the simplicity. It is fast (∝Nt ) and robust.

However, in the case of realistic correlated noise, the low frequency drifts in the timelines induce stripes in the ma
the scans of the experiment. These stripes are often much larger than the CMBA signal that is searched for and theref
be avoided. Various destriping techniques have been proposed to avoid these stripes. A method exploiting the redun
the Planck mission5 scanning strategy has been proposed by [2] and extended to polarisation by [3]. This kind of method
suppressing the low frequency signal by requiring that all measurements made in the same direction at different instan
to a same temperature signal. Another method has recently been proposed for the Archeops6 data analysis and estimates t
low frequency drifts by minimizing the cross-scan variations in the map due to the drifts [4]. The simplest method for re
the low frequency drifts before applying simple map-making is certainly to filter the timelines so that the resulting t
has almost white noise. The filtering can consist in prewhitening the noise or directly setting to zero contaminated freq
The computing time (CPU) scaling of the filtering+ coaddition process is modest and dominated by filtering (∝ Nt logNt ).
This method, however, also removes part of the signal on the sky and induces ringing around bright sources which
accounted for in later processes.

3.2. Optimal map-making

The most general solution to the map-making problem is obtained by maximizing the likelihood of the data given
model [5,6]. As the noise is Gaussian, its probability distribution is given by theNt dimensional Gaussian:

P(n)= 1

|(2π)Nt N |1/2 exp
[
−1

2
nt ·N−1 · n

]
. (5)

Assuming no prior knowledge on the sky temperature, one gets from Eq. (1) the probability of the sky given the data:

P(T|d)∝ P(d|T)∝ 1

|(2π)Nt N |1/2 exp

[
−1

2
(d −A · T)t ·N−1 · (d −A · T)

]
. (6)

Maximizing this probability with respect to the map leads to solving the linear equation:

At ·N−1 ·A · T =At ·N−1 · d (7)

with solution:7

T̂ = (
At ·N−1 ·A)−1 ·At ·N−1 · d. (8)

One therefore just has to apply this linear operator to the data timeline to get the best estimator ofT; note that̂T is also the
minimum variance estimate of the map. The covariance matrix of the map is:

N = (
At ·N−1 ·A)−1

. (9)

Problems arise when trying to implement this simple procedure, the timeline data and the maps are in general very
typical dimensions of the problem areNt  6× 107 andNp  105 for Archeops.

The maximum likelihood solution requires bothN−1 and(At ·N−1 ·A)−1 which are not easy to determine. Two approac
can be used at this point: one can try to make a brute force inversion of the problem, relying on huge parallel compute
can try to iteratively approach the solution, hoping that convergence can be reached within a reasonable time.

3.3. Brute force inversion

The brute force optimal map-making parallel implementation is freely available as the MADCAP [7] package. It is a
software designed to produce an optimal map for any experiment by solving directly Eq. (7). The use of this package
access to large parallel computers.

The only assumption that is made in MADCAP map-making is that the inverse time-time noise covariance matrix
obtained directly without inversion from the noise Fourier power spectrum:

N−1
i0 

〈
F−1

[
1

|F(n)|2
]〉
. (10)

5 http://astro.estec.esa.nl/Planck/
6 http://www.archeops.org/
7 One can remark here that simple map-making is equivalent to optimal map-making if the noise covariance matrix is diagonal,

consistent with what was said before.
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This assumption is not perfectly correct on the edges of the matrix but leads to a good estimate of the inverse time c
matrix for the sizes we deal with. This allows this step to scale asNt logNt operations rather than theN2

t required by a Toeplitz
matrix inversion. In most cases, the time correlationNτ length is less than the whole timestreamNt so thatN is band-diagonal
For Archeops, we haveNτ  104.

The next step is to compute the inverse pixel noise covariance matrixN−1 = (At ·N−1 ·A) and the noise weighted ma
At ·N−1 · d; both operations scale asNt ×Nτ when exploiting the structure ofA andN . The last step is to invertN−1 and
multiply it by At · N−1 · d to get the optimal map. Unfortunately,N−1 has no particular structure that can be exploited
this last step scales as a usual matrix inversion∝N3

p and largely dominates the CPU required by MADCAP for the usual la
datasets (e.g., Archeops).

We can remark here that MADCAP provides the map covariance matrixN for free, as a byproduct. This matrix is cruci
for estimating the power spectrum, as will be seen in Section 4.

3.4. Iterative solutions

The other possibility is to solve Eq. (7) through an iterative process such as the Jacobi iterator, or more effic
conjugate-gradient [8]. Both converge to the maximum likelihood solution.

The use of the Jacobi iterator for solving for the maximum likelihood map in CMB analysis was first proposed by [
basic algorithm is the following. We have to solve the following linear system (see Eq. (7)):

Γ · x = y. (11)

The Jacobi iterator starts with an approximationΛ0 of Γ −1 and iterates to improve the residualsR:

Λ0 · Γ = I −R. (12)

In order to converge, the algorithm requires the first approximation to be good enough so that the eigenvalues ofR are all
smaller than 1 (a good estimate in general isΛ0 = [diagΓ ]−1). We can therefore expand:

Γ−1 = (I −R)−1 ·Λ0 = (
I +R +R2 + · · ·) ·Λ0. (13)

Let us defineΛn = (I +R+R2 +· · · +Rn) ·Λ0 so thatΓ−1 = limn→∞ Λn. We have the relationshipΛj+1 =Λ0 +R ·Λj .
If we definexj =Λj · y, it is straightforward to show that:

xj+1 − xj =Λ0 · (y − Γ · xj ) (14)

which defines the Jacobi iterator. When going back to the usual CMB notation for maps and timelines, one gets:

Tj+1 − Tj = [
diag

(
At ·N−1 ·A)]−1 ·At ·N−1 · (d −A · Tj ) (15)

which looks rather complicated but is in fact very simple to implement: the operationA · Tj just consists in reading the map

iterationj with the scanning strategy (∝Nt ), and the matrix diag(At ·N−1 ·A) is just the white noise level variance divided
the number of hits in each pixel. It is diagonal and therefore does not require proper inversion. The only tricky part he
multiplicationN−1 · (d −A · Tj ), given the fact thatN−1 is unknown. As the noise is stationary,N is Toeplitz and circulant8,

the multiplication byN−1 can be done in Fourier space directly through:

N−1 · x  F−1
[ F(x)

|F(x)|2
]

(16)

which requiresNt logNt operations. Finally, each iteration is largely dominated by the latter so that the final CPU time
like Nit ×Nt logNt whereNit is the number of iterations.

Unfortunately the convergence of such an iterator is very slow and makes it rather inefficient as it is. A sig
improvement was proposed by [10] in the publicly available software MAPCUMBA. They noted that the convergen
actually very fast on small scales (compared to the pixel) but that the larger scales were converging slowly. They p
a multigrid method where the pixel size changes at each iteration so that the global convergence is greatly accele
Fig. 7 of [10]), making this iterative map-making really efficient. A conjugate gradient solver instead of the Jacobi ite
implemented in the software Mirage [11] and accelerates again the convergence significantly. A new version of MAPC
also uses a conjugate gradient solver, as well as MADmap [12].

8 again, it is not exactly circulant but it is an excellent approximation as the matrix is large
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If obtaining an optimal map is now quite an easy task using an iterative implementation (the presence of strong
such as the galactic signal, however, complicates this simple picture), they do not provide the map noise covarian
N = (At ·N−1 ·A)−1 which is of great importance when computing the CMB power spectrum in the map in order to be
make the difference between noise fluctuations and real signal fluctuations. The only way to obtain this covariance ma
these iterative methods is through a large Monte Carlo simulation that would reduce the advantage of iterative ma
compared to brute-force map-making.

3.5. Map-making comparisons

The precision of the MADCAP, MAPCUMBA and Mirage implementations are shown in Fig. 1 with the same CM
noise simulation based on Archeops realistic conditions. The three resulting maps were kindly provided by [13]. The
on the left are respectively from top left to bottom right: initial CMB fluctuation, coaddition of the timeline without filte
coaddition of the timeline with white noise only (i.e., the true optimal map that has to be reconstructed), MADCAP resid
(difference between MADCAP reconstructed map and the white noise map), MAPCUMBA residual map and Mirage
map. All maps are shown with the same color scale. The first remark that can be made is that the stripes are inde
problem and that straight coaddition is not to be performed. The three different optimal map-making codes give ver
results, especially MADCAP and MAPCUMBA. In all cases, as can be also seen in the right panel of Fig. 1, the re
are much smaller than the CMB fluctuations that are searched for. The three map-making implementations can the
considered are unbiased.9

Finally one can summarize the comparison as following: iterative and brute-force optimal map-making give very
results as far the optimal map is concerned. The brute force inversion provides the map noise covariance matrix for fr
is a major point as will be seen in next section. The computer requirements are, however, much larger than for itera
making. The latter should therefore be used when the power spectrum estimation can be carried out without the kno
the map noise covariance matrix, in general using a Monte Carlo technique (see next section). In this case, one should
consider the filtering+ coaddition map-making that is by far the fastest, but removes part of the signal. This is, ho
accounted for (see Section 4.2) also using a Monte Carlo technique.

Fig. 1. The six maps on the right show a comparison of results from different map-making implementations on the same simulatio
of Archeops data). All maps are in Healpix pixellisation [14] and have the same color scale ranging from−500 µK to 500 µK from dark blue
to dark red, green corresponding to zero. The histograms of the residuals is shown on the right and are more than three times sma
actual CMB fluctuation.

9 Let us note that the noise model that was used for MADCAP is the true one, not an estimation. This makes, however, little differ
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4. Power spectrum estimation techniques

We know want to compute the power spectrumC� of the mapT whose noise covariance matrixN might be known or not
depending on the method that was used before to produce the map. The map is composed of noise and signal (fromn
is the noise on the map pixels):

T = s + n. (17)

The signal in pixelp can be expanded on theY�m(θp,φp) spherical harmonics basis:

sp =
∞∑
�=0

�∑
m=−�

a�mB�Y�m(θp,φp), (18)

whereB� stands for the beam10. If the CMBA are Gaussian, the variance of thea�m, called the angular power spectrum a
denotedC� contains all the cosmological information:

〈a�ma��′m′ 〉 = C�δ��′δmm′ . (19)

The map covariance matrix (assuming no correlation between signal and noise) is:

M = 〈
T · Tt

〉 = 〈
s · st

〉 + 〈
n · nt

〉
(20)

= S +N (21)

and the signal part is related to theC�:

Spp′ = 〈spsp′ 〉 =
∑
�

2�+ 1

4π
C�B

2
�P�(χpp′ ), (22)

whereχpp′ = cos(up · up′), up being the unit vector towards pixelp andP� are the Legendre polynomials.
One therefore has a direct relation between the map and noise covariance matrices and the angular power spectru

M =N +
∑
�

2�+ 1

4π
C�B

2
�P�(χpp′ ). (23)

The power spectrum estimation consists in estimatingC� from T andN (that can be unknown) using this relation.

4.1. Maximum likelihood solution

Full details concerning this can be found in [15,16]. As for the map-making problem, the maximum likelihood s
proceeds by writing the probability for the map, given its covariance matrix assuming Gaussian statistics:11

P(C�|T)∝ P(T|C�)= (2π)−Np/2 exp

[
−1

2

[(
Tt ·M−1 · T

) + Tr(lnM)
]]

(24)

and we therefore want to maximize the likelihood function through∂L/∂C� = 0:

L(C�)= −1

2

[(
Tt ·M−1 · T

) + Tr(lnM)
]
. (25)

Tedious calculations lead to the solution:

C� =
∑
�′

F−1
��′ × Tr

[(
T · Tt −N

) ·M−1 · ∂S

∂C�
·M−1

]
, (26)

whereF is the Fisher matrix:

F��′ = Tr

[
∂S

∂C�
·M−1 · ∂S

∂C�′
·M−1

]
. (27)

10 It is the Legendre transform of the instrumental beam under the assumption that it is symmetric.
11 The trace appears from|M|−1 = exp[−Tr(lnM)] as the trace is invariant.
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Eq. (26) letC� appear in both sides (inM) in an uncomfortable way and therefore cannot be solved simply. The method u
used [15,7] is the Newton–Raphson iterative scheme: One starts from an initial guess for the binned power spectru12 C(0)

and iterates until convergence following:

C(i+1) = C(i) + δC (28)

with:

δC = −
[
∂2L

∂C2

∣∣∣∣
C=Ci

]−1
· ∂L
∂C

∣∣∣∣
C=Ci

(29)

the likelihoodL being that of Eq. (25). Convergence is usually reached after a few iterations. The explicit form of the der
of Eq. (29) is:

∂L

∂Cb
= 1

2

(
mT ·M−1 · ∂S

∂Cb
·M−1 · m − Tr

[
M−1 · ∂S

∂Cb

])
, (30)

∂2L

∂Cb∂Cb′
= −mT ·M−1 · ∂S

∂Cb
·M−1 · ∂S

∂Cb′
·M−1 · m + 1

2
Tr

[
M−1 · ∂S

∂Cb
·M−1 · ∂S

∂Cb′

]
, (31)

where the indexb denotes the bin number.
Each iteration will then require a large number of large matrix operations forcing such an algorithm to be imple

on large memory parallel supercomputers. MADCAP [7] is the common implementation of this algorithm and sc
2(Nb + 2

3)N
3
p operations per iteration. The CPU/RAM/Disk problem is therefore even cruder for the power spectru

for the map-making. This algorithm leads to the optimal solution accounting correctly for the noise covariance ma
additionally provides the likelihood shape for each bin through the various iterations, allowing a direct estimate of t
bars.

4.2. Frequentist approaches

An alternative approach to power spectrum estimation is to compute the so called pseudo power spectrum (
transform of the map, noted̃C�) and to correct it so that it becomes a real power spectrum. This approach has been p
and developed in [17,18]. The harmonic transform of the map differs from the trueC� in various ways (we follow the notation
from [17]): the observed sky is convolved by the beam and by the transfer function of the experiment so that the o
power spectrum isB2

�
F�C�, whereB� characterizes the beam shape in harmonic space andF� the filtering performed on

the data by the analysis process (that may also include electronic filtering by the instrument itself). The observed
general incomplete (at least because of a Galactic cut) leading to the fact that theC� measured are not independent as they
convolved in harmonic space by the window-function [19]. We therefore have access to

∑
�′ M��′B2

�′F�′C�′ whereM��′ is the

mode mixing matrix. Finally, the noise in the timelines projects on the sky and adds its contributionÑ� to the sky angular powe
spectrum. At the end, the map angular power spectrum, thepseudo-C� is related to the trueC� via:

C̃� =
∑
�′

M��′B2
�′F�′C�′ + Ñ�. (32)

The frequentist methods propose to invert Eq. (32), making an extensive use of Monte Carlo simulations (detail
found in [17]):

• The pseudo power spectrum of the mapC̃� is computed by transforming the map into spherical harmonics (generally
Healpix pixellisation and theanafast procedure available in the Healpix package [14]).

• The mode mixing matrix is computed analytically through:

M�1�2 = 2�2 + 1

4π

∑
�3

(2�3 + 1)W�3

(
�1 �2 �3

0 0 0

)
, (33)

whereW� is the power spectrum of the window of the experiment (in the simplest case 1 for the observed pix
0 elsewhere, but more complex weighting schemes may be used, as in Archeops [20] or WMAP [21]). In the
approach [18], theM��′ inversion in harmonic space is replaced by a division in angular space which is mathema
equivalent.

12 Binned power spectrum means that we do not consider one single mode� but a bin in� as we do not have access in general to all mo
due to incomplete sky coverage.



878 J.-Ch. Hamilton / C. R. Physique 4 (2003) 871–879

aps or a

cessing
maps and

ensemble
d for the

in
r, seems

analysis
ensemble

ata.
trix.

o
stematic

er spectra
advantage
leaving the

antly its
nnot bias

ements
o check
comparable
however,
kelihood
-making
as to be
d the noise
llisation

plied for
spectra is
rtance of
ct power

oth cases,
ernative
• The beam transfer function is computed from a Gaussian approximation or the Legendre transform of the beam m
more complex modelling if the beams are asymetric, such as in [22].

• The filtering transfer function is computed using a signal only Monte Carlo simulation (it should include the pre-pro
applied to the time streams). Fake CMB skies are passed through the instrumental and analysis process producing
pseudo power spectra. The transfer function is basically computed as the ratio of the input model to the recovered
average. An important point at this step is to check that the transfer function is independent of the model assume
simulation. Let us also remark that using a transfer function that depends only on� is a bit daring as the filtering is done
the scan direction, which, in general, corresponds to a particular direction in the sky. This approximation, howeve
to work well and has been successfully applied to Boomerang [23] and Archeops [20].

• The noise power spectrum is computed from noise only simulations passing again through the instrumental and
process to produce noise only maps and pseudo power spectra. The noise power spectrum is estimated from the
average of the various realisations.

• Error bars are computed in a frequentist way by producing signal+ noise simulations and analysing them as the real d
This allows us to reconstruct the full likelihood shape for each power spectrum bin and the bin-bin covariance ma

Such an approach based on simulations has the advantage of being fast: each realisation basically scales as∝ Nt logNt for

the noise simulation and map-making (if filtering+ coaddition is used) and∝ N
3/2
p for the CMB sky simulation and pseud

power spectrum computation. An important advantage of such a method is the possibility to include in the simulation sy
effects (beam, pointing, atmosphere, ...) that would not be easily accountable for in a maximum likelihood approach.

4.3. Cross-power spectra

When several photometric channels are available from the experimental setup, it is possible to compute cross-pow
between the channel rather than power spectra of an individual channel or of the average of all channels. This has the
of suppressing the noise power spectrum (but not its variance, of course) that is not correlated between channels and
sky signal unchanged. The cross-power spectrum of channelsi andj is defined as:

C
i,j
� = 1

2�+ 1

�∑
m=−�

ai�ma
j�
�m. (34)

The cross-power spectrum method can easily be associated with the frequentist approach, simplifying signific
implementation, since the most difficult part, the noise estimation, is now less crucial as noise disappears and ca
the power spectrum estimation. This has been successfully applied in the WMAP analysis [21].

4.4. Which power spectrum estimator should be used?

The maximum likelihood approach is undoubtedly the best method to use if possible, but its CPU/RAM/Disk requir
are such that in practice, with modern experiments, it is very difficult to implement. It should however be considered t
the results on data subsets small enough to make it possible. The frequentist approaches are much faster and provide
precision in terms of error bars, and permit the accounting for systematic effects in a simple manner. The tricky part is,
to estimate the noise statistical properties precisely enough. The same difficulty exists, however, in the maximum li
approach where the noise covariance matrix has to be known precisely. It is generally directly computed in the map
process from the time correlation function, thus displacing the difficulty elsewhere. In any case, the noise model h
unbiased as the final power spectrum is essentially the subtraction between the pseudo power spectrum of the map an
power spectrum. Estimating the noise properties is a complex problem mainly due to signal contamination and pixe
effects. A general method for estimating the noise in a CMB experiment is proposed in [24] and was successfully ap
the Archeops analysis [20]. When multiple channels are available, the frequentist approach applied on cross-power
certainly the simplest and most powerful power spectrum estimation technique available today as it reduces the impo
the difficult noise estimation process. We can also mention the hierarchical decomposition [25] that achieves an exa
spectrum estimation to submaps at various resolutions, and then optimally combines them.

5. Conclusions

We have shown techniques designed to make maps from CMB data and to extract power spectra from them. In b
the brute force, maximum likelihood approach is the most correct, but generally hard to implement in practice. Alt
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ents. In
the data,
is review:

reading
approaches, iterative or relying on Monte Carlo simulations, provide similar precision with smaller computer requirem
all cases, much work has to be done before: firstly by designing the instrument correctly, and afterwards by cleaning
flagging bad samples and ending with a dataset that match the minimum requirement of all the methods described in th
stationarity and Gaussianity.
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