
effets

, France

ntial. It is
eralized)

domness

Bose
s ailes de

ein.

s montrons

lar, it is of
a random
potential.
state and

nlike the
motion in
iltonian.
C. R. Physique 5 (2004) 129–142

Bose–Einstein condensates: recent advances in collective effects/Avancées récentes sur les
collectifs dans les condensats de Bose–Einstein

Bose–Einstein condensation in random potentials

Olivier Lenoblea, Leonid A. Pasturb, Valentin A. Zagrebnova

a Université de la Méditerranée (Aix-Marseille II), centre de physique théorique, CNRS-Luminy, case 907, 13288 Marseille cedex 09
b Centre mathématique de Jussieu, Université Paris 7, case 7012, 75251 Paris cedex 05, France

Presented by Guy Laval

Abstract

We present a rigorous study of the perfect Bose-gas in the presence of a homogeneous ergodic random pote
demonstrated that the Lifshitz tail behaviour of the one-particle spectrum reduces the critical dimensionality of the (gen
Bose–Einstein Condensation (BEC) tod = 1. To tackle the Off-Diagonal Long-Range Order (ODLRO) we introduce thespace
averageone-body reduced density matrix. For a one-dimensional Poisson-type random potential we prove that ran
enhances the exponential decay of this matrix in domain free of the BEC.To cite this article: O. Lenoble et al., C. R. Physique
5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Condensation de Bose–Einstein dans des potentiels aléatoires.Nous présentons une étude rigoureuse du gaz de
parfait en présence d’un potentiel aléatoire statistiquement homogène. Nous démontrons que le comportement de
Lifshitz pour le spectre d’énergie à une particule, réduit àd = 1 la dimensionalité critique de la transition de Bose–Einst
Pour étudier les corrélations non diagonales à longue portée, nous introduisons unemoyenne spatialede la matrice densité
réduite à un corps. En l’absence de condensat et pour un potentiel aléatoire undimensionnel de type Poissonnien, nou
que la décroissance exponentielle de la matrice densité est plus rapide.Pour citer cet article : O. Lenoble et al., C. R. Physique
5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The Bose–Einstein condensation (BEC) of the ideal Bose gas has been actively studied in recent years. In particu
interest to consider the BEC in random media (see, e.g., [1,2]). In a simple-minded approach, where one just adds
external field to the Hamiltonian of the ideal Bose gas, the problem reduces to the Schrödinger equation with random
It is known (see, e.g., [3]) that in this case the BEC possesses certain peculiarities, related to the fact that the ground
nearby states are not extended; thus the effective density of particles is infinite in the thermodynamic limit. Hence, u
Fermi case, where the one body theory with a random Schrödinger operator describes sufficiently well the quantum
random media, in the Bose case the repulsive interaction between particles seems to be an important part of the Ham
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Despite that, a rigorous study of the BEC of theperfectBose-gas based on the random Schrödinger operator, is indispen
as a first step to understanding this phenomenon in random media.

Let Λ1 ⊂ R
d be an open bounded connected domain with unit volume|Λ1| = 1 and with a smooth boundary∂Λ1,

containing the origin. For anyL> 0 we can define the domain

ΛL := {
x ∈ R

d : L−1x ∈Λ1
}
, (1)

by the isotropic dilation, and we have for its volume|ΛL| = Ld .
We denote byHL :=L2(ΛL) the Hilbert space of one-particle wave functions corresponding to the quantum problem

the free single-particle Hamiltonian (forh̄= 1,m= 1)

tL :=
(

−1

2


)D
ΛL

. (2)

HeretL is the self-adjoint operator, defined by(−/2) in ΛL, and by the Dirichlet boundary condition on∂ΛL .
It is known (see, e.g., [4]) that the operatortL has a discrete spectrumσ(tL) = {Ek(L)}k�1, consisting of isolated

eigenvaluesEk(L):

tLψ
D
k =Ek(L)ψDk , k � 1, (3)

of finite multiplicity. Here{ψD
k

∈ HL}k�1 are the corresponding normalized eigenfunctions. The eigenvalues can be o
such that

0<E1(L) < E2(L)�E3(L)� · · · . (4)

Remark 1. The rate of increasing of eigenvalues (4) is such that the operatortL generates a Gibbs semigroup, i.
exp(−βtL) ∈ Tr-class(HL) for any β > 0. Moreover, it is known (see, e.g., [5]) that forβ > 0 thesingle-particle partition
function

φL(β) := 1

|ΛL|TrHL
e−βtL = 1

|ΛL|
∑
k�1

e−βEk(L) (5)

is (uniformly) bounded:

φL(β)�
1

(2πβ)d/2
, (6)

and the limit limL→∞ φL(β) exists.

Since for anyL <∞ the spectrumσ(tL) is discrete, bounded from below, and consists of isolated eigenvalues of
multiplicity, one can introduce the following object.

Definition 1.1. The finite-volumeintegrated density of state(IDS) of tL is the specific (by a unit volume) eigenvalue count
function

NL(E) := 1

|ΛL| max
{
k: Ek(L) < E

}
. (7)

This allows us to rewrite (5) in the form:

φL(β)=
∞∫

0

NL(dE)e−βE, (8)

whereNL(dE) is the positive measure, corresponding to the monotonous increasing functions (7). In other words,
L> 0 the single-particle partition function (5) is theLaplace–Stieltjes transformof the measureNL(dE).

Proposition 1.2. There exists non-negative measureN (0)(dE) on R+ := {x ∈ R: x � 0} such that we have the wea
convergence

lim NL(dE)= N (0)(dE), (9)

L→∞
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i.e., the convergence ofNL(E) toN (0)(E) in all continuity points of the limiting IDSN (0). Besides, we have for anyβ > 0:

φ(β) := lim
L→∞

∞∫
0

NL(dE)e−βE =
∞∫

0

N (0)(dE)e−βE. (10)

The proof of the Proposition 1.2 is based on general properties of the Laplace transform of probability distributions
on the Feynman–Kac formula. It was shown that this proof can be generalized to the case of the single-particle Hami
the presence ofrandom ergodic potentials, see [7].

The existence of the IDSN (0) and its properties are important for understanding of the thermodynamic behaviour of thfree
Bose-gas (perfectgas without external potential) and, in particular, of the Bose–Einstein condensation [6]. In the next s
we discuss this first for the free Bose-gas and then for the perfect Bose-gas in random ergodic potentials.

Remark 2. The limiting IDS of operator (2) can be calculated explicitly. The famous Weyl theorem (see, e.g., [4]) implie

lim
E→∞E

−d/2NL=1(E)= Cd, (11)

where(Cd)
−1 = (2π)d/2�(1+ d/2). This, together with scaling property of the single-particle Hamiltonian (2) and defin

of the IDS (7), imply the relation:

NL(E)= L−dNL=1
(
L2E

)
,

which yields the limiting IDS for the operator (2):

N (0)(E)= lim
L→∞NL(E)= CdEd/2. (12)

2. Condensation of the free Bose-gas

Now we can turn to the many-body problem of non-interacting bosons without external potential (free Bose-gas) in
containerΛL.

We define the correspondinggrand-canonical Gibbs distributionPβ,µ(·) on theprobability spaceof (infinite) sequences o

non-negative integer numbers(N+)N, N+ := N ∪ {0}. They correspond to configurationsn ∈ (N+)N of the boson one-particl
quantum-state occupation numbers:

n= {
nk := n(ψDk )}

k�1, nk = 0,1,2, . . . , (13)

assuming that only a finite number of terms of the sequence{nk}k�1 is non-zero. Then for a given temperatureβ−1 > 0 and
chemical potentialµ< 0 the grand-canonical Gibbs distribution has the form:

Pβ,µ(n ) :=
{
ΞL(β,µ)

}−1 exp
{−β(

TL(n )−µNL(n )
)}
. (14)

Here the random variable

TL(n ) :=
∑
k�1

Ek(L)nk (15)

is thekinetic-energy, whereas

NL(n ) :=
∑
k�1

nk (16)

is thetotal number of particlesin the configurationn. The normalizing factorΞL(β,µ) is the grand-canonical partition functio
for the free bosons:

ΞL(β,µ)=
∑

n∈NN+
e−β(TL( n)−µNL(n )) =

∏
k�1

{
1− e−β(Ek(L)−µ)}−1

, (17)

which exists for allµ < E1(L). The definition of thefinite-volumeIDS (7) implies that the corresponding pressurepL(β,µ)
and the grand-canonical mean-value of the total particle-densityρL(β,µ) := ∂µpL(β,µ) take the form:
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pL(β,µ)= − 1

β

∞∫
0

NL(dE) ln
(
1− e−β(E−µ)), (18)

ρL(β,µ)=
∞∫

0

NL(dE)
1

eβ(E−µ) − 1
. (19)

Then, by Proposition 1.2, the limiting pressure and density of the free Bose-gas exist for allµ ∈ (−∞,0):

p(β,µ)= − 1

β

∞∫
0

N (0)(dE) ln
(
1− e−β(E−µ)), (20)

ρ(β,µ)=
∞∫

0

N (0)(dE)
1

eβ(E−µ) − 1
. (21)

By definitionp(β,0) := limµ↑0p(β,µ) and thecritical densityis defined as

ρc(β) := lim
µ↑0

ρ(β,µ), (22)

if it is finite. We putρc(β)= ∞ otherwise.

Remark 3. If ρc(β) <∞, then there is a room for the phenomenon known as the Bose–Einstein Condensation (BEC
free Bose-gas. By virtue of (12) and (22) the boundedness of the critical density is equivalent to the following proper
IDS:

∞∫
0

dE
N (0)(E)

(eβE − 1)2
<∞, (23)

for anyβ > 0. Therefore, one getsρc(β)= ∞, for d � 2, andρc(β) <∞ for d > 2. Moreover,

ρc(β)= lim
ε↓0

∞∫
ε

N (0)(dE)
1

eβE − 1
=

∞∫
0

dE
N (0)(E)

(eβE − 1)2
. (24)

Now we can formulate a mathematical statement concerning the existence of the BEC in the free Bose gas [6]:

Proposition 2.1.Letρc(β) <∞. For givenβ > 0, ρ > 0 andL> 0 we denote byµL(β,ρ) the unique root of equation

ρ = ρL(β,µ), (25)

see(19). Then

(a) for ρ < ρc(β) the limit

lim
L→∞µL(β,ρ)= µ(β,ρ) < 0 (26)

exists, and it is a unique negative root of the equation(see(21)):

ρ = ρ(β,µ); (27)

(b) for ρ � ρc(β) the limit

lim
L→∞µL(β,ρ)= 0, (28)

exists, and it is zero;
(c) the BEC manifests itself in the following form:

ρ0(β,ρ) := lim
ε↓0

lim
L→∞

ε∫
0

NL(dE)
1

eβ(E−µL(β,ρ))− 1
= ρ − ρc(β) > 0, (29)

whereρ0(β,ρ) is the BEC density.
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Remark 4. In fact Proposition 2.1 establishes a so-calledgeneralizedBEC [6]. This is in contrast to the conventional BE
which corresponds tomacroscopic occupationof only one(ground-state) level:

ρ0(β,ρ)= lim
L→∞

1

|ΛL|
1

eβ(E1(L)−µL(β,ρ))− 1
. (30)

The macroscopic occupation ofonly the ground-state level needs finer properties of the spectrum{Ek(L)}k�1.

Rewriting Eq. (25) in the form

ρ = 1

|ΛL|
1

eβ(E1(L)−µL(β,ρ))− 1
+ 1

|ΛL|
∑
k�2

1

eβ(Ek(L)−µL(β,ρ))− 1
, (31)

one finds that to realize the case (30) it is necessary that the differencesλk(L) := Ek(L)− E1(L), k � 2, go to zeroslower
than |ΛL|−1. ThenE1(L)− µL(β,ρ) is of the order|ΛL|−1, that gives the one-level BEC condensation (30). This kind
condensation occurs, for example, whenΛL is the three-dimensional cube.

Remark 5. In fact a sufficient condition for macroscopic occupation ofonly the ground-state level is rather simp
E2(L)/(E2(L)−E1(L)) < c <∞, d � 3, see [8]. More delicate is the question about existence of thesecond critical density
ρm(β)� ρc(β) such that macroscopic occupation of single-levels states is only possible ifρ > ρm(β), see [9,6,10].

On the other hand, if the differencesλk(L) := Ek(L)− E1(L), k � 2, are of the order|ΛL|−1, then there are (infinitely)
manymacroscopicallyoccupied levels

ρ
(k)
0 (β,ρ) := lim

L→∞
1

|ΛL|
1

eβ(Ek(L)−µL(β,ρ))− 1
�= 0 (32)

in addition to the ground-state.

Remark 6. If the number of these levels is infinite, this is (according to the nomenclature proposed by van den Berg–
Pulé, see [11,9,6]) the type II generalised BEC. (The type I is reserved for the case of finite number of levels.) The mos
is the type III generalised BEC, when there are no macroscopically occupied levels but the limit in (29) is non-zero. It
when the differencesλk , k � 2, go to zero faster than|ΛL|−1.

The simplest model manifesting thetype III generalised BEC is the free Bose-gas in theanisotropic prismsΛL =
|ΛL|α1 × · · · × |ΛL|αd , with α1 � α2 � · · · � αd , α1 + α2 + · · · + αd = 1 andα1> 1/2, see [11].

For detailed discussion of the generalised BEC and for examples other than free Bose-gas, including some m
interacting Bose-gases, see [9,8,12–14] and reviews [6,10,15].

3. Random Schrödinger operator and perfect Bose-gas

We discuss first the single-particle Schrödinger operator with random potential.

Definition 3.1. Random potentialv(·)(·) :Ω × R
d → R, x �→ vω(x) is a random field on a probability space(Ω,F,P), such

that:

(a) vω is homogeneous and ergodic with respect to the group{τx}x∈Rd
of probability-preserving transformations (R

d -trans-
lations) on(Ω,F,P);

(b) vω is non-negative: infx∈Rd
{vω(x)} � 0.

By E{·} := ∫
Ω P(dω){·} we denote the expectation with respect to the probability measure in(Ω,F,P).

Definition 3.2. Random Schrödinger operator corresponding to a random potentialvω is a family of random operator
{hω}ω∈Ω :

hω := t + vω, (33)

wheret is the self-adjoint operator(−/2), acting inL2(Rd).
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Notice that assumptions (a) and (b) of Definition 3.1 guarantee that there exists a subsetΩ0 ⊂ F with P(Ω0)= 1 such that
operator (33) isessentially self-adjointon domainC∞

0 (R
d) for everyω ∈Ω0 (see, e.g., [7, Chapter I.2]).

To discuss the properties of the perfect Bose-gas in the presence of the random potential one has (as in the precedi
to start with the bounded domainΛL ⊂ R

d . Below we suppose that{ΛL}L>0 are cubes centered at the origin. Then (
[7, Chapter II.5], or [16]) one has the following statement:

Proposition 3.3.If a random potential verifies the conditions(a) and(b) of Definition3.1, then:

(1) The restriction of the random Schrödinger operator{hω}ω∈Ω0 to domainΛL subjected to the Dirichlet boundary conditio
on ∂ΛL is the set of self-adjoint operators

hωL :=
(

−1

2
+ vω

)D
ΛL

(34)

for P-almost allω ∈Ω .
(2) The spectrumσ(hωL) is almost-surely discrete, bounded from below, and consists of isolated eigenvalues{Eωk (L) > 0}k�1

of finite multiplicity.
(3) For P-almost allω operators(34)are generators of the Gibbs semigroups, i.e.,exp(−βhω

L
) ∈ Tr-class(HL) for anyβ > 0.

Remark 7. (a) In fact the proposition is valid for some wider class of self-adjoint boundary conditions on∂ΛL [7].
(b) For bounded random potentials the random Schrödinger operator (34) takes the form:

hωL :=
(

−1

2


)D
ΛL

+ vω. (35)

In fact one can consider first (35), then extend the results to more general cases (e.g., forδ-interaction) by taking limits [7].

Notice that Proposition 3.3 and Definition 1.1 motivate definition of

Nω
L (E) :=

1

|ΛL| max
{
k: Eωk (L) <E

}
, ω ∈Ω. (36)

This is (random) finite-volume IDS corresponding to the random Schrödinger operators (34) or (35).
Now we are in position to discuss the Bose–Einstein condensation of the perfect Bose-gas in presence of a random
First, using the random measures generated by IDS (36), one gets for the corresponding finite-volume pressure an

particle density (cf. (18) and (19)):

pωL(β,µ)= − 1

β

∞∫
0

Nω
L (dE) ln

(
1− e−β(E−µ)), (37)

ρωL(β,µ)=
∞∫

0

Nω
L (dE)

1

eβ(E−µ) − 1
, (38)

for all β > 0,µ< 0, and any realizationω ∈Ω .
To take the thermodynamic limit we use the following fact concerning theweakconvergence of random IDS measures [7

Proposition 3.4.Let hωL be defined in(34), where the random potential verifies the conditions(a) and (b) of Definition3.1.
Then there exist a nonrandom measureN (dE) and a setΩ0 ⊂ F of full probability, P(Ω0)= 1, such that for everyω ∈Ω0
the convergence

lim
L→∞Nω

L (dE)= N (dE) (39)

holds on the whole spectral axis except the(at most countable) set of discontinuity points ofN . We have also

N (dE)= E
{
Ehω (dE;0,0)

}
. (40)

Here Ehω (dE;x, y) is the kernel of the spectral decomposition measure of the random Schrödinger operatorhω, see
Definition 3.2. Moreover, the spectrumσ(hω) of hω is almost-sure(a.s.) nonrandom and coincides with the support ofN :
σ(hω)= suppN .
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Remark 8. In fact the nonrandomness (self-averaging) of the limiting IDS is known under much weaker conditions on rand
potential. Besides, the limiting IDS is independent of the boundary conditions for a sufficiently wide class of them, se
and a recent review [17].

Let infx∈Rd
{vω(x)} = 0 in condition (b) of Definition 3.1. Suppose for simplicity that the (nonrandom) lower edgeE0 of

the spectrumσ(hω) is zero. This yields

Corollary 3.5. Let the random potential verify the conditions(a)and(b) of Definition3.1. Then forP-almost everyω ∈Ω (a.s.)
the limits

a.s.- lim
L→∞p

ω
L(β,µ)= − 1

β

∞∫
0

N (dE) ln
(
1− e−β(E−µ)) ≡ p(β,µ), (41)

a.s.- lim
L→∞ρ

ω
L(β,µ)=

∞∫
0

N (dE) 1

eβ(E−µ) − 1
≡ ρ(β,µ), (42)

exist for allβ > 0 andµ<E0 = 0. Moreover, the convergence is uniform inµ on compacts in(−∞,0).

It follows from Corollary 3.5 and (42) that the definition of critical density for the Bose-gas in the random potential
same as in the nonrandom case (22):

ρc(β) := lim
µ↑0

∞∫
0

N (dE) 1

eβ(E−µ) − 1
. (43)

Again the crucial for the existence of the BEC is the boundedness of the critical density, which, in its turn, is determine
behaviour of the IDSN (E) near the lower edgeE0 of the spectrum (see Remark 3). If this edge iszero, then we have to know
the asymptotic form of IDS forE → +0. A favorable forρc(β) <∞ is the case of the IDS decreasing at least as O(E1+ε),
ε > 0. Random Schrödinger operators supply examples of this kind even ford � 2. Below we consider one of them, verifyin
conditions (a) and (b) of Definition 3.1.

Example 1.Let u(x)� 0, x ∈ R
d , be continuous function with a compact support. We call it a local single-impurity pote

Let {µωτ (dx)}ω∈Ω be random Poisson measure onR
d with intensityτ > 0, i.e.,

P
({
ω ∈Ω: µωτ (Λ)= n

}) = (τ |Λ|)n
n! e−τ |Λ|, n ∈ N+ = N ∪ {0}, (44)

for any bounded Borel setΛ⊂ R
d . Then the non-negative random potential generated by the Poisson distributed local imp

has realizations

vω(x) :=
∫

Rd

µωτ (dy)u(x − y)=
∑
j

u
(
x − yωj

)
, (45)

where impurity positions{yω
j

} ⊂ R
d are the atoms of the random Poisson measure. Since the expectationE(µωτ (Λ)) = τ |Λ|,

the parameterτ is concentration of impurities inRd .

Remark 9. The random potential (45) is obviously homogeneous and ergodic (even strongly mixing), i.e., it verifi
conditions (a) and (b) of Definition 3.1. Less trivial, see, e.g., [18,19] and [7, Chapter II.5], is that:

(a) The almost-sure nonrandom spectrumσ(hω)= R+. This means, in particular, that

a.s.- lim
L→∞E

ω
1 (L)= 0. (46)

In other words, the lower edge of the spectrum of the random operatorhω isE0 = 0, i.e., it coincides with the lower edg
of the spectrum of the nonrandom operatort , see (33).
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(b) The asymptotic behaviour ofN (E) asE→ 0 has the form (the Lifshitz tail):

lnN (E)∼ −τ
(
cd

E

)d/2
, E ↓ 0, (47)

with cd > 0. Recall that in the nonrandom case (12) one has:N (E)∼Ed/2, E ↓ 0.

4. Bose–Einstein Condensation in random potentials

The suppression (47) of the IDS in the vicinity of the lower edge of the spectrumE0 = 0 (the Lifshitz tail(47)) makes the
critical density (43)finite for all d � 1. This means that the presence of a random potential may change the mechanism
nature of condensation of the perfect Bose-gas. To make this clear, first we need an analogue of Proposition 2.1 for th
Schrödinger operators.

Theorem 4.1.Let ρω
L
(β,µ) be defined as in(38) and ρc(β) by (43). Assume that the lower edge of the spectrumE0 of the

random Schrödinger operator is0, and thatρc(β) <∞. For givenβ > 0, ρ > 0 andL> 0 denote byµωL(β,ρ) the unique root
of equation

ρ = ρωL(β,µ), (48)

for a realizationω ∈Ω , see(38). Then

(a) for ρ < ρc(β) the limit

a.s.- lim
L→∞µ

ω
L(β,ρ)= µ(β,ρ) < 0 (49)

is the unique root of equation:

ρ = ρ(β,µ), (50)

see(42);
(b) for ρ � ρc(β) the limit

a.s.- lim
L→∞µ

ω
L(β,ρ)= 0, (51)

and the almost-sure nonrandom BEC manifests itself in the following form:

ρ0(β,ρ) := lim
ε↓0

{
a.s.- lim

L→∞

ε∫
0

Nω
L (dE)

1

eβ(E−µωL(β,ρ))− 1

}
= ρ − ρc(β) > 0, (52)

whereρ0(β,ρ) is the BEC density.

Proof. Since the critical density is bounded, we have by (42) and (43)

ρc(β)= ρ(β,µ= 0). (53)

Notice that Eq. (48) implies the following inequality for everyω ∈Ω :

ρ = 1

|ΛL|
∑
k�1

1

eβ(E
ω
k (L)−µωL(β,ρ))− 1

�
φω
L
(β)eβµ

ω
L(β,ρ)

1− e−β(Eω1 (L)−µωL(β,ρ))
, (54)

where

φωL(β) :=
1

|ΛL|
∑
k�1

e−βEωk (L) =
∞∫

0

Nω
L (dE)e

−βE (55)

is the random single-particle partition function, cf. (5). On the other hand, for anyω ∈Ω solution of Eq. (48) is bounded from
above:

µωL(β,ρ) <E
ω
1 (L). (56)
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Inequalities (54), (56) yield the estimate

β−1 ln
ρ

ρ e−βEω1 (L)+ φω
L
(β)

� µωL(β,ρ) < E
ω
k=1(L) (57)

for anyω ∈Ω andL> 0. Then by Proposition 3.4, Remark 9 and estimate (57) we obtain

β−1 ln
ρ

ρ + φ(β) � lim inf
L→∞ µωL(β,ρ)� limsup

L→∞
µωL(β,ρ)� 0 (58)

for P-almost allω. We denote this set byΩ0.

(a) By (58) it follows that for eachω ∈ Ω0 the sequence{µω
L
(β,ρ)}L>0 has at least one accumulation point:µω∗ (β,ρ).

Suppose thatµω∗ (β,ρ) = 0, and let{µωLj (β,ρ)}Lj>0 be a subsequence converging to this point. Since by (42

ρ < ρc(β) the unique solutionµ(β,ρ) of Eq. (50) is strictly negative, by monotonicity ofρωL(β,µ) as a function of
µ, we get

ρωL

(
β,µ(β,ρ)/2

)
<ρωL

(
β,µωLj

(β,ρ)
) = ρ (59)

for all Lj greater than somêL. On the other hand by Corollary 3.5 and by the same monotonicity we
limL→∞ ρω

L
(β,µ(β,ρ)/2) > ρ that contradicts (59). Therefore,µω∗ (β,ρ) < 0. Then by (59) and by uniform convergen

in (42) this accumulation point is a solution of Eq. (50). Since forρ < ρc(β) this equation has a unique solution, we obt
µω∗ (β,ρ)= µ(β,ρ) < 0 for almost allω.

(b) Now letρ � ρc(β) and suppose that the accumulation point is strictly negative:µω∗ (β,ρ) < 0. Then again by the uniform
convergence in (42) we get:

ρ = lim
L→∞ρ

ω
Lj

(
β,µLj (β,ρ)

) = ρ(β,µω∗ (β,ρ)) � ρc(β). (60)

Sinceµω∗ (β,ρ) < 0, the monotonicity impliesρ(β,µω∗ (β,ρ)) < ρ(β,µ= 0)= ρc(β). By (58) and by contradiction with
(60) we conclude thatµω∗ (β,ρ)= 0 and that

a.s.- lim
L→∞µ

ω
L

(
β,ρ � ρc(β)

) = 0. (61)

To prove the last statement (52) we rewrite Eq. (48) in the form:

ρ =
ε∫

0

Nω
L (dE)

1

eβ(E−µωL(β,ρ))− 1
+

∞∫
ε

Nω
L (dE)

1

eβ(E−µωL(β,ρ))− 1
. (62)

Then by (61) and by the uniform convergence in (42) we find:

lim
ε↓0

{
a.s.- lim

L→∞

∞∫
ε

Nω
L (dE)

1

eβ(E−µωL(β,ρ))− 1

}
= lim
ε↓0

∞∫
ε

N (dE) 1

eβE − 1
= ρc(β). (63)

Therefore, by virtue of (62) and (63) on gets that there is a macroscopic accumulation of bosons in aninfinitesimalband in
the vicinity of the lower edge of the spectrumE0 = 0:

lim
ε↓0

{
a.s.- lim

L→∞

ε∫
0

Nω
L (dE)

1

eβ(E−µωL(β,ρ))− 1

}
= ρ − ρc(β). (64)

This proves (52). ✷
Remark 10.Condensation established by (52) is a priori a generalized BEC. To prove the conventional type I conden
the ground state, or the type II condensation, one needs detailed information about distribution of the level spacings
in the neighbourhood of the lower edge of the single particle spectrum, see Remarks 5, 6.

Remark 11. In contrast to the nonrandom case (see Remark 3) the suppression of the IDS in the neighbourhood of t
edgeE0 = 0 of the spectrum of the random Schrödinger operator (the Lifshitz tail (47)) makes the BEC (52) possible e
d = 1,2. It is true for any non-zero concentration of the impuritiesτ , (47).
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Remark 12. The one-dimensional case is instructive, since it makes evident another difference in the nature of the
random and nonrandom cases. It is known that in general the whole spectrum of the one-dimensional random Sc
operators with weakly correlated random potential is pure point and the eigenfunctions are exponentially localized (see
Chapter VI.15], and [20] for the Poisson potential of Example 1 ford = 1). If the lower edge of the spectrum is zero (as for
potential of Example 1), the perfect bosons condense in the ‘package’ (52) of localized states in the vicinity ofE = 0. This is
in contrast to the free perfect bosons: ford > 2 they have the (generalized) BEC into extended states (29).

In fact the Lifshitz tail for the IDS near edges of the spectrum is a fairly generic phenomenon for random Schr
operators [7].

Example 2.Take one-dimensional random potential corresponding toδ-localized impurities with amplitudea > 0:

vω(x) :=
∫

Rd

µωτ (dy)aδ(x − y)= a
∑
j

δ
(
x − yωj

)
, (65)

where{yω
j

}j ⊂ R
1 are the atoms of the random Poisson measure (44). This random potential is not included into the c

but behaviour of the IDS at edge of the spectrum is known [21,19], [7, Chapter III.6]:

lnN (E)= − πτ√
2E

(
1+ O

(
E1/2)), (66)

asE ↓ 0. Hence, again the corresponding critical densityρc(β) <∞, and one gets a generalized BEC proved in Theorem
Notice that the Lifshitz tail (66) does not depend on the finite amplitudea > 0 in (65). In the limita → +∞ the IDS is

known explicitly for all values ofE:

N (E)= τ e−πτ/√2E

1− e−πτ/√2E
. (67)

The BEC of the one-dimensional perfect Bose-gas in the random potential corresponding to (67) was studied for
time in [3].

5. Off-Diagonal Long-Range Order

Above, our criterion of the BEC was based on boundedeness ofρc(β). It gives almost no information on the nature
condensation, see Remarks 10–12. More insight into this question may give so-called local observables, in particularone-
body reduced density matrix[22,23].

For the free Bose-gas (3), (15), it has the form (see, e.g., [24]):

ρL(β,µ;x, y) =
∑
k�1

1

eβ(Ek(L)−µ) − 1
ψD
k
(x)ψDk (y). (68)

Its diagonal part is thelocal particle number density

ρL(β,µ;x) := ρL(β,µ;x, x) =
∑
k�1

1

eβ(Ek(L)−µ)− 1

∣∣ψDk (x)∣∣2. (69)

Then thespace averagedensity

ρL(β,µ) := 1

|ΛL|
∫
ΛL

dxρL(β,µ;x) (70)

coincides with (19).

Remark 13. The mathematical result, which makes a contact of the one-body reduced density matrix with BEC in t
Bose-gas is due to [24]. Take the originx = 0 as the point of dilation ofΛ1. In this case the BEC is of the type I only
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the ground state, see Remark 5. (For example, letΛ1 be a cube inR3.) Then the limiting one-body reduced density mat
ρ(β,µ(β,ρ);x, y) = limL→∞ ρL(β,µ(β,ρ);x, y) has the form:

ρ
(
β,µ(β,ρ);x, y) =




∞∑
s=1

(2πβs)−d/2 esβµ(β,ρ)−‖x−y‖2/2βs, ρ < ρc(β),

ρ0(β,ρ)
∣∣ψD
k=1,L=1(0)

∣∣2 +
∞∑
s=1

(2πβs)−d/2 e−‖x−y‖2/2βs, ρ � ρc(β),
(71)

whereρ0(β,ρ) = ρ − ρc(β) is the condensate density andψD
k=1,L=1(0) is the ground state eigenfunction (3) in domainΛ1

evaluated at the point of dilationx = 0. The limit

ODLRO(β,ρ) := lim‖x−y‖→∞ρ
(
β,µ(β,ρ);x, y) (72)

is called the Off-Diagonal Long-Range Order (ODLRO).

Since the both sums in (71) decay exponentially as‖x − y‖ → ∞, one gets nontrivial ODLRO only forρ > ρc(β). For
example, whenρ < ρc(β), i.e.,µ(β,ρ) < 0, we get the following estimate:

ρ(β,µ < 0;x, y) � Cd
(‖x − y‖, β,µ)

e−√
2|µ|‖x−y‖(1+ O

(‖x − y‖−1))
, (73)

with

Cd
(‖x − y‖, β,µ) = 1

(2π)(d−1)/2β

(2|µ|)(d−3)/4

‖x − y‖(d−1)/2
. (74)

Notice that non-zero value of the ODLRO in the case of the ground state BEC depends on the profile of the corre
eigenfunction. That is why even non-zero BEC of thetype I does not guarantee the ODLRO and casts a doubt on the com
belief that the condensation is governed by asymptotic behaviour of the one-body reduced density matrix, see disc
[24,25]. The ODLRO in theanisotropicprisms, i.e., in the case of the BEC oftype II or III, is more complicated. It is related t
the second critical densityρm(β)� ρc(β), see [10] and Remark 5.

Remark 14. Generalization of the one-body reduced density matrix to the perfect Bose-gas in a random pote
straightforward:

ρωL(β,µ;x, y)=
∑
k�1

1

eβ(E
ω
k (L)−µ) − 1

ψ
D,ω
k,L

(x)ψ
D,ω
k,L

(y), (75)

where{ψD,ωk,L }k�1 are eigenfunctions of operator (35). Then as in (69) the local particle density has the form:

ρωL(β,µ;x) :=
∑
k�1

1

eβ(E
ω
k (L)−µ)− 1

∣∣ψD,ωk,L (x)
∣∣2. (76)

Notice that the position dependence of (75) and (76) make themnon-self-averaging. In contrast the space average density

ρωL(β,µ) :=
1

|ΛL|
∫
ΛL

dxρωL(β,µ;x) (77)

is self-averaging, since it simply coincides with (38).

This motivates us to introduce thespace averageone-body reduced density matrix

ρ̃ωL(β,µ;x, y) := 1

|ΛL|
∫
ΛL

daρωL(β,µ;x + a, y + a) (78)

as a measure of ODLRO for the Bose-gas in an ergodic random potential. It is assumed in (78) that the integrand is ex
zero if spacial arguments leave domainΛL.
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Lemma 5.1.Let the random potential verify the conditions of Proposition3.4. Then forP-almost allω ∈Ω the limit

a.s.- lim
L→∞ ρ̃

ω
L(β,µ;x, y) = ρ̃(β,µ;x − y), (79)

exists for anyβ > 0, µ< 0, and for any fixedx, y ∈ R
d , and it is nonrandom.

Proof. It essentially follows the idea, which goes back to [26]. Sinceµ< 0, by virtue of definitions (75) and (78) we obtain

ρ̃ωL(β,µ;x, y)=
∞∑
s=1

esβµ
1

|ΛL|
∫
ΛL

da
(
e−sβhωL)

(x + a, y + a). (80)

Using the Feynman–Kac formula (see, e.g., [5]) we get the representation

1

|ΛL|
∫
ΛL

da
(
e−sβhωL)

(x + a, y + a) (81)

= 1

(2πsβ)d/2
e−‖x−y‖2/2sβ 1

|ΛL|
∫
ΛL

da
∫

Ω
sβ

0,y−x

dνsβ
(
ξ(·))e− ∫ sβ

0 dtvω(ξ(t)+x+a)χΛL,sβ
(
ξ(·)+ x + a).

Here we denote by dνT (·) the normalized Wiener measure on the set of trajectories

ΩT0,z := {
ξ : ξ(0)= 0, ξ(T )= z}

and byχΛL,T (η(·)) the characteristic function of the set of Wiener trajectories{η([0, T ])⊂ΛL}. Since for eachξ(·) ∈Ωsβ0,y−x
we have

lim
L→∞

1

|ΛL|
∫
ΛL

daχΛL,sβ
(
ξ(·)+ x + a) = 1, (82)

the non-negativity and ergodicity of random potentialvω imply the limits

lim
L→∞

1

|ΛL|
∫
ΛL

da
∫

Ω
sβ

0,y−x

dνsβ
(
ξ(·))e− ∫ sβ

0 dtvω(ξ(t)+x+a)χΛL,sβ
(
ξ(·)+ x + a)

= lim
L→∞

∫
Ω
sβ
0,y−x

dνsβ
(
ξ(·)) 1

|ΛL|
∫
ΛL

da e− ∫ sβ
0 dtvω(ξ(t)+x+a)

=
∫

Ω
sβ
0,y−x

dνsβ
(
ξ(·))E(

e− ∫ sβ
0 dtvω(ξ(t))). (83)

In view of (80) this proves the lemma and gives for the right-hand side of (79) the explicit representation:

ρ̃(β,µ;x − y)=
∞∑
s=1

1

(2πsβ)d/2
esβµ−‖x−y‖2/2sβ

∫
Ω
sβ
0,y−x

dνsβ
(
ξ(·))E(

e− ∫ sβ
0 dtvω(ξ(t))), (84)

for µ< 0. ✷
Corollary 5.2. For µ < 0 the space average one-body reduced density matrixρ̃(β,µ;x − y) of the perfect Bose-gas in
non-negative ergodic random potential verifies the inequalities:

ρ(β,µ− τ ũ;x − y)� ρ̃(β,µ;x − y)� ρ(β,µ;x − y),
whereρ(β,µ;x − y) is the one-body reduced density matrix of the free Bose-gas.

Proof. Indeed, by virtue of (71) and (84) for non-negative random potentialsvω we get

ρ̃(β,µ;x − y)� ρ(β,µ;x − y). (85)
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On the other hand, by the Jensen inequality and (45) one gets

E
(
e− ∫ sβ

0 dtvω(ξ(t))) � e− ∫ sβ
0 dtEvω(ξ(t))= e−sβτ ũ, (86)

where we put̃u := ∫
R1 dxu(x). This implies the estimate of (84) from below:

ρ̃(β,µ;x − y)� ρ(β,µ− τ ũ;x − y). ✷ (87)

Since the BEC exists in the presence of random potential even fordimension one, below we reduce our study of th
asymptotic behaviour of the one-body reduced density matrix only to this case. To make the upper bound estimate mo
than (85), we consider the case of the Poisson potential of Example 1 with suppu(x)= [−δ/2, δ/2].

Theorem 5.3.Letd = 1 and letγ̃ := 1− e−ũ. Then

ρ̃(β,µ;x − y)� ρ(β,µ;x − y)e−τ γ̃ (|x−y|−δ) (88)

P-almost sure for anyµ< 0.

Proof. Choosex < y and letχ[x,y] be characteristic function of the interval[x, y]. We denote byvωx,y := vωχ[x,y], the
restriction of the random potential to this interval. Then non-negativity ofu(x) implies (cf. (84))

E
(
e− ∫ sβ

0 dτvω(ξ(τ )+x)) � E
(
e− ∫ sβ

0 dτvωx,y (ξ(τ )+x)). (89)

Let nω(x + δ/2, y − δ/2) := card{{yωj }j ⊂ [x + δ/2, y − δ/2]} be (random) number of Poisson points in the interv
[x + δ/2, y − δ/2] for configurationω ∈Ω . Then

E
(
e− ∫ sβ

0 dτvωx,y (ξ(τ )+x)) � E
(
e−nω(x+δ/2,y−δ/2)ũ). (90)

By virtue of the Poisson distribution (44) we get

E
(
e−nω(x+δ/2,y−δ/2)ũ) �

∞∑
n=0

{τ(|x − y| − δ)}n
n! e−τ (|x−y|−δ) e−nũ = e−τ γ̃ (|x−y|−δ). (91)

Therefore, by (84) and estimates (89)–(91) we obtain:

ρ̃(β,µ;x − y)� e−τ γ̃ (|x−y|−δ)
∞∑
s=1

1

(2πsβ)1/2
esβµ−|x−y|2/2sβ

∫
Ω
sβ

0,y−x

dνsβ
(
ξ(τ)

)
. (92)

This gives (88), because the sum in the r.h.s. coincides with the one-body reduced density matrix for the free Bose-g
dimension, see (71) forµ< 0, d = 1, and the Wiener measures are normalized.✷
Corollary 5.4. Inequalities(73) and (88) show that the presence of random potential enhances the exponential decay
one-body reduced density matrix by a supplementary exponential factor with the exponential proportional to the
concentrationτ .

Remark 15.Notice that for concentrationτ ↓ 0 our lower (87) and upper (88) estimates of the space average one-body re
density matrix (78) give a plausible result:

lim
τ↓0

ρ̃(β,µ;x − y)= ρ(β,µ;x − y). (93)

This convergence to the one-body reduced density matrix of the free Bose-gas bolsters our definition (78).

6. Conclusion

The present paper is essentially initiated by mathematical results about the random Schrödinger operator and abou
in the perfect Bose-gas. We show that theself-averagingof the pressure and of the mean particle density in thethermodynamic
limit allows us to make rigorous the corresponding physical arguments (see, for example, [3]) concerning the BEC in
potentials. In fact the nonrandomness of the IDS of the random one-particle Schrödinger operator in this limit offers th
for rigorous analysis of the gas without interaction. On the other hand theself-averagingis a quite general property of rando
systems to give a basis for reexamination of some physical results in this direction forinteractingboson models in random
external potential, see, e.g., the recent paper [2].
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