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Abstract

This article is devoted to the study of two-dimensional Bose gases harmonically confined. We first summari
equilibrium properties. For such a gas above the critical temperature, we also derive the frequencies and the damp
collective oscillations and we investigate its expansion after releasing of the trap. The method is well suited to s
collisional effects taking place in the system and in particular to discuss the crossover between the hydrodynamic
collisionless regimes. We establish the link between the relaxation times relevant for the damping of the collective os
and for the time-of-flight expansion. We also evaluate the collision rate and its relationship with the relaxation time.To cite this
article: D. Guéry-Odelin, T. Lahaye, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dynamique d’un gaz d’atomes ultra froid piégé à deux dimensions. Cet article est consacré à l’étude des gaz de B
à deux dimensions en présence d’un confinement harmonique. Nous abordons tout d’abord les propriétés d’éq
ce système. Nous dérivons ensuite, au-dessus de la température critique, l’expression des fréquences et de l’am
des modes collectifs de basse énergie et nous étudions avec le même formalisme l’évolution du nuage d’atomes
confinement est brutalement supprimé. La méthode utilisée permet de décrire le gaz dans tous les régimes collis
régime sans collision au régime hydrodynamique. Nous établissons le lien entre les temps de relaxation qui décrivent
d’oscillation et l’expansion du nuage après coupure du piège. Nous évaluons également l’expression du taux de c
sa relation avec le taux de relaxation des modes de basse énergie.Pour citer cet article : D. Guéry-Odelin, T. Lahaye, C. R.
Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords:Low-dimensional gas; Collective oscillations; Time of flight

Mots-clés :Gaz en basse dimension ; Oscillations collectives ; Temps de vol

1. Introduction

Quantum gases in reduced dimensionality are now experimentally available. Two-dimensional Bose gases have bee
by trapping atomic hydrogen at the surface of liquid helium [1,2]. Such a gas, confined into a box, undergoes, at su
low temperature, a superfluid transition known to be of the Berezinskii–Kosterlitz–Thouless type [3–5].

Recently, a few experiments with laser-cooled atoms have approached the two-dimensional regime. The met
consists in realizing very anisotropic confinement in such a way that one degree of freedom is frozen to zero motion osc
The crossover to two-dimensions occurs when the thermal energy is below the vibrational energy in the tightly c
direction. Such a regime has been reached in standing-wave dipole traps [6]. Alternatively, an elliptically focused las

E-mail addresses:dgo@lkb.ens.fr (D. Guéry-Odelin), lahaye@lkb.ens.fr (T. Lahaye).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2003.12.001
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has been fed by a Bose–Einstein condensate leading to a two-dimensional configuration [7]. Evaporative cooling of a
gas has also been performed at the crossover to two dimensions in an optical surface trap [8]. A two-dimension
Einstein condensate has been achieved with ultracold cesium atoms trapped in a gravito-optical surface trap [9
that two-dimensional trapping by means of a field-induced adiabatic potential has been recently proposed [10] and
experimentally in the group of H. Perrin and V. Lorent [11]. In all those systems the two-dimensional confinement
considered as harmonic.

The harmonic confinement introduces very different features from the physics one would obtain in a box. As ex
below, for an ideal Bose gas, Bose–Einstein condensation occurs at finite temperature in the presence of a harmoni
in contrast to the homogeneous case [12].

This paper is devoted to the physics of two-dimensional Bose gases harmonically trapped above the critical tem
First, we discuss the thermodynamic properties and the shift of the critical temperature of an ideal gas at fixed nu
particles due to the finite size of the sample. We discuss briefly the role of interactions. Second, we study the dynam
gas through low-lying collective modes and time of flight expansion by including dissipative and mean-field effects.

2. Thermodynamical properties

2.1. Ideal gas

We considerN bosons confined by a two-dimensional harmonic trap of angular frequenciesωx andωy . By contrast with
a non-confined Bose gas, Bose–Einstein condensation is expected to occur since the number of atoms in the exc
saturates to an upper valueN ′

max:

N ′
max=

∑
(nx,ny) �=(0,0)

1

exp[h̄(nxωx + nyωy)/(kBT )] − 1
	 π2

6

kBT

h̄ωx

kBT

h̄ωy
. (1)

The critical temperature for an ideal Bose–Einstein condensationT 0
c is readily obtained from this formula by settingN ′

max= N :

kBT 0
c = h̄
ω√

6N

π
, (2)

with 
ω = (ωxωy)
1/2. Strictly speaking, this value for the critical temperature is valid only in the thermodynamic limit (
ω → 0,

N → ∞ with the product
ω2N keeping a constant value). We stress that due to the confining potential,‘true conden
occurs in the sense that the first excited states have a probability of occupation which tends to zero in the thermod
limit.

We find worthwhile to examine the finite-size correction [13] to the critical temperature as real experiments are mo
carried out with a small number of particles. The scaling of the expected correction has been investigated in [14], we p
the following a more quantitative estimate. For a finite numberN of particles, the ‘critical temperature’Tc , still defined as the
temperature for whichN ′

max= N , is shifted downwards. One can calculate analytically, for an isotropic harmonic confine
the leading term correction for large but finiteN by evaluating the sum (1) more accurately (see Appendix):

Tc = T 0
c

(
1− 0.195 lnN − 0.066√

N

)
. (3)

The prediction of Eq. (3) is compared, in Fig. 1, to the exact value ofTc obtained by solving numerically the equatio
N ′

max(T ) = N . We notice that the shift inTc is quite small by contrast with its three-dimensional counterpart, even foN

as low as a few hundred.

2.2. Interactions

The interatomic collisions in a tightly confined Bose gas have been studied in detail in [15]. We summarize in this
their main results. Similarly to the three-dimensional scattering problem, the scattering properties in two dimens
be formulated by means of a single lengthd∗. This characteristic length depends on the detailed shape of the intera
potential. For realistic momentaq of particles in ultracold gases we always have the inequalityqd∗ � 1. The expression
for the two-dimensional differential cross section for identical bosons can be written: dσ/dθ(q) = |h(q)|2/(4πq), where
q = m(v2 − v1)/(2h̄) is the relative wavevector of the colliding particles and the dimensionless functionh(q) depends
logarithmically onq. The mean field potential in the nondegenerate regime isU(r) = 2gn(r) with n the density,g = h̄2h(q̄)/m

andq̄ = (mkBT )1/2/h̄ the mean thermal wave vector.
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Fig. 1. Critical temperatureTc (normalized toT 0
c ) for a finite numberN of atoms. The solid line is the analytical result given by (3), while

circles are given by numerically solving forT the equationN ′
max(T ) = N . The agreement is excellent even for low values ofN .

The departure from the ideal gas behavior is measured through the ratio between the mean field energy and the lev
For weak interactions, namelygn � h̄
ω, interactions can be taken into account perturbatively and the physics of the ide
is valid. In the opposite limitgn � h̄
ω, interactions brings about major differences. One enters a regime of quasi-cond
[16]. From thermodynamics, one readily establishes the implicit equation for the density:

n(r) = − 1

λ2
log

(
1− e−β(Utrap(r)+2gn(r)−µ)

)
, (4)

whereλ = h(2πmkBT )−1/2 is the thermal de Broglie wavelength,β = 1/kBT andUtrap is the trapping potential energ
Actually, in the non-perturbative interactions regime, the local density approximation is valid. Repulsive interactio
to push the gas towards the external region, thereby reducing the density of the gas. One expects that this effec
natural decrease of the critical temperature. This is indeed the case and in contrast with its three-dimensional co
Eq. (4) is soluble at all temperatures [17]. To discriminate which state with or without condensate the system will pre
authors of [18] compare the free energy in both situations and predict that low-energy phonons destabilize the two-dim
condensate. The nature of the phase in the degenerate regime remains somewhat an open question [19,16,18]. One
if this state involves superfluidity at sufficently low temperature.

2.3. Expansion of the density

In on-going experiments on Bose–Einstein condensates of alkali atoms, the density profile is readily obtained b
images of the cloud. We give in this section the corrections to the density up to the second order due to the m
contribution. However, this expansion is valid not too close to degeneracy. We expect that the repulsive mean field co
to the decrease of the density. We capture this effect perturbatively by performing an expansion of the density pro
ξ = 2gβλ−2 as the small parameter.ξ is the ratio between the mean field energy close to degeneracy and the temperat

denotingn(0)
0 the equilibrium density in absence of mean field, we work out the expansion:

n0(r) = n
(0)
0 (r) + ξn

(1)
0 (r) + ξ2n

(2)
0 (r) + · · · ,

n
(0)
0 (r) = −λ−2 log(1− κ),

n
(1)
0 (r) = −n

(0)
0

κ

1− κ
,

n
(2)
0 (r) = − n

(1)
0

1 − κ

(
κ − 1

2
log(1− κ)

)
,

(5)

with κ = κ(r) = exp(−β(Utrap(r) − µ)).
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3. Dynamics

3.1. Quantum Boltzmann equation

The dynamics of the gas is described by a two-dimensional quantum Boltzmann equation:

∂f

∂t
+ v1 · ∇rf + F

m
· ∇v1f = Icoll[f ], (6)

wheref is the phase space distribution function. The explicit form for the collision term is

Icoll
[
f (r,v1)

] 	 m

h

|h(q̄)|2
4π2

∫
dθ d2v2

[
f (r,v1′ )f (r,v2′ )

(
1+ f (r,v1)

)(
1+ f (r,v2)

)
− f (r,v1)f (r,v2)

(
1+ f (r,v1′ )

)(
1+ f (r,v2′ )

)]
.

It accounts for elastic collisions between bosonic particles 1 and 2, with initial velocitiesv1 andv2, and final velocitiesv1′ and
v2′ , θ being the scattering angle in the center of mass frame. In the next sections, we first derive the expression for the
rate with the interplay between statistics and mean field. Then, we investigate the role of collisions (mean field and re
on the frequencies of the low-lying modes for a two-dimensional harmonic trap and we derive the equations for expans
an abrupt switching off of the trap. The method used to solve those latter problems relies on a scaling ansatz. It is first in
in the context of the collision-dominated hydrodynamic regime, and then adapted to the quantum Boltzmann equation

3.2. Collision rate

The collision rate plays a crucial role for the relaxation dynamics, it permits to compare the mean free path to the si
cloud and to characterize the collisional regime of the sample between collisionless and hydrodynamic. Well above th
temperature, the mean field and the bosonic statistics can be neglected and the equilibrium distribution can be written1

f0(r,v) = N · h̄ωx

kBT
· h̄ωy

kBT
e−H0(r,v)/kBT (7)

with

H0(r,v) = 1

2
mv2 + 1

2
mω2

xx
2 + 1

2
mω2

yy
2. (8)

We readily obtain the expression for the collision rateγ0 in this limit by integrating the first term of the collision integral of th
classical Boltzmann equation for the equilibrium functionf0 and dividing by the number of particles:

γ0 = m3

h3
|h(q̄)|2
2πN

∫
d2r d2v1 d2v2f0(r,v1)f0(r,v2) = Nh̄ωxωy

4πkBT

∣∣h(q̄)∣∣2. (9)

Closer to degeneracy but still above the critical temperature, one expects that the result is modified by two opposit
On the one hand, the mean field tends to decrease the density. On the other hand, the statistics tend to shrink the
evaluate the competition between those effects, we restrict ourselves in the following, for sake of simplicity, to the
an isotropic harmonic confinement. We first expand the phase space distribution function:f (r,v) = f0(r,v)[1 + f0(r,v) −
2βgn0(r)]. From the quantum Boltzmann equation, the collision rate can be expanded to the first order

γ = m3

h3
|h(q̄)|2
4π2N

∫
dθ d2v2 d2v1 d2rf0(r,v1)f0(r,v2)

× [
1+ f0(r,v1) + f0(r,v2) + f0(r,v1′ ) + f0(r,v1′ ) − 4gβn0(r)

]
. (10)

The signs in (10) clearly show the enhancement of the collision rate due to the statistics and its decrease due to the
mean field. After a lengthy but straightforward calculation, we have worked out the explicit expression for the expansio
collision rate with respect to statistics and mean field contribution:

γ = γ0

[
1+ 2π2

9

(
T 0
c

T

)2(
1− gm

πh̄2

)]
.

Actually, the collision rate cannot be measured directly. However, all dissipative dynamics involve the collisions. We
in the following to extract information on the collisional regime through the study of the collective oscillations or of the
of-flight expansion, which can be both investigated experimentally.

1 We choose the following normalization(m/h)2
∫

d2r d2vf (r,v) = N .
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3.3. Scaling ansatz for the hydrodynamic regime

In this section, we determine the frequencies of the collective oscillations of an harmonically trapped two-dimensio
and the equations for its time of flight when the confinement is switched off. For this purpose, we transpose the hydro
approach developed in [21] for a three-dimensional trapped Bose gas to a two-dimensional one. The scaling ansa
density can be written:n(r, t) = n0(R(t))/Ω0(t), wheren0 is the equilibrium density,R = A(t) · r with r the coordinate and
A(t) a diagonal matrix with time dependent scaling coefficientA = diag(1/ax (t),1/ay(t)). The parameterai gives the dilation
along theith direction. One readily obtainsΩ0(t) = (det(A))−1 from the normalization

∫
d2rn(r, t) = ∫

d2rn0(r). Note that
the scaling solution makes sense only ifA has nonvanishing coefficients. The local hydrodynamic velocity fieldvloc is obtained
from the ansatz for the density through the equation of continuity, which yields:vloc = −A−1Ȧ · r, whereȦ = dA/dt . The
equations for the coefficients of the matrixA are obtained from the Euler equation. For collective oscillations, we find
following set of nonlinear equations:

äx + ω2
xax − ω2

x

a2
xay

= 0 and äy +ω2
yay − ω2

y

a2
yax

= 0.

For a small deviation from equilibrium, the linearization of the system leads to two hydrodynamic frequencies of oscill

ω2± = ω2
x

2

[
3+ 3β2 ± (

9− 14β2 + 9β4)1/2]

with β = ωy/ωx . For an isotropic trap (ωx = ωy = ω0), we find
√

2ω0 for the quadrupole mode and 2ω0 for the monopole
mode. For non isotropic trap, the two modes correspond to a superposition of the quadrupole and monopole mo
equations for the time of flight in two dimensions are readily obtained in the same way:

äx = ω2
x

a2
xay

and äy = ω2
y

a2
yax

.

This set of equation shows that a high initial collision rate with respect to the trap frequencies (implicitly assumed
validity of hydrodynamic equations) leads to an asymptotic anisotropic expansion [20].

3.4. Scaling ansatz for the Quantum Boltzmann equation

In most cases the hydrodynamic formalism is not satisfactory for describing a Bose gas. Indeed, a time of flight ex
is accompanied by a dilution of the sample. As a result, the collision rate decreases. Hydrodynamic equations are mo
at the beginning of an expansion but certainly not after a long time [22]. We emphasize that the hydrodynamic regime
difficult to reach experimentally [23,24] since a high collision rate means a high density for which the inelastic collisi
is magnified. However, by exploiting Feshbach resonance, it has been possible recently to enter the hydrodynamic r
fermionic gases in a three-dimensional trap [25]. In order to take into account the evolution of the density one needs t
least approximately the Boltzmann equation. This equation permits us to describe the crossover between the collisio
the hydrodynamic regime.

Following [20], we make the following ansatz for the distribution function:f (r,v, t) = f0(R,V)/Ω(t) with f0 the

equilibrium distribution,V = B ·(v−vloc), B being a diagonal matrixB = diag(1/b1/2
x (t),1/b1/2

y (t)), andΩ(t) = det−1(AB).
The parameterbi gives the effective temperature in theith direction andf0 obeys the equilibrium Boltzmann equation:

∑
j

(
Vj

∂f0

∂Rj
− ω2

jRj
∂f0

∂Vj
− 2g0

m

∂n0

∂Rj

∂f0

∂Vj

)
= 0, (11)

where n0 = (m2/h2)
∫

d2Vf0 is the equilibrium density andg0 the strength of the interaction for the equilibriu
temperatureT0. The scaling ansatz method does not provide an exact solution of the Boltzmann equation. However
reasonable agreement with the numerical simulations based on molecular dynamics [20,26] and with experiments
substituting the scaling ansatz for the distribution function in the Boltzmann equation and taking into account the prop
the equilibrium distribution Eq. (11) one obtains:

1

Ω

∑
i

[(
b

1/2
i

ai
− g

g0

1

aib
1/2
i

1∏
j aj

)
Vi

∂f0

∂Ri
−

(
ḃi

2bi
+ ȧi

ai

)
Vi

∂f0

∂Vi
−

(
äi +ω2

i ai − g

g0

ω2
i

ai

1∏
j aj

)
Ri

b
1/2
i

∂f0

∂Vi

]

= Icoll + Ω̇

2
f0. (12)
Ω
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Eq. (12) gives constraints on the scaling coefficientsai andbi . By denoting〈C〉0 = (m2/h2)
∫
Cf0(R,V)d2R d2V/N , we

readily derive the following set of equations by multiplying Eq. (12) respectively byC = RiVi andC = V 2
i and by performing

the integration over the phase space:
(
bi

ai
− g

g0

1

ai

1∏
j aj

)〈
V 2
i

〉
0 +

(
äi + ω2

i ai − g

g0

ω2
i

ai

1∏
j aj

)〈
R2
i

〉
0 = 0,

ḃi

bi
+ 2

ȧi

ai
= m2

h2

Ω

N〈V 2
i

〉0

∫
d2R d2VV 2

i Icoll.

(13)

In order to capture the physics of the collision integral, we treat this term within the relaxation approximation [20]. It
us to recast the l.h.s. of the latter equation of (13) in the form:

m2

h2
Ω

N〈V 2
i 〉0

∫
d2R d2VV 2

i Icoll = − 1

bi

(
bi − bj

2τ

)
with i �= j,

whereτ is the relaxation time which corresponds to the average time between collisions. Using the properties of the eq
distribution, we finally obtain the following closed set of nonlinear equations for the scaling parameters:

äi + ω2
i ai − ω2

i

bi

ai
+ ω2

i ξ

(
bi

ai
− g

g0

1

ai

1∏
j aj

)
= 0,

ḃi + 2
ȧi

ai
bi = − 1

2τ
(bi − bj ) with i �= j,

(14)

with ξ = g0〈n0〉0/(mω2
i 〈R2

i 〉0). One recovers the collisionless regime by takingτ = ∞. In this limit, we have a simple relatio

betweenbi andai : bi = a−2
i . In the opposite limit (hydrodynamic regime), local equilibrium is always ensured becau

the high collision rate. As a consequence, the contribution of the collision integral vanishes because of local equilibr
bx = by = 1/(axay). As the mean temperature is constantg = g0, we recover, in this limit, the set of Eqs. (3.3). In the n
sections, we use this set of equations to derive the frequencies of the collective oscillations and we establish the equa
time of flight expansion.

3.5. Collective oscillations

Low lying collective oscillations are reproduced by the time dependent dilatation parametersax anday of the trapped cloud
around equilibrium. As a consequence, the temperature dependence of the interaction strength can be neglectedg = g0. To
evaluate the relaxation timeτ0, at least at equilibrium and in the high temperature limit, we perform a Gaussian ansatz
collision integral as explained in details in [26] for a three-dimensional system. We findτ0 = 2/γ0. Expanding Eqs. (14) aroun
equilibrium (ai = bi = 1) we get a linear closed set of equations which can be solved by searching for solutions of the tyiωt .
The associated determinant yields the dispersion law:

A[ω] − i

τ0
B[ω] = 0, (15)

whereA[ω] = ω2(ω2 −ω2
cl+)(ω2 −ω2

cl−), B[ω] = ω(ω2 −ω2
hd+)(ω2 −ω2

hd−) and (cl) and (hd) refer to the collisionless a

hydrodynamic regimes respectively. The values forω2
cl± andω2

hd± are given by

ω2
cl± = ω2

x

2

[(
1+ β2)

(4− ξ) ± {(
1+ β2)2

(4− ξ)2 − 32β2(2− ξ)
}1/2]

,

ω2
hd± = ω2

x

2

[
3
(
1+ β2) ± {

9
(
1+ β4) − 14β2}1/2]

,

(16)

with β = ωy/ωx .
The roots ofA that correspond to the collisionless regime in presence of mean field coincide with the one derived

The frequency of the monopole mode [28] for an isotropic trap (ωx = ωy = ω0) is found to be 2ω0 whatever the collision
regime. In two dimensions the collisions (mean field and relaxation) do not affect the frequency of this mode, this co
from the fact that it is in the kernel of the integral of collision [26]. The symmetries of a two-dimensional system for a c
interaction can explain this surprising result [29]. The hydrodynamic frequencies do not depend explicitly on the mean
is also a specific result of two dimensions low lying oscillations. As a consequence, the effect of the mean field upon c
oscillations is maximum in the crossover between collisionless and hydrodynamic regime.
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3.6. Time of flight

In the following we investigate the evolution of the cloud in a time of flight. In this technique, the asymmetric tra
potential is switched off and the evolution of the spatial density is monitored. After a long time expansion, the aspect ra
information on the characteristics of the gas. Below the critical temperature, the anisotropic expansion is the favored
of Bose–Einstein condensation. Actually, above the critical temperature and in the collisionless regime one expects an
asymptotic expansion of the cloud reflecting the isotropy of the initial velocity distribution. However, anisotropic exp
also arises above the critical temperature, when the mean free path is small compared to the size of the cloud.

An analytic approach has been proposed in the full hydrodynamic regime [21] for a three-dimensional Bose gas
been adapted to a two-dimensional gas in Section 3.3. Alternatively, the expansion of an interacting Bose gas initially
in a three-dimensional trap above the critical temperature has been investigated by means of Monte Carlo simulat
Two recent papers [20,22] propose a way to provide an analytical interpolation between the two opposite collision
hydrodynamic regimes. The authors of [22] divide the expansion in two stages: the first one is considered as fully hydro
and the second one as collisionless. The authors of [20] use a scaling ansatz to solve approximately the Boltzmann
We adapt in the following this latter method to a two-dimensional gas.

The same procedure as the one used previously for the collective oscillations leads to the following set of equation

äi − ω2
i

bi

ai
+ ω2

i ξ

(
bi

ai
− g(b̄)

g0

1

ai

1∏
j aj

)
= 0,

ḃi + 2
ȧi

ai
bi = − 1

2τ(ai )
(bi − bj ) with i �= j, (17)

whereb̄ = (bx + by)/2. The confinement does not appear explicitly as in (14). The dependence with the parametersai andbi
of the collision term through the interaction strengthg and the time relaxationτ has to be taken into account. As recall
in Section 2.2,g depends logarithmically on the mean temperatureT = T0b̄. Since the collision rate scales as the dens
we deduce the scaling dependence of the relaxation time:τ = τ0

∏
i ai . During the expansion the scaling parametersbi

decrease and as a consequence the gas cools down, revealing the isentropy of the expansion. By contrast with three-d
expansion, the mean field contribution is slightly magnified during the expansion through the dependence ofg upon the mean
temperature. The persistence of the hydrodynamic expansion that may happen initially is more pronounced with resp
three-dimensional case because of the more favorable dependence of the relaxation time on the scaling parameters.

4. Conclusion

In conclusion, our work shows that the coherent part of collisions included through a mean field term can manife
in various experimentally measurable ways already above the critical temperature: by modifying the frequencies of l
modes, or in competition with dissipative effects by producing an anisotropic expansion for an initially anisotropic trap
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Appendix. Finite size effect on the critical temperature Tc

ForN bosons confined in a two-dimensional isotropic harmonic oscillator of angular frequencyω, the critical temperature
Tc is the solution of the following equation

N =
∞∑
n=1

n + 1

exp[h̄ωn/(kBTc)] − 1
. (A.1)

SinceTc is close toT 0
c = h̄ω

√
6N/(πkB), one hasε ≡ h̄ω/(kBTc) ∼ N−1/2 � 1.

We therefore expand Eq. (A.1) forε � 1, retaining only the lowest order terms, up to 1/ε. The sum can be replaced by
integral, provided we add a remainderR(ε) to keep an exact expression:

N =
∞∫

x + 1

exp(εx) − 1
dx +R(ε). (A.2)
1
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The expansion of the integral is straightforward

∞∫
1

x + 1

exp(εx) − 1
dx = π2

6

1

ε2
− 1

ε
− ln ε

ε
+O(1) (A.3)

and the remainder can be evaluated with the Euler–McLaurin asymptotic formula [31]

R(ε) = −
∞∑
k=1

Bk

k! f
(k−1)(1) with f (x) = x + 1

exp(εx) − 1
, (A.4)

whereBk is thekth Bernoulli number. One then expands the derivatives off up to order 1/ε, and one finds:

R(ε) = S

ε
+O(1), (A.5)

where the coefficientS is given by the following series:

S = 1+ 1/12− 1/120+ 1/252+ · · · , (A.6)

which turns out to be a diverging series. Nevertheless, retaining only a finite number of terms of this series actually giv
good approximation2 of the value ofS 	 1.079± 0.003. Therefore,

N = π2

6

1

ε2
+ 0.079

ε
− lnε

ε
+O(1). (A.7)

Substitutingε by
√
π2/6N(1− δTc/T

0
c ) in the previous equation, and expanding up to first order inδTc/T

0
c finally yields the

shift of critical temperature:

δTc

T 0
c

	 −0.195 lnN − 0.066√
N

. (A.8)
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