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Abstract

CMB anisotropy data could put powerful constraints on theories of the evolution of our Universe. Using the observa
the large number of CMB experiments, many studies have put constraints on cosmological parameters assuming
frameworks. Assuming for example inflationary paradigm, one can compute the confidence intervals on the
components of the energy densities, or the age of the Universe, inferred by the current set of CMB observations.
of this Note is to present some of the available methods to derive the cosmological parameters with their confidence
from the CMB data, as well as some practical issues to investigate large number of parameters.To cite this article: M. Douspis,
C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Estimation des paramètres cosmologiques : des méthodes.Les observations des anisotropies du fond diffus cosmolog
(FDC) peuvent placer de fortes contraintes sur les théories d’évolution de notre Univers. L’utilisation de telles do
permis de contraindre differents paramètres de différents cadres théoriques : l’age de l’Univers, son contenu baryon
Le but de cette contribution est de présenter differentes méthodes possibles pour extraire les paramètres cosmologiq
intervalles de confiance des données du FDC. Des questions pratiques sur l’utilisation de grands nombres de param
aussi abordées.Pour citer cet article : M. Douspis, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The extraction of information from cosmic microwave background (CMB) anisotropies is a classic problem of model
and parameter estimation, the goals being to constrain the parameters of an assumed model and to decide if thebest-fit model
(parameter values) is indeed a good description of the data. Maximum likelihood is often used as the method of p
estimations. Within the context of the class of models to be examined, the probability distribution of the data is maxim
a function of the model parameters, given the actual, observed data set.1 Once found, the best model must then be judged
its ability to account for the data, which requires the construction of astatisticquantifying thegoodness-of-fit(GoF). Finally,
if the model is retained as a good fit, one definesconfidenceintervals on the parameter estimation. The exact meaning of t
confidence intervals depends heavily on the method used to construct them, but the desire is always the same – o
to quantify the ‘ability’ of other parameters to explain the data (or not) as well as the best fit values. Given the qualit

E-mail address:douspis@astro.ox.ac.uk (M. Douspis).
1 In recent Bayesian analyses, quoting the mean of the product of the likelihood and prior functions as best model, is preferred.
1631-0705/$ – see front matter 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2003.09.005
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current data, and the aim of the analysis – precise determination of the cosmological parameters – much attention
put on the robustness and accuracy (unbiased techniques) of the methods used. I review the different ways of estim
likelihood function of the parameters focusing on the use of the angular power spectrum (C�’s). Then, some methods to compu
the goodness of fit and the confidence intervals will be discussed. Finally, some practical issues for such computatio
addressed. In this review, I take the temperature fluctuations as the observed quantity. The same approaches could
for the polarisation signal of the CMB.

2. Likelihood

Data on the CMB consists of sky brightness measurements, usually given in terms of equivalent temperature
The likelihood function is to be constructed using these pixel values.2 Standard Inflationary scenarios predictGaussiansky
fluctuations, which implies that the pixels should be modeled as random variables following a multivariate normal distr
with covariance matrix given as a function of the model parameters (in addition to a noise term). It is important to no
since the parameters enter through the covariance matrix in a non-linear way, the likelihood functionL is not a linear function
of the (cosmological) parameters.

Although it would seem straightforward to estimate model parameters directly with the likelihood function from the
(full analysis), in practice the procedure is considerably complicated by the complexity of the model calculations and
size of the data sets [1–4]. Maps consisting of several hundreds of thousands of pixels (the present situation) are
cumbersome to manipulate, and the million-pixel maps expected from Planck cannot be analyzed by this method in any
way. An alternative is to first estimate the angular power spectrum from the pixel data and then work with this reduce
numbers. For Gaussian fluctuations, there is in principle no loss of information. Because of the large reduction of
ensemble to be manipulated, the tactic has been referred to as ‘radical compression’ [2]. The power spectrum h
become the standard way of reporting CMB results; it is the best visual way to understand the data, and in any case
is actually calculated in the models. The first part of this section describes briefly the full analysis procedure. Then, th
part will focus on the power spectrum as starting point for cosmological parameters estimation. In the latter case, d
non-Gaussian behavior of theC�’s, elaborated approximations should be used.

2.1. Full analysis

Temperature fluctuations of the CMB are described by a random field in two dimensions:∆(n̂) ≡ (δT /T )(n̂), whereT
refers to the temperature of the background andn̂ is a unit vector on the sphere. It is usual to expand this field using sphe
harmonics:

∆(n̂)=
∑
�m

a�mY�m(n̂), 〈a�ma∗
�′m′ 〉ens=C�δ��′δmm′ . (1)

Thea�m’s are randomly selected from the probability distribution characterizing the process generating the perturbation
Inflation framework, which we consider here, thea�m ’s areGaussian random variableswith zero mean and covariance3 given
in Eq. (1). TheC�’s then represent theangular power spectrum. We may express the observed (or beam smeared) corre
between two points separated on the sky by an angleθ as

Cb(θ)≡ 〈
∆b(n̂1)∆b(n̂2)

〉
ens=

1

4π

∑
�

(2�+ 1)C�B
2
�P�(µ), (2)

whereP� is the Legendre polynomial of orderl, µ = cosθ = n̂1 · n̂2 and B� is the harmonic coefficient of the bea
decomposition.4 The statistical isotropy of the perturbations demands that the correlation function depend only on sep
θ , which is in fact what permits such an expansion.

Given these relations and a CMB map, it is now straightforward to construct the likelihood function, whose role is t
theNpix observed sky temperatures, which we arrange in adata vectorwith elementsdi ≡ ∆b(n̂i), to the model parameter

represented by aparameter vector
Θ. ForGaussianfluctuations (with Gaussian noise) this is simply a multivariate Gaussi

L( 
Θ)≡ Prob( 
d| 
Θ)= 1

(2π)Npix/2|C|1/2 e− 1
2


dt ·C−1· 
d . (3)

2 The term pixel will be understood to also include temperature differences.
3 The indicated averages are to be taken over the theoretical ensemble of all possible anisotropy fields, of which our observed C

but one realization.
4 Note that this expansion pre-supposes axial symmetry for the beam.
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The first equality reminds us that the likelihood function is the probability of obtaining the data vector given the m
defined by its set of parameters. In this expression,C is the pixel covariance matrix:

Cij ≡ 〈didj 〉ens= Tij +Nij , (4)

where the expectation value is understood to be over the theoretical ensemble of all possible universes realizable
same parameter vector. The second equality separates the model’s pixel covariance,T , from the noise induced covariance,N .
According to Eq. (2),Tij = Cb(θij ) ≡ 1/(4π)

∑
�(2� + 1)C�Wij (�) whereW , the window matrix, contains the beam a

strategy effects (direct measure, differences). The parameters may be either the individualC� (or band-powers, discusse
below), or the fundamental cosmological constants,Ω, Ho, etc. In the latter situation, the parameter dependence enters th
detailed relations of the kindC�[ 
Θ], specified by the adopted model (e.g., inflation).

For cosmological parameters estimations, one has to compute the likelihood value of Eq. (3) for a family of
investigated. For each set of parameters
Θ, the computational time for the likelihood goes likeN3

pix, unless geometrica
symmetries in the observational strategy allows to use faster algorithm for invertingC. Investigating one handful of paramete
with reasonable steps and ranges (typicallyN10

parameters) with a map of few thousands of pixels becomes extremely cumbers
Only few studies has been done in such a way [5–8]. Such a computation with second generation experiments is thus p
(except for some particular symmetries, [9]).

2.2. Using the angular power spectrum

In order to avoid the problem of computational cost of the full analysis, an alternative consists in first estimating the
power spectrum from the pixel data and then work with the latter to estimate the cosmological parameters. The critica
then how to correctly use the power spectrum for an unbiased parameter estimation and model evaluation. The angu
spectrum can be evaluated with different techniques (see Hamilton, this issue, [10]). Again, a likelihood analysis from t
can be made by inserting a spectral form into the definition ofT . For example, the commonly usedflat band-power,δTf b (or

Cb = δT 2
f b over a certain range in�), actually represents the equivalent logarithmic power integrated over the band,

simplify the correlation matrix as follows:

C� ≡ 2π
[
δT 2

f b/
(
�(�+ 1)

)]
, T = 1

2
δT 2

fb

∑
�

2�+ 1

�(�+ 1)
W (�). (5)

In this way, we may write Eq. (3) in terms of the band-power and treat the latter as a parameter to be estimated. T
becomes the band-power likelihood function,L(δTfb). Fig. 1 shows the latest band power estimates of the CMB fluctuat
Some of the points have been obtained by maximizing this likelihood function; the errors are typically found by in a B
approach, by integration inCb overL with a uniform prior (e.g., DASI [16], VSA [17], CBI [18], ACBAR [19]). Other ban

Fig. 1. Angular power spectrum estimates of the CMB anisotropies in September 2003 [11–19]. Notice the good agreement
band-powers coming from different experiments (different detectors, technology, scanning strategy,...) until�∼ 500.
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powers and errors are estimated by using Monte Carlo based methods (see [20,21]) like the WMAP [11], BOOMERAN
MAXIMA [15] and Archeops [13] ones. Notice that the variance due to the finite sample size (i.e., the sample variance, in
the cosmic variance due to our observation of one realization of the sky) is fully incorporated into the analyses.

Given a set of band-powers how should one proceed to constrain the fundamental cosmological parameters
in this subsection by
Θ? If we had an expression forL(−−→δTfb), for our set of band-powers

−−→
δTfb, then we could write

L(−−→
δTfb) = Prob( 
d|−−→

δTfb)= Prob( 
d|−−→
δTfb[ 
Θ]) = L( 
Θ). Thus, our problem is reduced to finding an expression forL(−−→δTfb), but,

as we have seen, this is a complicated function of
−−→
δTfb, requiring use of all the measured pixel values and the full covaria

matrix with noise – the very thing we are trying to avoid. Our task then is to find an approximation forL(−−→δTfb).

2.2.1. χ2 minimization
The most obvious way of finding ‘the best model’ given a set of points and errors is the traditionalχ2-minimization. This

means that we assume a Gaussian shape for the likelihood function of the kind:

L
(−−→
δTfb

) = e−χ2( 
Θ)/2 = e−( 
dobs−
dmodel)·M−1·( 
dobs−
dmodel)/2, (6)

whereM is the correlation matrix between the different flat band estimates. The main problem with this approach i
deals with the flat band-power estimates as Gaussian distributed data which they are not (obeying the statistics of the
a Gaussian). Then, it has been shown that such a procedure gives a biased estimation of the cosmological paramet
estimates of the confidence intervals [2,22], leading to the search of more accurate approximation of the likelihood fun

2.2.2. More elaborate approximations
Different studies have been made to reconstruct better analytical approximations directly from the form of the fl

likelihood function [2,22,23]. This section will focus on two of them. One is derived from the likelihood function in a part
case, for which it is actually exact [22]. The other, mostly used during the last years, offers the advantage of being reall
aχ2 minimization by changing variables in the appropriate way [2]. Both approximations need a small amount of infor
and aim to be used directly from the spectrum given in the literature.5

BDBL approximation. The Bartlett, Douspis, Blanchard and Le Dour approximation is based on the analytical form
likelihood in an ‘ideal’ experiment, where all the pixels (Npix) are independent random variables (uncorrelated) and the

is uncorrelated and uniform (σ2
N

). In that particular case, one can write the exact likelihood function as follows:

L(δTfb)∝Xν/2 e−X/2, X[δTfb] ≡ [δT (o)
fb ]2 + β2

[δTfb]2 + β2
ν, (7)

whereβ = σN andν = Npix. The approximation comes from the fact that the authors keep the same likelihood form f
experiments, whereas the noise is no longer uniform and uncorrelated, and the pixels are not independent. To take in
these differences, one letsν andβ behave as free parameters and fixes them by fitting the 68% and 95% confidence in
(published or inferred from the true likelihood function). Fig. 2 shows the comparison between this approximation a
likelihood functions obtained for TOCO data [24,25].

The advantage of this approximation is that the better the behavior of the experiment (less correlations, more
noise,...), the better the approximation; being exact for the ideal case. It is also unbiased at the maximum of the likelih
allows one to recover the full shape of the likelihood function. The inconvenient of this approximation is that it is define
for uncorrelated flat band powers. The possible correlations between bands are not taken into account, as the full lik
given by the product of all individual likelihood functions:L(−−→

δTfb)= ∏
L(δT i

fb).

BJK approximation. In the second case, also referred as the Bond, Jaffe and Knox approximation, the motivation is d
the need to work with Gaussian distributed variables for which theχ2 is no longer biased. Writing the likelihood in the spheric
harmonic space for the same ideal experiment as above, and consideringC� = �(�+1)C�/(2π)= δT 2

�
, N� = �(�+1)N�/(2π)

whereN� = 〈|n�m|2〉 is the noise power spectrum in spherical harmonics, one can show that the curvature matrix eval
the maximum is proportional to(C�+N�/B

2
� )

−2δ��′ . If one defineZ� ≡ ln(C�+x�) where in this particular ‘ideal experimen

x� = N�/B
2
�
, the curvature matrix expressed in term ofZ is then constant. The BJK approximation to the likelihood is t

5 As we will see these approximations need one more information than the basicχ2 minimization in order to take into account the no
Gaussian behavior of the likelihood. The authors have been asking that this information be provided in addition to the band powers
and errors. Recent experiments have published the necessary information in their papers.
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Fig. 2. Comparison to the TOCO97 likelihood function for all approximation described in this section. The black solid line shows
likelihood function computed from the map. The red dot-dashed and blue dashed lines show the BDBL and BJK approximation res
The 2-wings Gaussian and WMAP-type approximation are plotted in dotted green and dot-dot-dashed yellow lines.

to takeZb (determined in a band) as normally distributed in realistic experiments (by finding the good expression
correspondingxb). From the previous statements, one can then express the likelihood by:

L(−−→δTfb)= e(−Z·M−1·Zt )/2, whereZi = ln
(
δT 2

fb(i)+ xb(i)
)

evaluated in a bandi. (8)

The absolute value of Eq. (8) gives also an estimate of the goodness of fit. As we will see below, this approximation is
biased at the maximum of the likelihood but has been shown to be a reliable approximation (see Fig. 2) and is availab
through the RADPACK package of [26].

The WMAP team [27] adopted an hybrid approximation: lnL = 1
3 lnLGauss+ 2

3 lnLBJK motivated by an expansion of th

true likelihood around the maximum.6 This formulation has the advantage to be unbiased around the maximum but has n
tested against the real likelihood function in the wings.

Once the likelihood functionL(−−→
δTfb) is known, one is able to computeL(Θ) for a family of models. As we have see

temperatures on the sky are random Gaussian variables and then the ‘radical compression’ is thus valid and induc
of information. The latter is true only if all the spectrum (in the limit of sensitivity of the experiment; the window func
is specified. Whereas, for different reasons (partial sky coverage, noise correlation,...) only the spectrumin band is recovered:
the spectrum is approximated by steps in�. Such description induces a loss of information which may have some effe
the cosmological parameter estimation (bias and degeneracies). Douspis et al. [8] have shown that a better descrip
spectrum (power in bandand slope in band) could decrease the bias. The second and third generation of experiments
(or will provide) better sensitivity, less correlated measurements which allows one to recover the spectrum with better r
in � (see WMAP for example), decreasing therefore the bias. Most of the studies are nevertheless performed by using
flat band estimates likelihood functions.

3. Goodness of fit

Once the (approximated) likelihood values of the models investigated are computed, one should find the be
(maximum) and evaluate the quality of the fit before constructing the parameter constraints. As a general rule, one m
the quality of the fit before any serious consideration of the confidence intervals on parameters. This requires the app
a Goodness of fit(GOF) statistic. The latter is usually a function of both the model and the data, which reaches a maxim
minimum) when the data is generated from the theory. The ‘significance’ may then be defined as the probability of o
gof > gofobs. On this basis, it permits a quantitative evaluation of the quality of the best model’s fit to the data: if the prob
of obtaining the observed value of the GOF statistic (from the actual data set) is low (low significance), then the mode
be rejected. Without such a statistic, one does not know if the best model is a good model, or simply the ‘least bad’ of th

In the full likelihood analysis method, the best model (set of parameters) could be obtained by maximizing the lik
function of Eq. (3) and is defined by
Θbestin the following. One can easily note the Gaussian form of Eq. (3) in the data vec
d .

Given the best model, the most obvious GOF statistic is then clearlygof = 
dt · C̃−1 · 
d whereC̃ ≡ C( 
Θbest) is the correlation

6 WhereLGauss= exp(−χ2/2).
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matrix evaluated at the best model. For the Gaussian fluctuations we have assumed, this quantity follows aχ2 distribution, with
a number of degrees-of-freedom (DOF) approximately equal to the number of pixels minus the number of parameters7

The use ofχ2 method (inδTfb or any change of variables like in BJK approximation) makes even easier the computa
the GOF. The obvious GOF statistics would just be one number, the value of theχ2 evaluated at the minimum:gof = χ2( 
Θbest).
It is of course true that if the number of contributing effective DOF is large, a power estimate will closely follow a Gau
this, however, is never the case on the largest scales probed by a survey. Douspis et al. [28], have shown for exampleχ2

approach leads to quantitatively different results than other, more appropriate GOF statistics.
When more elaborated approximations are used, the goodness of fit computation is less obvious. One should first r

the distribution of the estimators. This could be a natural output when Monte Carlo based methods are used forC�’s
extraction [20,21], but it is mostly unknown when one applies traditional methods. Douspis et al. [28] have propo
approximation which allows to one reconstruct the distribution from the shape of the flat-band likelihood function.8 When
the latter is known, one should build a GOF statistique in order to compute to data probability given the best model (
for examples).

Knowing that the best model is indeed a good fit to the data, or that the data have a good chance to be generated
model, one should proceed by estimating the confidence intervals on the investigated parameters.

4. Confidence intervals

The estimation of confidence intervals is mostly a question of definition. Most of CMB analyses have been don
Bayesian framework and are thus dependent on the priors assumed. Some frequentist attempts have been performed
eliminate such dependencies. The reader can read more about the comparison between the two methods in [29].

Typically, the frequentist analyses are related to the goodness-of-fit statistics and the probability distribution of
a given model (set of parameters). In the Bayesian approach, one reconstructs the conditional (posterior) probabili
function (pdf),P( 
Θtrue|dobs), for the unknown 
Θtrue given the observationdobs,

9 from the pdf (which dependency in
Θ is
known) for observingd using Bayes theorem. The latter evaluated atdobs is known as Likelihood function:P(dobs| 
Θ) =
L(dobs| 
Θ).

P
( 
Θtrue|dobs

) = L
(
dobs| 
Θtrue

)
P

( 
Θtrue
)
/P (dobs). (9)

The denominator is just a normalization factor, and thus one of the issues is what to use for the priorP( 
Θtrue). If one knows
the likelihood and fixes the prior (usually taken as uniform in terms of the parameters) then one knows the posterior pr
distribution. A Bayesian credible region (interval) for a parameter is the range of parameter values that encloses a fixe
of such probability. As the questions asked in the two approaches are quite different, one does not expect necessarily th
computed in the two methods to be similar.

I will described in the following two ways of estimating the confidence intervals referred as marginalisatio
maximization. These two approaches are usually presented in opposition. In the limit of a Gaussian shaped likelih
linear dependencies in the parameters, the two techniques are equivalent (see demonstration in [30]). Unfortunately,
the case in cosmological parameter estimation. Both techniques consist in two steps: first one reduces the number of p
in order to visualize the likelihood (or pdf) function (or surface in 2 dimensions). One then computes the confidence
for each parameter.

4.1. Marginalisation

In CMB analyses, as
Θ is usually a vector of 5 to 10 parameters, it is quite hard to visualize the posterior (or likeli
distribution. It is common then to retrieve one-dimensional probability by using an integration method (marginalisatio
technique is mostly used in Bayesian approaches to parameter estimation. Let us assume that
Θ = (x, y, . . . , z) and we are
interested in plotting the likelihood and finding the 68% confidence intervals onx, where the other parameters have be
marginalised over. One usually computes:

7 This recipe does not strictly apply in the present case, because the parameters are non-linear functions of the data; it is neverthele
practice. In any case, the number of pixels is in practice much larger than the number of parameters. The numbers of degrees of
also less than the number of pixels because of the correlations between pixels (nondiagonal correlation matrix). Nevertheless, the m
mainly diagonal and thegof is then mostly insensitive to the small reduction of the number of DOF.

8 This technique could be used both ways, allowing to reconstruct the likelihood when the distribution is known.
9 In our problem,dobs should be taken as a set of flat band powers.
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L(x)=
∫

· · ·
∫

L
(
dobs|(x, y, . . . , z)

)
P(x,y, . . . , z)dy d· · ·dz, (10)

xm∫
0

L(dobs|x)dx = 0.5,

x−∫
0

L(dobs|x)dx = 0.16,

x+∫
0

L(dobs|x)dx = 0.84, (11)

where we assume thatx is a positive variable,L is normalized to unity andP is a uniform prior on the parameters.10 [x−, x+]
is then referred as the 68% confidence interval onx with all the other parameters marginalised over andxm is quoted as
the mean value (such computation of intervals in referred as EQT for ‘equi-probability tail’).11 This may be seem easy
one dimension but could become cumbersome when dealing with 10 dimensional likelihood function (especially for t
dimensional integral of the marginalisation Eq. (10)). In order to be less and less dependent of all these effects, and to
the computational time of this step, maximization technique is mostly used.

4.2. Maximization

For the maximization technique, one assumes also a uniform prior in terms of the parameters (typicallyP(x,y, . . . , z)= 1)
but defines the pdf (≡ likelihood then) in one dimension as:

L(x)= max
y,...,z

[
L

(
dobs|(x, y, . . . , z)

)]
P(x,y, . . . , z) (12)

which means that for each value ofx one takes the maximum of the likelihood on all the other dimensions. Then, in
of integrating the resulting one dimensional likelihood like in Eq. (10) for obtaining the confidence intervals, one co

Fig. 3. Comparison between marginalisation and maximization estimation of confidence intervals in an extreme case. The black solid
one-dimensional likelihood function. The blue vertical dashed lines mark the mean and boundaries of 68% CL interval computed by in
([x−, x+]). In that case the maximum of the likelihoodx̂ = 7580 is just outside the interval. The green dotted lines are obtained with the
method but with takingγ = x2 as variable (see text). Finally the red solid vertical lines shows the interval computed by taking values
likelihood higher than exp(−∆χ2/2)×Lmax, where here,Lmax= 1 and∆χ2 = 1.

10 The prior is usually taken as uniform in
Θ in order to show our ignorance on the true value of
Θ , even if there is no basis in Bayesia
theory. In that sense, the interval will depend on the choice of parameters. Assuming
γ = 
Θ2 as parameters and thus a uniform prior in
γ will
resume in a different interval (see Fig. 3).

11 Due to the non-linear dependency of the likelihood against the parameters, the shape of the latter could be highly non Gaussi
cases, it could occur that the maximum of the likelihood (described earlier as the best model) does not fall inside the 68% confiden
(see, for example, Fig. 3). In that case one should recompute the interval following the HPD (for ‘higher posterior distribution’) techn
fixing L(x−)=L(x+) and

∫ x+
x− L(dobs|x)dx = 0.68.
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the values of the likelihood. For example, the boundaries of the 68% CL region are that where the likelihood has fa
factor e−1/2 from its maximum,Lmax. As demonstrated in [30] this approximation becomes exact for multivariate Gau

forms. One can define different CL intervals by choosing∆χ2 such asL(xα)/Lmax= e−∆αχ
2/2 whereα marks the confidenc

level. In one dimension,∆αχ
2 = 1,4,9 for respectivelyα = 68, 95, 99% CL. Fig. 3 shows an example in such a case.

technique does not give the real 68, 95 etc. confidence intervals, obtained only with Monte Carlo simulations by defin
it is independent of the choice of the parameter (x versusx2); the maximum of the likelihood is always inside every inter
by definition, and it is computationally not consuming. Arguments and discussion about the different techniques can
in [31].

5. Practical issues

We have seen in the previous sections some of the existing statistical tools needed to perform a proper cosm
parameter estimation. As one would like to investigate a large number of parameters, and so a large number of mod
practical issues may be taken in consideration. I will describe in the following two methods (and some techniques
correspond to the two actual ways of determining cosmological parameters from CMB anisotropies.

5.1. Cl’s computations

The release of CMBFAST [32] has brought a major improvement in cosmological parameter estimations. The a
compute a theoretical power spectrum in less than one minute (instead of one hour precedently) has allowed differe
to investigate many parameters in the same analysis. Different versions of the code have improved the first release
into account many physical effects (neutrino, reionisation, isocurvature modes,...) and improved the computation by s
small scales effects from large scales ones (‘k-splitting’). Derived from this initial code, CAMB [33] increased the sp
computation by using FORTRAN 90 facilities. Finally, DASH [34] allows one to computeC�’s spectra in few seconds, b
interpolating a precomputed grid of spectra in Fourier space. All these codes are more and more efficient and fast, and
adapted to be used in parallel computing.

5.2. Gridding

The gridding method consists in computing the likelihood values of different models following a periodical incr
for each selected parameter, resulting in aNparam dimensional matrix. Historically, the parameter estimation from C
anisotropies started with small grids of models, typically 3 or 4 free parameters with around 10 values each, the o
fixed to the supposed best value of the moment [35,36]. Then the number of parameters increased with the increasin
computer processors and the development of faster codes to compute theC�’s (e.g., CMBFAST).

One of the advantages of gridding is that one can compute a grid of models, store it and then compute the likelih
one’s set of data. If new data come out, one has just to compute the likelihood part again.

As the number of models investigated increases, the storage could become a problem [30]. Then, some com
techniques, in combination with approximated interpolations, could be applied in order to store the necessary inf
only. TheC� ’s computation time may also become a problem. There again approximations based on the known behav
C�’s with parameters have been developed [30].

One of the inconvenients of the gridding method is that the position of the maximum of the likelihood grid is
dependent of the grid itself. Namely, the maximum falls necessarily on one point of the grid. This effect is also re
when one uses the maximization technique. In order to avoid this, spline interpolation techniques are used when looki
maximum along one or more parameters [30].

Finally, by definition, the gridding method is well adapted to multi-processors and data-grid method.

5.3. Monte Carlo Markov Chains

During the last few years, as an alternative to the gridding method, the Markov Chain Monte Carlo (MCMC) like
analyses had become a powerful tool in cosmological parameter estimation. This method generates random draw
posterior distribution that is supposed to be a ‘realistic’ sample of the likelihood hypersurface. The mean, variance, co
levels can then be derived from this sample. Unlike the gridding method, scaling exponentially with the number of par
the MCMC method scales linearly withNparamallowing one to explore a larger set of parameters or to do the analysis fa

Two issues should be highlighted in this method. The first one is the step in the random sampling. Typically, the step
as the standard deviation for each parameter. If it is too large, the chain can take a infinite time to converge and the a
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rate is very low. If it is too small the chain will be highly correlated leading also to a slow convergence. A second issu
convergence of the chain. At the beginning the sampling of the likelihood is very correlated and is not a ‘fair’ represen
the posterior distribution. After a ‘burning period’, the chain converges, the samples are independent and the likelihood
could be retrieve. The criterium of convergence is not a well defined quantity.

More explanations and applications could be found in [37,38] and a FORTRAN 90 set of routines is available onlin

6. Conclusions

In order to derive the cosmological parameters in a given framework from the temperature fluctuation of the CMB
steps are needed. When the observed power spectrum is derived, one could use different techniques to estimate s
the (approximated) likelihood value of the family of models (parameters) investigated, the best model and its goodne
and finally the confidence intervals on each parameter. Each of these steps may be highly cpu and memory consum
better and better observations, sensitivity and sky coverage, brute force maximum likelihood methods become impossi
approximations and techniques have then been developed during the last years, allowing one to analyze more and
with increasing speed. When the appropriate method is used, this leads to an unbiased estimate of the cosmological p
These developments have demonstrated that efficient methods could be developed to take full advantage of data at
accuracy and allow one to determine parameters of cosmological relevance to a remarkably high accuracy. This is op
golden road of precision cosmology.
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