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Abstract

One of the key issues related to superfluidity is the existence of quantized vortices. Following recent experiments o
Einstein condensates exhibiting vortices, we investigate the behavior of the wave function which solves the Gross–P
equation. For a rotating Bose–Einstein condensate in a harmonic trap, we give a simplified expression of the Gross–
energy in the Thomas–Fermi regime, which only depends on the number and shape of the vortex lines. This allows u
in detail the structure of the line of a single quantized vortex, which has aU or S shape.S type vortices exist for all values of th
angular velocityΩ but are not minimizers of the energy whileU vortices are minimizers and exist only forΩ sufficiently large.
Finally, we study the drag created by the movement of a detuned laser beam in a condensate and the nucleation of
the low density region close to the boundary layer of the cloud.To cite this article: A. Aftalion, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Propriétés des vortex pour des condensats de Bose Einstein. Une des questions reliées à la superfluidité est l’existe
de vortex quantifiés. Suite aux récentes expériences dans les condensats de Bose Einstein mettant en évidence des
étudions les propriétés de la fonction d’onde qui est solution d’une équation de Gross Pitaevskii. Pour un condensat e
dans un piège harmonique, nous donnons une expression simplifiée de l’énergie de Gross Pitaevskii dans la limite de
Fermi, qui ne dépend que du nombre et de la forme des lignes de vortex. Cela nous permet d’étudier la structure des
vortex, qui sont du typeU ou S. Les vortex de typeS existent pour toute valeur de la vitesse de rotationΩ mais ne sont pa
minimiseurs de l’énergie, tandis que lesU n’existent que pourΩ plus grand qu’une valeur critique et sont alors minimise
Enfin, nous étudions la traînée engendrée par le déplacement d’un laser dans un condensat et la nucléation des vo
zone de basse densité.Pour citer cet article : A. Aftalion, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Since the first experimental achievement of Bose–Einstein condensation in confined alkali gases in 1995, many p
of these systems have been studied experimentally and theoretically [1–10]. One of the key issues, related to superflui
existence of vortices. In that respect, there are two classical experiments to obtain quantized vortices. One consists in
laser beam along the condensate in a translation movement [11–13]: this is the equivalent of moving an object in a s
so that there is a critical velocity below which the movement is dissipationless and beyond which the stirring produces
On the other hand, there is also the classical rotating bucket experiment: a consequence of superfluidity is the ex

E-mail address:amandine.aftalion@math.jussieu.fr (A. Aftalion).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.01.001
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permanent currents. Several experimental groups have produced vortices by a rotation of the trapping potential, in par
group of Dalibard at the ENS in Paris [7,8,14] and the group of Ketterle at MIT [15,16]. In the ENS experiment, a laser
imposed on the magnetic trap holding the atoms to create a harmonic anisotropic rotating potential. For small angular v
no modification of the condensate is observed. For sufficiently large angular velocities, vortices are detected in the sy
particularity of the vortex line is that it is not straight along the axis of rotation but bending. Numerical computations
the Gross–Pitaevskii equation [17,18] have shown that there is a range of velocities for which the vortex line is indeed
The aim of this paper is to justify these observations theoretically in the Thomas–Fermi regime and study in detail theo
and numerically the shape of the vortex lines. We define an asymptotic parameter which is small in the Thomas–Ferm
and approximate the Gross–Pitaevskii energy to obtain a simpler form of the energy which only depends on the sha
vortex lines. Then we check that our characterization leads to solutions with a bent vortex for a range of values of the r
velocity which are consistent with the ones observed.

The Gross–Pitaevskii energy provides a very good description of Bose–Einstein condensates: it is assumed thN

particles of the gas are condensed in the same state described by the wave functionφ. By introducing a rotating frame a
angular velocityΩ̃ = Ω̃ez, the trapping potential becomes time independent, and the wave functionφ minimizes the energy

E3D(φ)=
∫
h̄2

2m
|∇φ|2 + h̄Ω̃ · (iφ,∇φ × x)+ m

2

∑
α

ω2
αr

2
α |φ|2 + N

2
g3D|φ|4, (1)

under the constraint
∫ |φ|2 = 1. Here, for any complex quantitiesu andv and their complex conjugates̄u and v̄, (u, v) =

(uv̄ + ūv)/2 andg3D = 4πh̄2a/m. We want to nondimensionalize the energy in order to get a parameter which is small
Thomas–Fermi regime. We define the characteristic lengthd = (h̄/mωx)1/2 and assumeωy = αωx , ωz = βωx . We set

ε=
(

d

8πNa

)2/5
. (2)

For numerical applications, we are going to use the experimental values of the ENS group [8],m = 1.445× 10−25 kg,
a = 5.8 × 10−11 m,N = 1.4 × 105 andωx = 1094 s−1 with α = 1.06,β = 0.067. We find thatε = 0.0174, thus,ε is small,
which will be our asymptotic regime. We re-scale the distance byR = d/√ε and defineu(r)= R3/2φ(x) wherex = Rr and
we setΩ = Ω̃/εωx . The velocityΩ is chosen such thatΩ < 1/ε, that is the trapping potential is stronger than the iner
potential. The energy can be rewritten as:

E3D(u)=
∫

1

2
|∇u|2 +Ω · (iu,∇u× r)+ 1

2ε2
(
x2 + α2y2 + β2z2

)|u|2 + 1

4ε2
|u|4. (3)

Due to the constraint
∫ |u|2 = 1, we can add toE3D any multiple of

∫ |u|2 so that it is equivalent to minimize

Eε(u)=
∫

1

2
|∇u|2 +Ω · (iu,∇u× r)+ 1

4ε2
|u|4 − 1

2ε2
ρTF(r)|u|2, (4)

whereρTF(r)= ρ0 − (x2 + α2y2 + β2z2) is the Thomas–Fermi approximation ofu, andρ0 is determined by∫
D

ρTF(r)= 1. (5)

D is the ellipsoid{ρTF> 0} = {x2 + α2y2 + β2z2< ρ0}, which yieldsρ5/2
0 = 15αβ/8π. To study the problem analytically,

is reasonable to minimize the energyEε over the domainD with zero boundary data foru. Indeed, whenρTF � 0, the energy
is convex so that the minimizeru goes to zero exponentially quickly away from the condensate (see the numerical obse
in [6]). In fact the boundary layer whereρTF is matched to zero, is of sizeε2/3 and the behaviour of the wave function in t
layer is given by a Painlevé equation (for the analysis on the behaviour near the boundary ofD as well as the decay at infinit
of the order parameter, see [19,20]).

Note that a critical pointu of Eε is a solution of

−!u+ 2i(Ω × r) · ∇u= 1

ε2
u
(
ρTF − |u|2) +µεu in D, (6)

with u = 0 on ∂D andµε is the Lagrange multiplier. The specific choice ofρ0 will imply that the termµεu is negligible in
front of ρTFu/ε

2.
We have set the framework of study of the energyEε . We will make an asymptotic expansion of the energy taking

account thatε is small. The aim is to reach a simplified expression of the energy depending on the vortex lines. Then
study the shape of a single vortex line in the light of the recent experiments [14]. We also show numerical simulations o
Gross–Pitaevskii equations. Finally, we describe results concerning the nucleation of vortices in the Painlevé boundar
a condensate. All the results presented here are contained in [21–25].
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2. Asymptotic expansion of the energy

Our aim is to decouple the energyEε into 3 terms: a part coming from the profile of the solution without vortices, a vo
contribution and a term due to rotation. The analysis described in this section relies on [22].

2.1. The solution without vortices

Firstly, we are interested in the profile of solutions so that we will study solutions without vortices. Thus we co
functions of the formη = f eiS , f is real and does not vanish in the interior ofD. We first minimizeEε over such functions
without imposing the constraint that the norm is 1. Whenε is small, since the ellipticity of the cross-section is small, the z
order approximation off 2

ε isρTF. As for the phase, its behaviour is given by the continuity equation div(f 2
ε (∇Sε−Ω×r))= 0.

This implies that there existsΞε such that

f 2
ε (∇Sε −Ω × r)=Ω curlΞε. (7)

One can think ofΞε as the equivalent of a stream function in the case of fluid vortices.Ξε is the solution of

curl

(
1

f 2
ε

curlΞε

)
= −2 inD, Ξε = 0 on∂D. (8)

Whenε is small, the functionΞε is well approximated by the solutionΞ of

curl

(
1

ρTF
curlΞ

)
= −2 inD, Ξ = 0 on∂D. (9)

One can easily get thatΞ(x,y) = −ρ2
TF(x, y)/(2 + 2α2)ez. Using (7), we can defineS0, the limit of Sε , to be the solution o

ρTF(∇S0 −Ω × r)=Ω curlΞ with zero value at the origin. We haveS0 = CΩxy with C = (α2 − 1)/(α2 + 1). We see tha
S0 vanishes whenα = 1 that is when the cross-section is a disc. This computation is consistent with the one in [9], thou
derived in a different way. The functionηε = fε eiSε that we have studied gives the profile of any solution. It will allow us
compute the energy of all solutions.

2.2. Decoupling the energy

Let ηε = fε eiSε be the vortex free minimizer ofEε discussed above. Letuε be a configuration that minimizesEε and let
vε = uε/ηε . Sinceηε satisfies the Gross–Pitaevskii equation (6) withµε = 0, we have∫

D

(|vε |2 − 1
)(−1

2
!f 2
ε − 1

ε2
f 2
ε

(
ρTF − f 2

ε

) + ∣∣∇fε eiSε
∣∣2 − 2f 2

ε (∇Sε ·Ω × r)
)

= 0. (10)

This trick was introduced in [27] and leads to the following exact decoupling of the energyEε(uε):

Eε(uε)=Eε(ηε)+Gηε (vε)+ Iηε (vε), (11)

where

Gηε (vε)=
∫
D

1

2
|ηε |2|∇vε |2 + |ηε|4

4ε2
(
1− |vε |2

)2
,

is the energy of vortices and

Iηε (vε)=
∫
D

|ηε |2(∇Sε −Ω × r) · (ivε,∇vε),

is the angular momentum of vortices. The first termEε(ηε) is independent of the solutionuε , so we have to compute the ne
two and find for which configurationuε the minimum is achieved. We use that at zero order|ηε |2 = f 2

ε is approximated byρTF
whenε is small so that we can approximateGηε byG√

ρTF =Gε andIηε by I√ρTF = Iε .
Assuming that the solutionuε has a vortex line alongγ , that isuε vanishes alongγ with a winding number equal to 1, ou

aim is to estimate the energy ofuε depending onγ . Our approximations rely on the fact that the ellipticity of the cross-sec
is weak and thatε is sufficiently small. We refer to [22] for details.
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2.3. Estimate ofGε(vε)

We want to estimate

Gε(vε)=
∫
D

1

2
ρTF|∇vε |2 + ρ2

TF
4ε2

(
1− |vε |2

)2
.

The mathematical techniques to approximateGε have been introduced in [28] in dimension 2 and in [29] in dimension 3, w
ε is very small.

We expect that the vortex core is of sizeλε, whereλ is a matching parameter. In the vortex core, the profile ofvε is given
by the cubic NLS equation and the energy at leading order produces a term in log(λρTF). Outside the vortex core, that is awa
from a tube of sizeλε, |vε | is very close to 1 and only the phase ofvε is of influence. The computation of the energy in th
region uses the analogy with fluid vortices and we introduce the equivalent of a stream function that approximately
Bessel type equation. The computation is inspired by [30]. Finally, we determine the matching parameterλ and we find that
each vortex lineγ provides a contribution

Gε(vε)� π | logε|
∫
γ

ρTF dl (12)

and we can also compute the interaction term in case of several vortices.

2.4. Estimate ofIε(vε)

The estimate forIε is rather simple to get. Recall that the unique solution of (8) satisfiesρTF(∇Sε −Ω × r)=Ω curlΞε .
Hence we integrate by part in the expression forIηε (vε) to get

Iηε (vε)=Ω
∫
D

Ξε · curl(ivε,∇vε).

Let φε be the phase ofvε . Sincevε is tending to one everywhere except on the vortex line, then(ivε,∇vε)∼ ∇φε , hence we
can approximate curl(ivε,∇vε) by 2πδγ . We use the value ofΞ and the fact thaṫγ (t) · ez = dz, to obtain

Iε(vε)� − Ωπ

1+ α2

∫
γ

ρ2
TF dz. (13)

2.5. Final estimate for the energy

We use Eqs. (11)–(13) to derive the energy of a solution with a vortex line. The energy of any solution minus the
of a solution without vortex is roughly the vortex contribution in the senseEε(uε)− Eε(ηε)� E[γ ]. We find that the vortex
contribution is

E[γ ] = π | logε|
∫
γ

ρTFdl − Ωπ

(1+ α2)

∫
γ

ρ2
TF dz. (14)

The energyE[γ ] reflects the competition between the vortex energy due to its length (1st term) and the rotation term. N
the rotation term is an oriented integral (dz not dl), which actually forces the vortex to be along thez-axis, while the other term
wants to minimize the length. This is why, according to the geometry of the trap, the shape of the vortex varies.

Let us point out that Svidzinsky and Fetter [30] have studied the dynamics of a vortex line depending on its curvat
a vortex velocity equal to 0, the equation obtained in [30] is the same as the equation corresponding to the minimu
approximate energy, though the formulation in [30] was not derived from energy considerations. Following our work, [1
also derived an approximate expression for the energy. Note that the energy that we actually derive in [22] is sligh
involved than (14). In the regime of the experiments, it is reasonable to restrict to this expression (14), taking into acc
fact that the vortex core is sufficiently small (it is of sizeε in our units) and neglecting the interaction of the curve with its
We are interested only in the presence of the first vortex. When there are several vortices, the energy has an extra t
the repulsion between the linesI (γi, γk):

Eε(uε)−Eε(ηε)�
∑
i

E[γi] +
∑
i �=k
I (γi, γk), (15)
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I (γi, γk)= π
∫
γi

ρTF log
(
dist(x, γk)

)
dl.

A rigorous mathematical derivation ofE[γ ] using1 convergence has been performed in [31].

3. Single vortex line, study of E[γ ]

The analysis described in this section relies on [23,24]. From now on, we will define

�Ω = Ω

(1+ α2)| logε| .

The energy of the vortex free solution is zero. Thus, a vortex line is energetically favorable whenΩ,β are such tha
infγ E[γ ] < 0. Recall thatβ determines the elongation of the trap and is included in the expression ofρTF. Our aim is to
study the shape of the vortex linesγ minimizingE[γ ]. Taking the straight vortexγs as a test function inE[γ ], allows us to
compute the critical angular velocityΩ1 for which a straight vortex has a lower energy than a vortex free solution. AtΩ =Ω1,
E[γs] = 0, so that we findΩ1 = (5/4)(1 + α2)| logε|. We have checked numerically that there is a range of value ofΩ less
thanΩ1 for which a bent vortex has a negative energy, in particular a lower energy than a straight vortex and the vo
solution. We are going to check this analytically here by looking at the stability and instability of the straight vortex an
that when the condensate has a cigar shape the first vortex is bent, while when it is a pancake, the first vortex is straig
on the axis of rotation.

First of all, it has been observed numerically [17] that the vortex line lies in the plane closest to the axis of rotation
can provide a rigorous justification:

Theorem 3.1. If α � 1, then the energyE[γ ] is minimized when the vortex line lies in the(y, z) plane, that is the plane close
to the axis.

Indeed, if we have a curveγ parametrized asγ (t) = (x(t), y(t), z(t)), then we can define the new curvẽγ (t) =
(0, ỹ(t), z̃(t)) by z̃(t) = z(t) and ỹ(t) =

√
x2/α2 + y2. ThenρTF(γ (t)) = ρTF(γ̃ (t)). Sinceα � 1, ˙̃y2 � ẋ2 + ẏ2, hence

ρTF(γ̃ )| ˙̃γ | − �ΩρTF(γ̃ ) ˙̃z � ρTF(γ )|γ̇ | − �ΩρTF(γ )ż. It follows that the energy of the new curveE[γ̃ ] is less or equal than
E[γ ]. If α = 1, that is the cross section is a disc, then our arguments imply that the vortex line is planar, but of co
transversal planes are equivalent.

From now on, we will assume that the curve lies in the plane(y, z), so thatx = 0 and we denote byρ, the value ofρTF that
only depends ony andz. For everyΩ , there exists a minimizer ofE[γ ]. Any minimizer is either the vortex free state, or ha
vortex along thez-axis or is supported in the set{y > 0} and is bounded away from thez-axis. IfΩρ0< 1/2, we can prove tha
there cannot exist a critical point of the energy which lies in the halfyz planey > 0. See [24].

Let us investigate the existence of a bent vortex. Notice from the expression ofE, that forE[γ ] to be negative, we nee
ρ − �Ωρ2 to be negative somewhere, that is�Ωρ > 1. For fixed�Ω , we define the regions

Di :=
{
(y, z) : �Ωρ(y, z) > 1

}
, Do := D \Di . (16)

We will refer to these sets as ‘the inner region’Di and ‘the outer region’Do respectively. In the outer region, the energy o
vortex per unit arc length is necessarily positive, sinceρ − �Ωρ2 > 0, whereas in the inner region, for appropriately orien
vortices it can be negative sinceρ − �Ωρ2 < 0. One can see easily that forγ to have a negative energy, part of the vortex l
has to lie in the inner region, that is close to the center of the cloud. Note that forDi to be nonempty, we need at least�Ωρ0> 1.
This, with the fact that�Ω1ρ0 = 5/4, indicates that the critical velocityΩc for the existence of a vortex is such that(

1+ α2)| logε|<Ωc � 5

4

(
1+ α2)| logε|.

In the regionDi , we will see that the vortex is close to the axis for allβ. On the other hand, in the regionDo , the vortex
goes to the boundary along the quickest path: ifβ is small, perpendicularly to the boundary, which gives rise to a bent vo
and ifβ > 1, the vortex stays along the axis of rotation. In [23], we prove the following

Proposition 3.2. For all β and allΩ , in the inner regionDi , the straight vortex minimizes the energy restricted toDi .

Proposition 3.3. For β � 1, in the outer regionDo,the straight vortex minimizes the energy restricted toDo.
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Note that in the outer region, Proposition 3.3 only holds forβ > 1. If β < 1, the situation is somewhat more complicat∫
γo
ρ dl is minimized by a path that joinsDi to ∂D along they-axis, whereas−∫

γo
ρ2 dz is minimized by the straight vorte

running along thez-axis. The minimizer of the full energy reflects the competition between these two terms, and hence
In particular, as a corollary of the above propositions we deduce

Theorem 3.4. For β � 1, E[γ ] � inf(0,E[γs]), whereγs is the straight vortex along thez-axis. IfE[γs]< 0, the equality can
happen only ifγ is the straight vortex.

Note that for eachz, there is a critical velocityΩ2d(z) for the existence of a vortex in the 2-dimensional section whez
is constant. The regionDi corresponds to pointsz such thatΩ > Ω2d(z). We now investigate further on the stability of th

straight vortex. Writing a Taylor series expansion forE, one finds thatE[γδ] = E[γs] + δ2

2 (v,E
′′[γs]v)+ O(δ3). We say that

the straight vortex is stable if(v,E′′[γs]v) > 0 for all v, and unstable if(v,E′′[γs]v) < 0 for somev.

Theorem 3.5. The straight vortex is stable if

�Ωρ0>
3

4
+ 1

4β2
. (17)

The straight vortex is unstable ifβ < 1/
√

3 and

�Ωρ0<
1

6
+ 1

6β2
. (18)

Note that the 2 values are consistent in the sense that they both scale like 1/β2 whenβ is small. For�Ω large, one expect
several vortices in the condensate, but the fact that a straight vortex is stable gives an indication that for�Ω large, each vortex
should be nearly straight, which is consistent with the observations [16]. Recall that the stabilization of the cloud requ
the rotation is not stronger than the trapping potential, which reads in our notations�Ω < 1/ε.

Remark 1. It is interesting to see what happens in Theorem 3.5 when�Ωρ0 = 5/4, that is when the straight vortex has ze
energy. The first inequality yields that ifβ > 1/

√
2, then the straight vortex is stable for all�Ω such that�Ωρ0 > 5/4, that is

whenE[γs]< 0. If β > 1, we have seen thatγs is not just stable but in fact minimizesE. The second inequality implies tha
if β <

√
2/13≈ 0.39 then the straight vortex is unstable at the velocity�Ωρ0 = 5/4 at whichE[γs] = 0. As a result, for these

values ofβ, the first vortex to nucleate as�Ω increases is a bent vortex. Note that it has been observed in [30] that forβ � 1/2,
the ground state of the system exhibits a bent vortex. Numerical results of [17] also show that bent vortices are ene
favorable whenβ is small.

All this indicates that by varying the elongation of the condensate, one may hope to go from a situation where the fir
is bent, to a situation where it is straight.

4. Numerical simulations

In this section, we show numerical simulations of solutions of the full Gross–Pitaevskii equations that illustrate the pr
described above. The computations published in this part are published in [25]. We compute critical points ofE(u) by solving
the norm-preserving imaginary time propagation of the corresponding equation:

∂u

∂t
− 1

2
∇2u+ i(Ω × r) · ∇u= 1

2ε2
u
(
ρTF − |u|2) +µεu, (19)

with u = 0 on ∂D andµε the Lagrange multiplier for the constraint
∫
D |u|2 = 1. A hybrid 3 steps Runge–Kutta–Crank

Nicolson scheme is used to march in time. We use various initial data, without vortices or with vortices on thez-axis or off the
axis.

We have observed three different types of single vortex configurations as shown in Fig. 1: planarU vortices, planarS vortices
and non-planarS vortices. TheU vortices are the bent vortices computed in [17,18] and theoretically studied in [22,23].
are global minimizers of the energy. TheS configurations were observed experimentally very recently [14] and are only
minimizers of the energy.
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Fig. 1. Single vortex configurations in BEC: (a)U vortex; (b) planarS vortex; (c) non-planarS vortex. Isosurfaces of lowest density within th
condensate.

Fig. 2. SingleU vortex configurations for: (a)̃Ω/ωx = 0.42; (b)Ω̃/ωx = 0.58; (c)Ω̃/ωx = 0.78.

4.1. U vortex

TheU vortex is a planar vortex formed of 2 parts: the central part is a line which stays on thez-axis and the outer par
reaches the boundary of the condensate perpendicularly. WhenΩ increases, the central straight part gets longer (Fig. 2) an
angular momentum (Lz) increases to 1 (Fig. 3).

TheU vortex lies either in thex–z or y–z plane. Starting with an initial condition which is not in one of these plane yi
a final state in they–z plane, which is the plane closest to thez axis.

The shape of the theU vortex and its preferred location in they–z plane can be analyzed using the approximate en
E[γ ]: if γ is not in thex–z or y–z plane, then one can construct small perturbations ofγ that preserveρTF and lower the
energy. This implies thatγ cannot be a critical point of the energy because the gradient is not zero. Of course, if the ell
of the cross-section is small, the gradient is small, which may allow to observe these configurations.

In order to understand the existence of the straight central part of theU vortex, one can also refer to the analysis descri
above with the inner and outer region (16). In the regionDi , the vortex is straight and inDo, it is bending.

Fig. 3 shows the energy and angular momentum variation withΩ̃ for the single vortex configurations. TheU vortices exist
only for Ω̃ bigger than a critical valueΩ0 = 0.42ωx . It is interesting to note that atΩ0, the energy of theU vortex is bigger
than the energy of the vortex free solution (we have set to zero the energy of the vortex free solution). A zoom in thi
shows thatΩ0 is very close to the angular velocityΩc for which the energy of the vortex free solution is equal to the energ
theU vortex.

Fig. 3 also shows that the angular momentumLz of theU vortex forΩ =Ω0 does not go to 0. This suggests that in f
there could be anotherU solution forΩ >Ω0. Using an ansatz, another type ofU solution is obtained in [18] which is a sadd



16 A. Aftalion / C. R. Physique 5 (2004) 9–20

).

.
hes
grees

tends to

ar
Fig. 3. Energy (in units of̄hωx ) and angular momentum per particle (in units ofh̄) for the single vortex configurations.

point of the energy: it is away from the axis and has lower angular momentum. In [23], it is proved rigorously that forΩ small,
there is noU as a critical point of the energy.

4.2. S vortex

Motivated by the experiments of [14], we compute new critical points of the energy, which areS configurations (see Fig. 1
Several numerical experiments were performed, starting from different initial conditions containing an ansatz for theS vortex.

The planarS can be regarded as aU , with the half-part in the planez < 0 rotated with respect to thez-axis by 180 degrees
The nonplanarS are such that the projections of the branches on thex–y plane are orthogonal, i.e., the rotation of the branc
is of 90 degrees. We could check that nonplanarS configurations with an angle between the branches different from 90 de
do not exist.

The S vortices exist for all values ofΩ while theU only exist forΩ > Ω0. WhenΩ decreases, the extension of theS
along thez-axis goes downwards as shown in Fig. 4, the angular momentum decreases to 0 (Fig. 3) and the vortex
the horizontal axis. Note that a vortex along the horizontal axis hasLz = 0, but a positive energy. On the other side, whenΩ
increases, theS gets straighter and it tends to the vertical axis.
S vortices are critical points ofE[γ ] for anyΩ , but never minimizers ofE[γ ]. The difference in energy (and angul

momentum) betweenU andS vortices is very small, as illustrated in Fig. 3 because anS vortex is almost like aU with a
half-part rotated by 180 degrees.

As already mentioned for theU vortex, stable planarS configurations lie either in thex–z or y–z plane. As for theU , this
can be explained using the limiting energyE[γ ] and considering separately the upper or lower part of theS. As soon as the
cross section is not a disc, if the upper or lower branch of theS configuration does not lie in thex–z or y–z plane, then the
gradient of the vortex line energy can never be zero whenγ is varied. This is why the only possible 3DS configuration is when
the upper and lower branches of theS are perpendicular.

4.3. Minimizer with fixedL

The energyEε orE[γ ] can be split into 2 termsH andLz, such thatE =H−ΩLz. As pointed out in [14], the minimization
problem which is related to the experiments, is rather to minimizeH , while fixingLz, rather than minimizingH −ΩLz. This
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Fig. 4. SingleS vortex configuration for: (a)Ω/ωx = 0.38; (b)Ω/ωx = 0.44; (c)Ω/ωx = 0.48.

Fig. 5.H versusLz for single vortex configuration.

has been studied in the 2-dimensional setting in [1], but the numerical simulation in 3D is still an open problem. One ca
that if a given configuration withH = h andLz = l minimizesE = H −ΩLz for someΩ , thenh minimizesH under the
constraint thatLz = l: indeed ifH ′ =H(u) with Lz(u)= l, thenH ′ −Ωl � h−Ωl, since(h, l)minimizesE, and this implies
thatH ′ � h. MoreoverΩ is the slope to the curveH(Lz) at the point(h, l) and the property of minimizingE that is for allh′,
l′,

h′ −Ωl′ � h−Ωl (20)

implies that the curveH(Lz) lies above its tangent at this point.
We have plottedH as a function ofLz (Fig. 5). We can check that the curve is convex, and above its tangent, wh

consistent with the fact that we have computed minimizers of the energy.
We know that theU solution exists forΩ �Ω0 and hasLz > 0.4. ForLz < 0.4, we expect that the process of minimizi

H with fixedLz would produceU vortices and the curveH(Lz) should be concave in this region, but we have not been ab
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Fig. 6. (α = 1.1) Side view of the condensate for: (a)Ω/ω⊥ = 0.12; (b)Ω/ω⊥ = 0.2; (c)Ω/ω⊥ = 0.28;, (d)Ω/ω⊥ = 0.32. Isosurface of
lowest density.

perform the simulation. In [23], we have proved that forLz close to 0,H � CL2/3
z , which is a first indication to the concavit

of the curve.

4.4. Other simulations

In [25], we have also computed configurations with several vortices. More recent simulations [32] take into accou
types of traps than the harmonic trap and allow us to see giant vortices. Following recent experiments at the ENS [33
blue detuned laser beam is superimposed to the magnetic trap holding the atoms, we replace the harmonic trapping p
a combined harmonic and quartic term:ρTF is replaced by(1− a)r2 + kr4 + β2z2. AsΩ increases, the vortex lattice evolv
into a vortex lattice with hole, as shown in Fig. 6.

5. Vortex shedding in the Painlevé boundary layer of a Bose–Einstein condensate

Raman et al. [29] have found experimental evidence for a critical velocity under which there is no dissipation when a
laser beam is moved in a Bose–Einstein condensate. This critical velocity has been related to the one found by Frisch
for the problem of a 2D superfluid flow around an obstacle in the framework of Nonlinear Schrodinger Equation: b
critical velocity, the flow is stationary and dissipationless, while beyond this critical velocity, the flow becomes time dep
and vortices are emitted. Numerical simulations have been done for this type of problem in 2D [35] and 3D [36].
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Fig. 7. A sequence of isosurface snapshots of|u| for v = 0.28: (a) formation of vortex handlest = 0.04; (b) detachment from obstaclet = 0.08;
(c) bending of vortex tubest = 0.12; and (d) formation of vortexhalf rings t = 0.16.

In [26], we want to take into account the 3D geometry of the experiment of [11–13]. Our aim is to understand the me
of vortex nucleation in the boundary region. We analyze the origin of this critical velocity in the low density region close
boundary layer of the cloud. In the frame of the laser beam, we do a blow up on this low density region which can be d
by a Painlevé equation and write the approximate equation satisfied by the wave function in this region. We find tha
always a drag around the laser beam. Though the beam passes through the surface of the cloud and the sound veloc
in the Painlevé boundary layer, the shedding of vortices starts only when a threshold velocity is reached. At low veloc
is a stationary solution without vortex and the drag is small. The drag is not a consequence of the shedding of vort
finally of a time dependent density and velocity field. The origin of this drag is in the radiation condition for the wav
the motion changes continuously the structure of the solution seen in the frame of reference of the ‘fluid’ at infinity. T
increases smoothly as the velocity increases. We study the transition toward a time dependent regime of vortex shedd
happens at a critical velocity. The critical velocity that we find is lower than the 2D critical velocity at the center of the
coming from the computation of [34]. Vortices are nucleated close to the boundary of the cloud and the tubes grow an
to form rings that move downstream (see Fig. 7). When tubes are emitted, significantly large drag values are observe
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