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Abstract

One of the key issues related to superfluidity is the existence of quantized vortices. Following recent experiments on Bose—
Einstein condensates exhibiting vortices, we investigate the behavior of the wave function which solves the Gross—Pitaevskii
equation. For a rotating Bose—Einstein condensate in a harmonic trap, we give a simplified expression of the Gross—PitaevsKii
energy in the Thomas—Fermi regime, which only depends on the number and shape of the vortex lines. This allows us to study
in detail the structure of the line of a single quantized vortex, which ltagas shapesS type vortices exist for all values of the
angular velocitys2 but are not minimizers of the energy whilevortices are minimizers and exist only for sufficiently large.

Finally, we study the drag created by the movement of a detuned laser beam in a condensate and the nucleation of vortices in
the low density region close to the boundary layer of the cldodtite thisarticle: A. Aftalion, C. R. Physique 5 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Propriétés des vortex pour des condensats de Bose Einstein. Une des questions reliées a la superfluidité est I'existence
de vortex quantifiés. Suite aux récentes expériences dans les condensats de Bose Einstein mettant en évidence des vortex, nou:
étudions les propriétés de la fonction d’onde qui est solution d’'une équation de Gross Pitaevskii. Pour un condensat en rotation
dans un piége harmonique, nous donnons une expression simplifiée de I'énergie de Gross Pitaevskii dans la limite de Thomas—
Fermi, qui ne dépend que du nombre et de la forme des lignes de vortex. Cela nous permet d’'étudier la structure des lignes de
vortex, qui sont du typ&/ ou S. Les vortex de type existent pour toute valeur de la vitesse de rotafdmais ne sont pas
minimiseurs de I'énergie, tandis que Esn’existent que pous2 plus grand qu’une valeur critique et sont alors minimiseurs.

Enfin, nous étudions la trainée engendrée par le déplacement d’'un laser dans un condensat et la nucléation des vortex dans la
zone de basse densiféour citer cet article: A. Aftalion, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Since the first experimental achievement of Bose—Einstein condensation in confined alkali gases in 1995, many properties
of these systems have been studied experimentally and theoretically [1-10]. One of the key issues, related to superfluidity, is the
existence of vortices. In that respect, there are two classical experiments to obtain quantized vortices. One consists in stirring a
laser beam along the condensate in a translation movement [11-13]: this is the equivalent of moving an object in a superfluid,
so that there is a critical velocity below which the movement is dissipationless and beyond which the stirring produces vortices.
On the other hand, there is also the classical rotating bucket experiment: a consequence of superfluidity is the existence of
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permanent currents. Several experimental groups have produced vortices by a rotation of the trapping potential, in particular the
group of Dalibard at the ENS in Paris [7,8,14] and the group of Ketterle at MIT [15,16]. In the ENS experiment, a laser beam is
imposed on the magnetic trap holding the atoms to create a harmonic anisotropic rotating potential. For small angular velocities,
no modification of the condensate is observed. For sufficiently large angular velocities, vortices are detected in the system. The
particularity of the vortex line is that it is not straight along the axis of rotation but bending. Numerical computations solving
the Gross—Pitaevskii equation [17,18] have shown that there is a range of velocities for which the vortex line is indeed bending.
The aim of this paper is to justify these observations theoretically in the Thomas—Fermi regime and study in detail theoretically
and numerically the shape of the vortex lines. We define an asymptotic parameter which is small in the Thomas—Fermi regime
and approximate the Gross—Pitaevskii energy to obtain a simpler form of the energy which only depends on the shape of the
vortex lines. Then we check that our characterization leads to solutions with a bent vortex for a range of values of the rotational
velocity which are consistent with the ones observed.

The Gross—Pitaevskii energy provides a very good description of Bose—Einstein condensates: it is assumedthat the
particles of the gas are condensed in the same state described by the wave fgin&jomtroducing a rotating frame at
angular velocity2 = e,, the trapping potential becomes time independent, and the wave fugctionimizes the energy

E3p(e) = / ﬁw%hﬁ (9. Vo x ) + = 3 2r2il? + Y eaplol® (1)
3D = om ) 2 : al o 2 83D )

under the constrainf |¢|2 = 1. Here, for any complex quantities and v and their complex conjugatesand v, (u, v) =
(uv + iv)/2 andgzp = 47rh2a/m. We want to nondimensionalize the energy in order to get a parameter which is small in the
Thomas—Fermi regime. We define the characteristic ledg#(i/mo,)Y/? and assumey, = awy, w, = fwy. We set

£ <8ﬂ6§\la )2/5' @

For numerical applications, we are going to use the experimental values of the ENS group=8],445 x 10725 kg,
a=58x10"1m N=14x10° andw, = 1094 s1 with « = 1.06, 8 = 0.067. We find that = 0.0174, thusg is small,
which will be our asymptotic regime. We re-scale the distanc&by d/./¢ and defineu(r) = R32¢(x) wherex = Rr and

we set2 = ﬁ/swx. The velocity$2 is chosen such tha? < 1/¢, that is the trapping potential is stronger than the inertial
potential. The energy can be rewritten as:

1
4¢2
Due to the constrainf lu|2 = 1, we can add t&3p any multiple of [ [u|? so that it is equivalent to minimize

1 . 1
E3p(u) =/5\W|2+9-(uu,w X 1)+ @(x2+a2y2+ﬁ222)|'4|2+ Jul®. 3)

Ee(u) /lw 242 (i, Vi x 1)+ sl — = pre(n) a2 @
= —_ . X —_ —_—
o(u 5 Vu u,Vu 22 u 282,011: ulc,
wherepTe(r) = pg — (x2 + a?y? + 222) is the Thomas—Fermi approximationafandpg is determined by
/PTF(r) =1 (5)

D

D is the ellipsoid{ pTF > 0} = {x2 + a?y2 + 222 < pp}, which yields,og/2 = 1508/8x. To study the problem analytically, it
is reasonable to minimize the enerfly over the domairD with zero boundary data for. Indeed, whemtg < 0, the energy
is convex so that the minimizergoes to zero exponentially quickly away from the condensate (see the numerical observation
in [6]). In fact the boundary layer wheyerg is matched to zero, is of siz#/3 and the behaviour of the wave function in the
layer is given by a Painlevé equation (for the analysis on the behaviour near the bounfieag efell as the decay at infinity
of the order parameter, see [19,20]).

Note that a critical poink of E; is a solution of

. 1 .
—Au + 2i(£2 x r).Vu:—zu(,oTF—\u\z)—}-,ueu inD, (6)
e

with u = 0 on 3D and ¢ is the Lagrange multiplier. The specific choicegf will imply that the termucu is negligible in
front of prEu/e.

We have set the framework of study of the enefgy We will make an asymptotic expansion of the energy taking into
account that is small. The aim is to reach a simplified expression of the energy depending on the vortex lines. Then we will
study the shape of a single vortex line in the light of the recent experiments [14]. We also show numerical simulations of the full
Gross—Pitaevskii equations. Finally, we describe results concerning the nucleation of vortices in the Painlevé boundary layer of
a condensate. All the results presented here are contained in [21-25].
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2. Asymptotic expansion of the energy

Our aim is to decouple the enerd@y into 3 terms: a part coming from the profile of the solution without vortices, a vortex
contribution and a term due to rotation. The analysis described in this section relies on [22].

2.1. The solution without vortices

Firstly, we are interested in the profile of solutions so that we will study solutions without vortices. Thus we consider
functions of the formy = f €5, f is real and does not vanish in the interior®f We first minimizeE, over such functions
without imposing the constraint that the norm is 1. Wiaga small, since the ellipticity of the cross-section is small, the zero
order approximation oj”e2 is oTE. As for the phase, its behaviour is given by the continuity equatio(rfﬁiwsg —2xr))=0.

This implies that there exist8, such that

F2(VSe — 2 x1)=Qcurl 5. )

One can think ofZ; as the equivalent of a stream function in the case of fluid vorti€gss the solution of

1 .
curl(F curl E€> =-2 inD, Ee=0 onaD. (8)
JE
Whene is small, the functiorg, is well approximated by the solutiag of
1 .
curI(—curIE) =-2 inD, Z=0 ondD. 9)
PTF

One can easily get thaf (x, y) = —p2c(x, y)/(2+ 2a?)e;. Using (7), we can defingp, the limit of S, to be the solution of
oTE(VS — 2 x 1) = 2 curl Z with zero value at the origin. We hawg = C2xy with C = (@2 — 1)/(a? + 1). We see that

So vanishes whew = 1 that is when the cross-section is a disc. This computation is consistent with the one in [9], though it is
derived in a different way. The functiop = f. €5 that we have studied gives the profile of any solution. It will allow us to
compute the energy of all solutions.

2.2. Decoupling the energy

Letne = fe &5 pe the vortex free minimizer of; discussed above. Laet be a configuration that minimizes, and let
ve = ug /ne. Sincen, satisfies the Gross—Pitaevskii equation (6) with= 0, we have

1 1 :
/(|ve -1 (—EAff - 8—21;92(pr — 2+ |V &S |2 —2f2(VS: - 2 x r)) 0. (10)

This trick was introduced in [27] and leads to the following exact decoupling of the ed&i@y:):

Ec(ue) = Ec(ne) + Gng (ve) + Ing (ve), (11)

where

1 e 2
Gy, (ve) = / S el 1Vvel? + 2 (1= ue )7,
D

is the energy of vortices and

I, (ve) =/ms|2(vsg — 2 x1)- (ive, Vo),
D

is the angular momentum of vortices. The first tefia(n,) is independent of the solutian., so we have to compute the next
two and find for which configuration, the minimum is achieved. We use that at zero otdgl’ = fe2 is approximated byTg
whene is small so that we can approximatg,, by G Jore =Ge andl,, by ! ore = Ie.

Assuming that the solution, has a vortex line along, that isu, vanishes along with a winding number equal to 1, our
aim is to estimate the energy of depending ory. Our approximations rely on the fact that the ellipticity of the cross-section
is weak and that is sufficiently small. We refer to [22] for details.
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2.3. Estimate o6 . (ve)

We want to estimate

G Y . P 1 2)2
e(we) = [ Zovelvue 2+ I (1 ue 22
D

The mathematical techniques to approxim@tehave been introduced in [28] in dimension 2 and in [29] in dimension 3, when
¢ is very small.

We expect that the vortex core is of size, wherea is a matching parameter. In the vortex core, the profile.af given
by the cubic NLS equation and the energy at leading order produces a terntiptpy Outside the vortex core, that is away
from a tube of size.e, |ve| is very close to 1 and only the phasewfis of influence. The computation of the energy in that
region uses the analogy with fluid vortices and we introduce the equivalent of a stream function that approximately solves a
Bessel type equation. The computation is inspired by [30]. Finally, we determine the matching pavaaraere find that
each vortex line/ provides a contribution

Ge(ue) =rllogel [ predl (12)
Y
and we can also compute the interaction term in case of several vortices.

2.4. Estimate of(ve)

The estimate for, is rather simple to get. Recall that the unique solution of (8) satigfie§VS: — 2 x r) = 2 curl Z;.
Hence we integrate by part in the expressionfgi(v,) to get

Ins(vg):Q/Egocurl(ivg,va).
D

Let ¢, be the phase af;. Sincev, is tending to one everywhere except on the vortex line, then Vv,) ~ V¢, hence we
can approximate cuiive, Vve) by 276, . We use the value of and the fact thaf(¢) - e; = dz, to obtain

1+ a2
Y

2
Ie(ve) >~ — il /p%,:dz. (13)

2.5. Final estimate for the energy

We use Egs. (11)—(13) to derive the energy of a solution with a vortex line. The energy of any solution minus the energy
of a solution without vortex is roughly the vortex contribution in the sefisé:.) — E:(n:) >~ E[y]. We find that the vortex
contribution is

Qn 2
E[yl=m=|lo d - — dz. 14
[yl=m| galy/pTF (1+“2),,/pTF z (14)

The energyE[y] reflects the competition between the vortex energy due to its length (1st term) and the rotation term. Note that
the rotation term is an oriented integrat (oot d), which actually forces the vortex to be along thaxis, while the other term
wants to minimize the length. This is why, according to the geometry of the trap, the shape of the vortex varies.

Let us point out that Svidzinsky and Fetter [30] have studied the dynamics of a vortex line depending on its curvature. For
a vortex velocity equal to 0, the equation obtained in [30] is the same as the equation corresponding to the minimum of our
approximate energy, though the formulation in [30] was not derived from energy considerations. Following our work, [18] have
also derived an approximate expression for the energy. Note that the energy that we actually derive in [22] is slightly more
involved than (14). In the regime of the experiments, it is reasonable to restrict to this expression (14), taking into account the
fact that the vortex core is sufficiently small (it is of sizén our units) and neglecting the interaction of the curve with itself.
We are interested only in the presence of the first vortex. When there are several vortices, the energy has an extra term due to
the repulsion between the linégy;, yi):

Ee(ue) — Ee(e) =~ Y Elyil+ Y _ 1, v, (15)
i ik
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where

Iy, vi)=m / ot log(dist(x, y)) dl.
Vi
A rigorous mathematical derivation @&f{y ] usingI" convergence has been performed in [31].

3. Singlevortex line, study of E[y]

The analysis described in this section relies on [23,24]. From now on, we will define
2

(1+a?)|loge|’

The energy of the vortex free solution is zero. Thus, a vortex line is energetically favorablethgerare such that
inf, E[y] < 0. Recall thatg determines the elongation of the trap and is included in the expressiparofOur aim is to
study the shape of the vortex lingsminimizing E[y]. Taking the straight vortex, as a test function irE[y], allows us to
compute the critical angular velocitg4 for which a straight vortex has a lower energy than a vortex free solutiof®. At$24,
Elys1=0, so that we find2; = (5/4)(1 + «?)|loge|. We have checked numerically that there is a range of valu@ tess
than £21 for which a bent vortex has a negative energy, in particular a lower energy than a straight vortex and the vortex free
solution. We are going to check this analytically here by looking at the stability and instability of the straight vortex and prove
that when the condensate has a cigar shape the first vortex is bent, while when it is a pancake, the first vortex is straight and lies
on the axis of rotation.

First of all, it has been observed numerically [17] that the vortex line lies in the plane closest to the axis of rotation and we
can provide a rigorous justification:

2=

Theorem 3.1. If « > 1, then the energ¥ [y ] is minimized when the vortex line lies in the z) plane, that is the plane closest
to the axis.

Indeed, if we have a curver parametrized as (t) = (x(¢), y(¢), z(¢)), then we can define the new curyat) =
0, 5(1), 3(1)) by 3(t) = 2(1) and (1) = v/x2/a2 + y2. Then p1r(y (1) = p1EGF (1)). Sincea > 1, 32 < £2 + 72, hence
,0T|:()7)\).7| — §p1-;:()7)§ < pTEW)IY| — 2 p1E(Y)z. It follows that the energy of the new curvg[y] is less or equal than
E[y]. If « =1, that is the cross section is a disc, then our arguments imply that the vortex line is planar, but of course all
transversal planes are equivalent.

From now on, we will assume that the curve lies in the plane), so thatr = 0 and we denote by, the value ofoTf that
only depends oty andz. For everys2, there exists a minimizer df[y]. Any minimizer is either the vortex free state, or has a
vortex along the-axis or is supported in the set > 0} and is bounded away from theaxis. If 2pg < 1/2, we can prove that
there cannot exist a critical point of the energy which lies in the halflaney > 0. See [24].

Let us investigate the existence of a bent vortex. Notice from the expressiBntbt for E[y] to be negative, we need
o — £ p? to be negative somewhere, that®p > 1. For fixeds2, we define the regions

D;:={(y.2):2p(y.2)>1},  D,:=D\D;. (16)

We will refer to these sets as ‘the inner regidp/ and ‘the outer regionD, respectively. In the outer region, the energy of a
vortex per unit arc length is necessarily positive, sipce 22 > 0, whereas in the inner region, for appropriately oriented
vortices it can be negative singe— 2p? < 0. One can see easily that farto have a negative energy, part of the vortex line
has to lie in the inner region, that is close to the center of the cloud. Note tHBf fiorbe nonempty, we need at lea@pg > 1.
This, with the fact tha21 pg = 5/4, indicates that the critical velocit. for the existence of a vortex is such that

5
(1+a?)[loge| < 2, < Z(1+a2)\ loge|.
In the regionD;, we will see that the vortex is close to the axis for @llOn the other hand, in the regidp,, the vortex

goes to the boundary along the quickest patl# i small, perpendicularly to the boundary, which gives rise to a bent vortex
and if 8 > 1, the vortex stays along the axis of rotation. In [23], we prove the following

Proposition 3.2. For all 8 and all 2, in the inner regiorD;, the straight vortex minimizes the energy restricte®{o

Proposition 3.3. For 8 > 1, in the outer regiorD, ,the straight vortex minimizes the energy restricte@®to
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Note that in the outer region, Proposition 3.3 only holdsfor 1. If 8 < 1, the situation is somewhat more complicated:
fVu p dl is minimized by a path that join®; to dD along they-axis, whereas- fyo p2dz is minimized by the straight vortex
running along the-axis. The minimizer of the full energy reflects the competition between these two terms, and hence is bent.
In particular, as a corollary of the above propositions we deduce

Theorem 3.4. For B > 1, E[y] > inf(0, E[ys]), wherey; is the straight vortex along the-axis. If E[ys] < 0O, the equality can
happen only ify is the straight vortex.

Note that for each, there is a critical velocity2,,(z) for the existence of a vortex in the 2-dimensional section where
is constant. The regio®; corresponds to points such that2 > £25,(z). We now investigate further on the stability of the

straight vortex. Writing a Taylor series expansion frone finds tha[ys] = E[ys] + %(v, E"[ysIv) + O(83). We say that
the straight vortex is stable b, E”[ys]v) > 0 for all v, and unstable ifv, E”[ys]v) < 0 for somev.

Theorem 3.5. The straight vortex is stable if

— 3 1

200> -+ —5. 17)
The straight vortex is unstable #f < 1/4/3 and

— 1
2 -+ —. 18
r<gte 42 (18)
Note that the 2 values are consistent in the sense that they both scalgdfkeviien 8 is small. Forfz large, one expects
several vortices in the condensate, but the fact that a straight vortex is stable gives an indicationshiatr§ar, each vortex
should be nearly straight, which is consistent with the observations [16]. Recall that the stabilization of the cloud requires that
the rotation is not stronger than the trapping potential, which reads in our not&iens/«.

Remark 1. It is interesting to see what happens in Theorem 3.5 wlagg = 5/4, that is when the straight vortex has zero
energy. The first inequality yields that #f > 1/4/2, then the straight vortex is stable for & such that2 pg > 5/4, that is
whenE[ys] < 0. If 8 > 1, we have seen that is not just stable but in fact minimiz&s. The second inequality implies that,
if B </2/13~ 0.39 then the straight vortex is unstable at the veloglyy = 5/4 at whichE[y;] = 0. As a result, for these
values ofg, the first vortex to nucleate a8 increases is a bent vortex. Note that it has been observed in [30] thatddr/2,
the ground state of the system exhibits a bent vortex. Numerical results of [17] also show that bent vortices are energetically
favorable wherg is small.

All this indicates that by varying the elongation of the condensate, one may hope to go from a situation where the first vortex
is bent, to a situation where it is straight.

4. Numerical simulations

In this section, we show numerical simulations of solutions of the full Gross—Pitaevskii equations that illustrate the properties
described above. The computations published in this part are published in [25]. We compute critical pBiatstf solving
the norm-preserving imaginary time propagation of the corresponding equation:
d 1 ) 1
a—’:—ivzu—kl(ﬂxr).Vu:@u(pTF—|u|2)+;Lgu, (19)
with u =0 on 9D and . the Lagrange multiplier for the constraitfy, [u]2 = 1. A hybrid 3 steps Runge—Kutta—Crank—
Nicolson scheme is used to march in time. We use various initial data, without vortices or with vorticeg eaxtber off the
axis.
We have observed three different types of single vortex configurations as shown in Fig. 11platéices, planas vortices
and non-planas vortices. TheU vortices are the bent vortices computed in [17,18] and theoretically studied in [22,23]. They
are global minimizers of the energy. Teconfigurations were observed experimentally very recently [14] and are only local
minimizers of the energy.
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Fig. 1. Single vortex configurations in BEC: (&)vortex; (b) planarS vortex; (c) non-planas vortex. Isosurfaces of lowest density within the
condensate.
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h—»v
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Fig. 2. SingleU vortex configurations for: (a2 /wy = 0.42; (b) 2 /w, = 0.58; () 2 /w, = 0.78.

4.1. U vortex

The U vortex is a planar vortex formed of 2 parts: the central part is a line which stays anakis and the outer part
reaches the boundary of the condensate perpendicularly. YWheareases, the central straight part gets longer (Fig. 2) and the
angular momentum(;) increases to 1 (Fig. 3).

The U vortex lies either in the—z or y—z plane. Starting with an initial condition which is not in one of these plane yields
a final state in the@—z plane, which is the plane closest to thexis.

The shape of the th& vortex and its preferred location in thez plane can be analyzed using the approximate energy
E[y]:if y is not in thex— or y—z plane, then one can construct small perturbationg tfiat preserveotg and lower the
energy. This implies that cannot be a critical point of the energy because the gradient is not zero. Of course, if the ellipticity
of the cross-section is small, the gradient is small, which may allow to observe these configurations.

In order to understand the existence of the straight central part @f teatex, one can also refer to the analysis described
above with the inner and outer region (16). In the redignthe vortex is straight and i®,, it is bending.

Fig. 3 shows the energy and angular momentum variation @ifor the single vortex configurations. Tliévortices exist
only for 7] bigger than a critical valu&g = 0.42w;. It is interesting to note that &2, the energy of thé/ vortex is bigger
than the energy of the vortex free solution (we have set to zero the energy of the vortex free solution). A zoom in this region
shows that? is very close to the angular velocity. for which the energy of the vortex free solution is equal to the energy of
the U vortex.

Fig. 3 also shows that the angular momentiigof the U vortex for 2 = £29 does not go to 0. This suggests that in fact
there could be anothér solution for2 > £2¢. Using an ansatz, another typeléfsolution is obtained in [18] which is a saddle
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—F+— 1 U vortex
—&—— 1 Svortex
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Fig. 3. Energy (in units ofiw,) and angular momentum per particle (in unitsipffor the single vortex configurations.

point of the energy: it is away from the axis and has lower angular momentum. In [23], it is proved rigorously tharfall,
there is noU as a critical point of the energy.

4.2. S vortex

Motivated by the experiments of [14], we compute new critical points of the energy, whichcangfigurations (see Fig. 1).
Several numerical experiments were performed, starting from different initial conditions containing an ansats fortbe.

The planars can be regarded astg, with the half-part in the plane < 0 rotated with respect to theaxis by 180 degrees.

The nonplanass are such that the projections of the branches onxtheplane are orthogonal, i.e., the rotation of the branches
is of 90 degrees. We could check that nonpla$iaonfigurations with an angle between the branches different from 90 degrees
do not exist.

The S vortices exist for all values aof2 while theU only exist for 2 > £29. When £2 decreases, the extension of the
along thez-axis goes downwards as shown in Fig. 4, the angular momentum decreases to 0 (Fig. 3) and the vortex tends to
the horizontal axis. Note that a vortex along the horizontal axisZhas 0, but a positive energy. On the other side, wkizn
increases, th& gets straighter and it tends to the vertical axis.

S vortices are critical points oE[y] for any £2, but never minimizers oE[y]. The difference in energy (and angular
momentum) betwee and S vortices is very small, as illustrated in Fig. 3 becauseSarortex is almost like a/ with a
half-part rotated by 180 degrees.

As already mentioned for th& vortex, stable plana§ configurations lie either in the—z or y—z plane. As for thel, this
can be explained using the limiting ener§yy] and considering separately the upper or lower part ofSthas soon as the
cross section is not a disc, if the upper or lower branch ofStteenfiguration does not lie in the— or y—z plane, then the
gradient of the vortex line energy can never be zero whénvaried. This is why the only possible 3Dconfiguration is when
the upper and lower branches of thare perpendicular.

4.3. Minimizer with fixed.

The energyE, or E[y]can be splitinto 2 term& andL,, suchthatt = H — 2 L;. As pointed out in [14], the minimization
problem which is related to the experiments, is rather to mininfdzevhile fixing L, rather than minimizing? — £2L. This
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(b) (c)

¥ ¥ Y

Fig. 4. SingleS vortex configuration for: (aJ2 /wx = 0.38; (b) $2/wx = 0.44; (C) 2 /wy = 0.48.

0.5

—F—— 1 U vortex
—&A—— 1 Svortex

Fig. 5. H versusL; for single vortex configuration.

has been studied in the 2-dimensional setting in [1], but the numerical simulation in 3D is still an open problem. One can notice
that if a given configuration wittH = h andL; =1 minimizesE = H — 2L, for somes2, thens minimizes H under the
constraint thal., =/: indeed ifH' = H (u) with L (u) =1, thenH’ — 21 > h — 21, since(h, [) minimizesE, and this implies

that H' > h. Moreovers2 is the slope to the curvel (L) at the point(%, /) and the property of minimizing that is for allr’,

v,

W—Ql>h-I (20)

implies that the curveéd (L) lies above its tangent at this point.

We have plottedd as a function ofL; (Fig. 5). We can check that the curve is convex, and above its tangent, which is
consistent with the fact that we have computed minimizers of the energy.

We know that theJ solution exists fo2 > §2g and hasl; > 0.4. ForL; < 0.4, we expect that the process of minimizing
H with fixed L; would producel vortices and the curv& (L;) should be concave in this region, but we have not been able to
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(b)

Fig. 6. (@ = 1.1) Side view of the condensate for: (@)/w | = 0.12; (b) 2/w; =0.2; (c) 2/w; =0.28;, (d) 2/w | = 0.32. Isosurface of
lowest density.

perform the simulation. In [23], we have proved that forclose to 0,H > CL§/3, which is a first indication to the concavity

of the curve.
4.4, Other simulations

In [25], we have also computed configurations with several vortices. More recent simulations [32] take into account other
types of traps than the harmonic trap and allow us to see giant vortices. Following recent experiments at the ENS [33] where a
blue detuned laser beam is superimposed to the magnetic trap holding the atoms, we replace the harmonic trapping potential by
a combined harmonic and quartic terpyF is replaced byl — a)r? + kr* + p2z2. As 2 increases, the vortex lattice evolves
into a vortex lattice with hole, as shown in Fig. 6.

5. Vortex sheddingin the Painlevé boundary layer of a Bose-Einstein condensate

Raman et al. [29] have found experimental evidence for a critical velocity under which there is no dissipation when a detuned
laser beam is moved in a Bose—Einstein condensate. This critical velocity has been related to the one found by Frisch et al. [34]
for the problem of a 2D superfluid flow around an obstacle in the framework of Nonlinear Schrodinger Equation: below a
critical velocity, the flow is stationary and dissipationless, while beyond this critical velocity, the flow becomes time dependent
and vortices are emitted. Numerical simulations have been done for this type of problem in 2D [35] and 3D [36].
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Fig. 7. A sequence of isosurface snapshots pfor v = 0.28: (a) formation of vortex handles= 0.04; (b) detachment from obstaale= 0.08;
(c) bending of vortex tubes= 0.12; and (d) formation of vortekalf ringss = 0.16.

In [26], we want to take into account the 3D geometry of the experiment of [11-13]. Our aim is to understand the mechanism
of vortex nucleation in the boundary region. We analyze the origin of this critical velocity in the low density region close to the
boundary layer of the cloud. In the frame of the laser beam, we do a blow up on this low density region which can be described
by a Painlevé equation and write the approximate equation satisfied by the wave function in this region. We find that there is
always a drag around the laser beam. Though the beam passes through the surface of the cloud and the sound velocity is small
in the Painlevé boundary layer, the shedding of vortices starts only when a threshold velocity is reached. At low velocity, there
is a stationary solution without vortex and the drag is small. The drag is not a consequence of the shedding of vortices, and
finally of a time dependent density and velocity field. The origin of this drag is in the radiation condition for the wavefield:
the motion changes continuously the structure of the solution seen in the frame of reference of the ‘fluid’ at infinity. The drag
increases smoothly as the velocity increases. We study the transition toward a time dependent regime of vortex shedding, which
happens at a critical velocity. The critical velocity that we find is lower than the 2D critical velocity at the center of the cloud
coming from the computation of [34]. Vortices are nucleated close to the boundary of the cloud and the tubes grow and detach
to form rings that move downstream (see Fig. 7). When tubes are emitted, significantly large drag values are observed.

References

[1] D. Butts, D. Rokhsar, Nature 397 (1999) 327.

[2] F. Dalfovo, S. Giorgini, L. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999) 463.
[3] D.L. Feder, C.W. Clark, B.l. Schneider, Phys. Rev. Lett. 82 (1999) 4956.

[4] M.R. Matthews, et al., Phys. Rev. Lett. 83 (1999) 2498.

[5] D.L. Feder, C.W. Clark, B.l. Schneider, Phys. Rev. A 61 (1999) 011601(R).



20 A. Aftalion / C. R. Physique 5 (2004) 9—20

[6] Y. Castin, R. Dum, Eur. Phys. J. D 7 (1999) 399.

[7] K. Madison, F. Chevy, V. Bretin, J. Dalibard, Phys. Rev. Lett. 84 (2000) 806.

[8] K. Madison, F. Chevy, W. Wohlleben, J. Dalibard, J. Mod. Opt. 47 (2000) 2715.

[9] A.A. Svidzinsky, A.L. Fetter, Phys. Rev. Lett. 84 (2000) 5919.
[10] A.L. Fetter, A.A. Svidzinsky, cond-mat/0102003.
[11] C. Raman, M. K&hl, R. Onofrio, D.S. Durfee, C.E. Kuklewicz, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 83 (1999) 2502-2505.
[12] R. Onofrio, C. Raman, J.M. Vogels, J.R. Abo-Shaeer, A.P. Chikkatur, W. Ketterle, Phys. Rev. Lett. 85 (2000) 2228—2231.
[13] C. Raman, R. Onofrio, J.M. Vogels, J.R. Abo-Shaeer, W. Ketterle, J. Low Temp. Phys. 122 (2001) 99-116.
[14] P. Rosenbuch, V. Bretin, J. Dalibard, Phys. Rev. Lett. 89 (2002) 200403.
[15] C. Raman, J.R. Abo-Shaeer, J.M. Vogels, K. Xu, W. Ketterle, Phys. Rev. Lett. 87 (2001) 210402.
[16] J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292 (2001) 476.
[17] J.J. Garcia-Ripoll, V.M. Perez-Garcia, Phys. Rev. A 63 (2001) 041603(R);

J.J. Garcia-Ripoll, V.M. Perez-Garcia, Phys. Rev. A 64 (2001) 053611.

[18] M. Modugno, L. Pricoupenko, Y. Castin, Eur. Phys. J. D 22 (2003) 235-257.
[19] F. Dalfovo, L. Pitaevskii, S. Stringari, Phys. Rev. A 54 (1996) 4213.
[20] A.L. Fetter, D.L. Feder, Phys. Rev. A 58 (1998) 3185.
[21] A. Aftalion, Q. Du, Phys. Rev. A 64 (2001) 063603.
[22] A. Aftalion, T. Riviere, Phys. Rev. A 64 (2001) 043611.
[23] A. Aftalion, R.L. Jerrard, Phys. Rev. A 66 (2002) 023611.
[24] A. Aftalion, R.L. Jerrard, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
[25] A. Aftalion, I. Danaila, Phys. Rev. A. 68 (2003) 023603.
[26] A. Aftalion, Q. Du, Y. Pomeau, Phys. Rev. Lett. 91 (2003) 090407.
[27] L. Lassoued, P. Mironescu, J. Anal. Math. 77 (1999) 1.
[28] F. Bethuel, H. Brezis, F. Helein, Ginzburg—Landau Vortices, Birkhauser, 1994.
[29] T. Riviere, COCV 1 (1996) 77.
[30] A.A. Svidzinsky, A.L. Fetter, Phys. Rev. A 62 (2000) 63617.
[31] R.L. Jerrard, Preprint.

[32] A. Aftalion, I. Danaila, cond-mat/0309668.

[33] V. Bretin, S. Stock, Y. Seurin, J. Dalibard, cond-mat/0307464.

[34] T. Frisch, Y. Pomeau, S. Rica, Phys. Rev. Lett. 69 (1992) 1644.

[35] C. Huepe, M.E. Brachet, Physica D 144 (2000) 20-36.

[36] B. Jackson, J.F. McCann, C.S. Adams, Phys. Rev. A 61 (2000) 051603.



