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Abstract

We discuss certain specific features of the calculation of the critical temperature of a dilute repulsive Bose gas. Int
modify the critical temperature in two different ways. First, for gases in traps, temperature shifts are introduced by a
of the density profile, arising itself from a modification of the equation of state of the gas (reduced compressibility
shifts can be calculated simply within mean field theory. Second, even in the absence of a trapping potential (homo
gas in a box), temperature shifts are introduced by the interactions; they arise from the correlations introduced in the
thus lie inherently beyond mean field theory – in fact, their evaluation requires more elaborate, non-perturbative, calc
One illustration of this non-perturbative character is provided by the solution of self-consistent equations, which relate
non-linearly the various energy shifts of the single particle levelsk. These equations predict that repulsive interactions shif
critical temperature (at constant density) by an amount which is positive, and simply proportional to the scattering la;
nevertheless, the numerical coefficient is difficult to compute. Physically, the increase of the temperature can be in
in terms of the reduced density fluctuations introduced by the repulsive interactions, which facilitate the propagation
exchange cycles across the sample.To cite this article: M. Holzmann et al., C. R. Physique 5 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Température de transition Bose–Einstein pour un gaz dilué et répulsif.Nous discutons un certain nombre de spécific
du calcul de la température critique d’un gaz de Bose dilué dont les particules interagissent de façon répulsive. Les in
modifient la température critique de deux façons différentes. En premier lieu, pour un gaz dans un piège, il existe un dép
de température qui a pour origine un changement du profil de densité, lui même induit par une modification de l’équati
du gaz (la compressibilité est réduite par les interactions) ; ce déplacement peut être évalué dans le cadre d’une
champ moyen. En second lieu, et même en l’absence d’un potentiel de piégeage (pour un gaz homogène dans
des déplacements de température sont également introduits par les interactions, mais avec une origine physique
différente : les corrélations introduites par les interactions. Le calcul de ce second effet se situe par essence au delà d
du champ moyen et nécessite l’utilisation de méthodes non-perturbatives plus élaborées. Une illustration de son
non-perturbatif est donnée par la solution d’équations non-linéaires autocohérentes, qui relient entre elles des expre
déplacements énergétiques des niveauxk et les populations de ces niveaux. Ces équations prédisent que l’effet des inter
sur la température critique (à densité constante) est une augmentation de cette température, d’une quantité qui est
simplement proportionnelle à la longueur de diffusiona ; le coefficient de cette dépendance linéaire est cependant diffic
calculer. Physiquement, cette augmentation de la température critique peut être interprétée comme provenant de la
des fluctuations de densité sous l’effet des interactions répulsives ; ceci facilite la propagation des grands cycles d

E-mail address:laloe@ens.fr (F. Laloë).
1631-0705/$ – see front matter 2004 Published by Elsevier SAS on behalf of Académie des sciences.
doi:10.1016/j.crhy.2004.01.003
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entre les bosons identiques à l’intérieur du gaz, et donc l’apparition d’un cycle d’échange macroscopique correspon
condensation.Pour citer cet article : M. Holzmann et al., C. R. Physique 5 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Keywords:Dilute repulsive Bose gas; Mean field theory; Non-perturbative calculations

Mots-clés :Gaz de Bose dilué ; Théorie de champ moyen ; Méthodes non-perturbatives

1. Introduction

The calculation of the effects of interactions in dilute gases is often considered as a classical textbook problem,
generally solved with the help of cluster techniques in statistical mechanics; well known examples are, for instance, th
virial correction to the pressure, the heat capacity, or to the magnetic susceptibility for a gas of spin 1/2 particles [1,2]. For gase
at low temperatures, all these corrections are expressed in terms of a single parameter, the scattering lengtha, so that the resul
is simple. At first sight, the calculation of the first correction to the critical Bose–Einstein condensation (BEC) temper
a dilute repulsive Bose gas seems to raise a similar problem. Nevertheless, its solution was not well understood unti
as illustrated by a large collection of contradictory results in the literature (see [3] and references contained therein)
reasons underlie the confusion. First, for a homogeneous gas at low temperatures, it turns out that a mean field treatm
interactions leads to an exactly zero shift of the critical temperature (the critical value of the chemical potential is shi
this does not affect the critical temperature); combining mean field theory with additional – and not necessarily well co
– approximations can then lead to results which are approximation dependent, providing arbitrarya power variations and eve
sign. The second reason is that the problem is actually not as simple as it looks. It is essentially non-perturbative a
levels [3,4], even if the leading correction term which emerges from the calculations ends up being simply linear ia; we
discuss below in more detail this peculiar feature of the calculations. In retrospect, this difficulty is actually not so sur
since the properties of a Bose gas are non-analytic arounda = 0, where the system is at the border of stability (a Bose
collapses at condensation as soon asa becomes negative). The linearity ina is therefore far from obvious, and indeed it tur
out that the next correction [5] is not simply∼ a2 but∼ a2 loga, clearly manifesting the non-analytic character of the probl

The purpose of the present article is to return to the considerations of [3] and [4], with more detailed discussion
of their physical aspects. In particular, we wish to emphasize that the linearity ina of the leading term in the correction to th
critical temperature may be missed if a nonself-consistent theory is used to calculate the effect; indeed, some calculati
in the recent literature and based on nonself-consistent models provide different results, first corrections∼ a loga for instance.
But, before we come to this point, in order to avoid any confusion, we carefully distinguish between two effects wh
discussed in this context; the former takes place in traps only, the latter also in a uniform gas contained in a box.

2. Compressibility effects in a trap (mean field)

For a Bose gas ofN atoms contained in a trap at a given temperature, Bose–Einstein condensation first sets in at t
where the density is maximum. Repulsive interactions tend to make the density more uniform, and hence will in gene
the density at this point, so that they will decrease the transition temperature with respect to an ideal gas. Several au
studied this effect; for a review, see [6] (§V-B) and references therein. Here, for the sake of simplicity, we limit ourse
the discussion of isotropic traps and to the thermodynamic limit.1 This excludes finite size effects, which are also discus
in [6]; a finite size system does not undergo a sharp phase transition and thus the critical temperature, and its shift, d
a somewhat arbitrary definition of the critical temperature.2 In the thermodynamic limit, this arbitrary character disappears
width of the trap becomes large so that the effects of the trapping potential may be treated within a semi-classical appro
Around the center of the trap, one can then completely ignore the effects of the potential, and the condensation is

1 The thermodynamic limit in a trap is defined as the limit where the numberN of particles tends to infinity, the frequencyω of the trap
goes to zero, and the productNω3 remains constant.

2 In an ideal gas, the number of particles in excited statesNe cannot exceed a maximum valueNmax
e , obtained when the chemical potenti

is equal to the single particle ground state energy. The usual definition of the critical valueNc for the total number of particlesN in a finite
trap isNc =Nmax

e . This convention is convenient, but remains somewhat arbitrary, since it relates the value of one physical quantity,N , to the
upper limit of another physical quantityNe . It therefore conveys the idea ofNe increasing until it reaches its absolute upper limit, and t
saturating. In reality, a large number of particles has already accumulated in the ground state whenN =Nmax

e , andNe actually never reache
this upper limit (except in the limitN → ∞).
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when, locally, the critical conditions are reached. This happens when the local degeneracy parameter, the productn(0)λ3, is
equal to the critical value of this parameter in a homogeneous system, wheren(0) is the number density at the center of t
trap andλ = h/

√
2πmkBT the thermal wavelength. For an ideal gas, this value isζ3/2 � 2.61. . . ; for an nonideal gas, it is

slightly shifted, see Section 3. The question now is to relaten(0) to N in order to obtain its critical value as a function of t
temperature, or conversely the critical temperature as a function ofN .

2.1. Equation of state

In a gas in equilibrium, the local density of the gas adjusts locally so that the pressure gradient in the gas com
exactly for the force exerted by the external potential. The equation of state of the gas therefore plays an essential r
determination of the density profile in a trap. A good approximation is provided by mean field theory, where the local
of the gas is written as:

n= 1

λ3
g3/2

[
z= expβ(µ−�µ)

] + n0 (1)

with

β�µ= 4aλ2n, (2)

whereβ = 1/kBT is the inverse temperature,g3/2(z) the usual Bose function [2] andn0 the density of condensed particle

Fig. 1(a) shows the variations of the density3 as a function of the chemical potentialµ, assuming that the gas is repulsive (a > 0)
– see for instance Fig. 10 of [7] for a geometrical construction of this curve. Integration over the chemical potential p
the pressure (Fig. 1(b)); eliminatingµ leads to the equation of state in mean field approximation (Fig. 1(c)). For compa
the curves are also shown for the ideal gas (a = 0). As expected, repulsive interactions tend to increase the pressure of t
and to reduce its compressibility.

2.2. Total number of particles in a trap versus density at the center

In a trap that is sufficiently large (thermodynamic limit), the effects of the external potential can be treated semi-cla
which allows one to extend Eqs. (1), (2) to inhomogeneous systems. We now assume that the gas is not Bose cond
define the effective chemical potentialµeff by:

µeff(r)= µ− V (r)− 4aλ2 n(r)/β (3)

and find:

n(r)λ3 = g3/2
[
z= eβµeff(r)

]
. (4)

But Eq. (4) can be inverted as:

µeff = β−1J
(
nλ3), (5)

whereJ is the logarithm of the inverse function ofg3/2. By differentiation, one obtains:

∇µeff = β−1λ3J ′(nλ3)∇n, (6)

whereJ ′ is the derivative ofJ . Combined with (3), this equation yields:

−β∇V (r)= [
λ3J ′(nλ3) + 4aλ2]∇n(r) (7)

which relates the local variations of the potential and of the density. In general, the term in 4aλ2 on the right side of this equatio
is a small correction to the term inJ ′, so that the relation between the two gradients depends only weakly ona. Nevertheless
in regions of space where the gas is almost condensed, the derivativeJ ′ becomes very small and, for a given∇V , the density
gradient∇n becomes much larger and stronglya dependent; this phenomenon can take place at the center of the trap,
discuss in more detail in Section 4.

Another definition of the critical point may be obtained by plotting the numberN0 of particles in the lowest state as a function
temperature (at constantN ), and taking the inflexion point to define the critical temperature. This is in a sense more physical, but still ar
and this different convention leads to different values of the finite size effects.

3 We take this opportunity to note that Fig. 2 of [3] is inaccurate: at the critical valueµc of the chemical potential, the curve should not ha
a kink, but a continuous slope.
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Fig. 1. (a) the number densityn in the gas as a function of the chemical potentialµ, at constant temperatureT (n, measured in unities ofλ−3,
is dimensionless). This curve is obtained within simple mean field theory; the critical value ofµ isµc ; beyond this value, the slope of the cur
is inversely proportional to the scattering lengtha. (b) the pressureP in the gas, which is the integral ofn overµ. (c) the equation of state
relatingP to n, after elimination ofµ; the critical value of the density isnc ; at this point, the compressibility of the gas is proportional to 1/a.
Dashed lines refer to the ideal gas (a = 0).

Eq. (7) allows one to calculaten(r) at every point of the gas as a function ofn(0) and, through anr integration, of the tota
number of particlesN . At the critical point,n(0) is fixed by the conditionn(0)λ3 = ζ3/2 in the mean field approximation,4 so
that this calculation provides a relation between the critical values ofN andT . For a harmonic trap, where the size of the sin
particle ground state isaho = √

h̄/mω, Giorgini et al. [8] show that, to lowest order, this critical temperature is shifted
respect to its ideal gas valueT 0

c by an amountδTc given by:

δTc

T 0
c

= −1.3
a

aho
N1/6. (8)

SinceN1/6/aho ∼ (Nω3)1/6, the relative change of temperature remains finite in the thermodynamic limit. Significant c
temperature shifts can indeed be observed experimentally; for instance, recent experiments by Gerbier et al. [9] hav
observations of relative shifts as large as 10% in a Rb gas, in good agreement with (8); early Monte Carlo calculati
trapped Bose gas also predicted a temperature shift dominated by the mean field [10,11].

A few remarks may be useful at this stage:

(i) the shift δTc describes the case where the total number of atomsN is kept constant; if, instead, the density of the g
at the center of the trap were kept constant, the shift would vanish (within mean field theory). Within a factor,N and
n(0) are conjugate variables,5 the former extensive, the latter intensive, somewhat similar to energy and tempera
thermodynamics. Neither of them is measured directly in experiments, since optical measurements provide the
density” (density integrated along the line of sight), an intermediate physical quantity. Conceptually, there is never
preference for usingn(0) as the relevant variable: while the calculation of the shiftδTc at constantN gives different results
for all possible forms of traps (parabolic, quartic, or even more complicated as that shown schematically in Fig. 2
thermodynamic limit, all lead to the same value ofn(0); this result is clearly more universal;

(ii) the physics involved inδTc is only remotely related to the physics of the Bose–Einstein transition; it is more cl
associated with the effects of interactions on the density profile in trap, which is in turn determined by the equation
In other words, the calculation ofN involves many atoms which play actually no role in the condensation, because th
in regions of space where the density is too low, almost or completely in a classical regime. This is particularly obv
the trap of Fig. 2 where, clearly, all the atoms in the external part of the trap are counted inN , with a weight proportiona
to the volume of this part, while they play no role whatsoever in the condensation phenomenon.

4 In all this article, we assume that the interactions can be described by a single parametera, and therefore have nok dependence. In
this case, one can easily show [4,7] that, within mean field approximation, the critical value of the degeneracy parameter is unaffec
interactions.

5 When the potential is treated semi-classically, one can show thatN = g′
3/2(z)×n(0) ∂ LogZ/∂n(0) whereZ is the partition function with

the usual notationz= expβµ.
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Fig. 2. Example of a shape of a trap where only the central part plays a role in Bose–Einstein condensation; all the atoms in the oth
counted in the total number of particlesN but do not take part in the phenomenon.

3. Correlation effects in a uniform gas

We now come to the central part of this article and discuss another shift of the critical temperature of totally d
physical origin. This effect is not related to an external trapping potential but emerges from correlations between the
it is actually most conveniently calculated for a uniform gas contained in a box. As recalled in the introduction, the stud
shift has a long history of contradictory results, predicting either an increase or a decrease of the critical temperatur
as variations with different powers ofa (see [3]). It is now understood that correlation effects taking place in the noncond
gas just above transition lead to an increase of the critical temperatureTc , which is proportional toa in leading order:

�Tc

T 0
c

� can1/3, (9)

wherec is a numerical positive coefficient. In [3,4], linearity emerges as an exact result from a scaling analysis of the c
perturbation series.

In this text, we give another version of the argument leading to this linearity, with more emphasis on simple prope
non-linear self-consistent equations, and on the physical mechanism they contain. Behind the increase ofTc is a modification of
the effective energies that determine the populations of the particles with low momenta. Within the framework of the no
self-consistent equations introduced in [7,3,4], and without elaborate calculations, we summarize the basic ideas that
shift of the transition temperature, and comment on various points involved.

3.1. Non-linear equation for the single particle energy

In a noncondensed gas, the diagonal elementsρk of the single particle density matrix can be written as:

ρk = [
eβ(ek−µ+Σk ) − 1

]−1
, (10)

whereβ is the inverse temperature,µ the chemical potential and the effective energy is the sum of the free particle k
energyek = h̄2k2/2m and the energy shiftΣk introduced by the interactions. As in [7], we write:6

βΣk = 4aλ2n− 8

(
a

λ

)2(
λ

2π

)6 ∫
d3k′ρk′

∫
d3qρk+qρk′−q. (11)

This equation is not exact, but a self-consistent “one bubble approximation” toΣk ; it nevertheless allows a qualitative discuss
of the properties of the more general theory and provides a reasonable estimate of the leading correction for�Tc in the
homogeneous system. The first term on the right side of (11) is simply the mean field term; in the low temperature
where the interactions are described in terms of the scattering lengtha only, it depends only on the density:

n=
∫

d3k

(2π)3
ρk . (12)

Because this mean field is independent ofk, it has no effect whatsoever on the critical density (at a given temperature)
second term is more interesting; it corresponds to the effect of correlations due to interactions in the gas, and introdk
dependence of the energy shiftΣk . We will see that this shift tends to “harden” the free particle spectrum aroundk = 0.

6 In Ursell theory, Eqs. (10) and (11) are naturally obtained in a self consistent second order approximation. Note that the energyΣk
are then distinct from the self energies defined in Green’s function theory; in particular, they provide no information on the evolutio
quasiparticles, but just the static populationsρk . See [12] for a discussion of the appearance of exponentials expβΣk in Ursell operator theory

In Green’s function formalism, Eqs. (10) and (11) can also be obtained with the help of additional approximations. For insta
can neglect of the Matsubara frequency dependence of the self energies, which allows one to reconstruct inρk the Bose–Einstein distributio
function appearing in (10), and recover the same equations.
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The condition for Bose–Einstein condensation can be written:

µ=Σ0 (13)

so that, in terms of the “spectrum” at the critical point:

W(k)= β[ek +Σk −Σ0]. (14)

Eqs. (10) and (11) provide the following self-consistent equation:

W(k)= βek − 8

(
a

λ

)2(
λ

2π

)6 ∫
d3k′

∫
d3q

1

eW(k′) − 1

1

eW(k′−q) − 1

[
1

eW(k+q) − 1
− 1

eW(q) − 1

]
. (15)

From the spectrum we can obtain the populationsρk and the critical densitync. Actually, what we wish to obtain is the chang
�nc of the critical density (at constant temperature) with respect to the ideal gas valuen0

c = ζ3/2λ
−3. We assume that onl

small values ofk contribute to this change (we discuss why this is true below); sinceW(k = 0) vanishes, we can replac
[expW(k)− 1]−1 by 1/W(k) to obtain:

�nc �
∫

d3k

(2π)3

[
βek −W(k)
βek W(k)

]
(16)

to leading order. Note that, as mentioned above, the mean-field term does not enter the problem anymore, and ther
not influence the critical density or temperature.

At this point, it is easy to convert the change of density (16) at constant temperature into a change of temperature a
density. The critical condition in the presence of interactions can be written as:

nλ3 = nh3

(2πmkBT )3/2
= ζ3/2 + λ3�nc(a,T ), (17)

where�nc(a,T ) is given by (16). Eq. (17) defines the new critical line in the temperature-density plane (Fig. 3). Any
on the initial critical line (ideal gas) can be moved by a first order change of either the density, or the temperature, an
point on the new critical line; the only condition is that the change of the productnλ3 should be equal toλ3�nc(a,T ) to first
order.7 But the same change ofnλ3 can be obtained, either when�n= 0 with a change of temperature�T , or when�T = 0
with a change of density�n. In fact, for any motion in the temperature-density plane, the relative variation of the left s
(17) is given by:

�(nλ3)

(nλ3)
= �n

n
− 3

2

�T

T
. (18)

The same relative variation can therefore be obtained, either with a relative change�n/n at constantT , or with a relative
change�T/T at constant density, provided the ratio between the two changes is−2/3. Finally, the leading term of the chang
of critical temperature�Tc is given by:

�Tc

T 0
c

� − 2

3n0
c

∫
d3k

(2π)3

[
βek −W(k)
βek W(k)

]
. (19)

Fig. 3. Critical line in the density-temperature plane, for the ideal gas (upper line) and for the interacting gas (lower line). Starting from
on the first critical line, arrows indicate how a change of density at constant temperature, or conversely, move the point to the ne
discussed in the text.

7 To first order, we can ignore the difference between�nc(a,T +�T ) and�nc(a,T ).
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We will see in Section 3.1.2 that the change of the spectrum at the critical point manifests itself primarily in a smallk region
centered at the origin and of width�k given by:

�k = kc ∼ a

λ2
. (20)

In this region, the correctionΣk −Σ0 is comparable to the free particle energyek , or may even dominate inW(k); this property
is also discussed in detail in [3,4]. The physical origin of the change of energy is simple: the atoms with very low ve
are extremely sensitive to even very small effects of the interaction potential. They can therefore rearrange themselve
to minimize their repulsive energy, reaching a smaller value than the mean field prediction. On the other hand, the at
higherk values than�k have too much kinetic energy to do so.

This rearranging process can be regarded as an analogue, in terms of interaction potential and correlations, of th
a weak external potential on particle positions discussed by Lamb et al. [13]. These authors point out that the charac
Bose–Einstein condensation is qualitatively modified even by a weak external potential, transferring it from momentu
to real space. Here we have another illustration of the extreme sensitivity of a gas just above transition to any potent
the space of relative positions instead of ordinary position of the particles.

3.1.1. Nonself-consistent approximation: spurious logarithms
The non-linear equations (10), (11), or (15), are not easy to solve. One can start by assuming thatΣk provides only a smal

correction to the free particle spectrum, so that the right side of (11) can be calculated withΣk = 0, which provides a firs
approximation forΣk – this operation can be regarded as a first iteration of an infinite process leading to a fully self-con
solution. The critical condition (13) then gives an implicit equation inµ to determine the critical value of the chemical poten
(still within this first iteration). For this value ofµ, one can then use (10) to calculate the new populationsρk , and finallyn by
integration overk. This is precisely what was done in [7] for values ofa/λ ranging from 10−3 to 10−2, leading to the following
value of the coefficientc (obtained by dividing the relative change ofTc by an1/3):

c� 0.7. (21)

One can of course also make two (or more) iterations: again chooseµ, calculate the first approximation forΣk , the first
approximation forρk , inject them into (11) to obtain the second approximation forΣk , and then only determineµ by the
condensation condition. The second approximation forρk eventually provides the critical density by integration overk. This
procedure leads to a progressive hardening of the spectrum, as illustrated by Fig. 15 of [7], and typically to higher vac
than suggested by the first iteration approximation, Eq. (21).

But what is the validity of these calculations? Knowing that the presently accepted value isc � 1.3 [14,15], at first sight
one could consider this calculation a success, especially in view of its simplicity. However, success may be pure coin
In fact, an analytical study of the single iteration procedure shows that it does not lead to a linear dependence of�Tc in a, but
actually contains spurious logarithms ina; these logarithms will dominate in the limita → 0 and destroy the linearity – w
come back to this point in Section 3.2.1, but see also §5.1 of [3]. In other words, if the numerical calculations leading
had been made with a different range for the parametera/λ, a different value for the coefficientc would have been obtained, a
illustrated by the table of §5.1 in [3]. The validity of the first iteration leading to Eq. (21) is therefore difficult to assess a
see [16] for another example of a calculation which predicts a non-linear leading correction, ana loga in this particular case.

3.1.2. Self-consistent treatment: linearity
We now come back to the full equation (15) and discuss the properties of the self-consistent solutionW(k) . We define the

dimensionless functionv(x) of the dimensionless variablex = kλ2/a by:

W(k)= a2

λ2
v

(
kλ2

a

)
. (22)

Inserting this into (15) provides:

v(x)= x2

4π
− 8

(2π)6

∫
d3x′

∫
d3y

(a/λ)2

e(a/λ)2v(x′) − 1

(a/λ)2

e(a/λ)2v(x′−y) − 1

[
(a/λ)2

e(a/λ)2v(x+y) − 1
− (a/λ)2

e(a/λ)2v(y) − 1

]
. (23)

If we take the limita/λ→ 0 of the integrand on the right side of this equation (an operation justified below), we obta
parameter-free self-consistent equation:

v(x)= x2

4π
− 8

(2π)6

∫
d3x′

∫
d3y

1

v(x′)v(x′ − y)

[
1

v(x + y)
− 1

v(y)

]
(24)

(one can easily check that no other choice for the powers ofa andλ in the scaling factors of (22) would allow the same compl
disappearance of all parameters from the equation).
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We now assume8 the existence of a solution to (24) that, for values ofx � 1, is dominated by the free spectrum termx2/4π .
We note that the integral is made ultraviolet (UV) convergent by the difference that appears in the brackets. As for
(IR) convergence, for smallx’s the self-consistent solution will automatically have a harder variation thanx2 (free spectrum)
in order to make the integral convergent, a variation inx3/2 for instance9 [17]. Being convergent, the value of the integral c
be obtained with arbitrary accuracy from a finite domain of the dimensionless variablex, corresponding to|x| <D (whereD
is a pure number). Coming back to (23), we see that the exponent in the denominator is smaller or equal to(a/λ)2v(D), which
tends to zero whena/λ→ 0 (sincev(D) is a pure number, independent ofa). This, in retrospect, justifies the lowest ord
expansion of the exponentials inside the integrand which led us to (24), at least for values of the current variablex which are
not too large (see below).

Finally, inserting (22) into (16) provides:

�nc = − 2

πλ2

∫
dk
(a/λ)2v(kλ2/a)− (kλ)2/4π

(a/λ)2v(kλ2/a)
(25)

or, with a variable changex = kλ2/a:

�nc = − 2a

πλ4

∫
dx
v(x)− x2/4π

v(x)
. (26)

This result is equivalent to (16) and shows that the density shift at constant temperature is indeed linear ina; consequently, the
same property is true for the temperature shift at constant density.

The values of the dimensionless variablex that contribute to the integral are smaller or comparable toD. In terms of the
initial momentum variables appearing in (15), this domain has a range given by some number multiplyingkc defined in (20).
Going from (23) to (24) actually also requires that the current variablex not be too large, namely thatv(x)� (λ/a)2. Since,
for largex, v(x) is dominated by the kinetic energy term∼ x2, this condition corresponds tox � λ/a and therefore tokλ� 1.
In other words, the values ofΣk obtained from (24) are correct, but only for momenta significantly smaller that the max
thermal momentum. This caveat is irrelevant for the calculation of the leading term of the density shift. As we will
more detail in Section 3.3.1, what is important is the crossover value ofk at which the functionv(x) switches from a behavio
dominated by the integral to a behavior dominated by the quadratic kinetic energy. From (24), we know that this phen
takes place for some finite value ofx which corresponds, in terms ofk, to a multiple ofkc. Finally, it is easy to see in (20
that, for sufficiently small values ofa, the productkcλ remains much smaller than 1, which means that only particles with
momentum have a role in the change of critical density.

The conclusion is that the non-linear self-consistent equation for the effective energies leads to lineara dependences of th
temperature shift, but only if it is treated self-consistently; otherwise, more complicated spurious variations are intro
see also [18] for other numerical illustrations of this property.

3.2. Generalization

We now go beyond the simple approximation (11) for the effective energy and generalize the considerations of the p
section. In the complete theory [3,4], the right side of this equation contains an infinite sum of integrals, correspondi
diagrams in the theory. They start from the second order term ina/λ already contained in (11), and continue with terms of
orders ina/λ, containing higher dimensional integrals with more elaborate structure. The problem then becomes sign
more complicated; we will see, nevertheless, that most of the conclusions of the preceding section remain valid. We fir
the general relation between infrared convergence of the theory and the linearity ina of the leading term in the correction, the
show that the linearity of the simple model remains valid within the general theory, and finally emphasize the difficulties
in the precise calculation of the linear coefficientc.

3.2.1. Linearity and infrared convergence
It is well known that the perturbative treatment of second order phase transitions gives rise to infrared (IR) dive

Here, we discuss the close relation between these divergences and a possible breakdown of the linearity ina of the critical
temperature shift.

Let us first come back to the single iteration approximation discussed in Section 3.1.1. If we introduce again the
chemical potentialµeff = µ − 4aλ2n/β, we see that this approximation involves integrals – right side of (11) – wh
because they contain the ideal gas spectrumek ∼ k2, are IR divergent ifµeff = 0. More precisely, whenµeff → 0, one obtains

8 This assumption is supported by numerical and analytical calculations of [3].
9 A simple power counting argument applied to Eq. (24) predicts ax3/2 dependence ofv(x) for small values ofx.
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βΣ0 − 4aλ2n∼ (a/λ)2 log(−βµeff), so that the critical condition (13) leads to logarithms in the value of the critical chem
potential,−βµceff ∼ (a/λ)2 log(λ/a). But, for smallk, the integrand can be written as:[

β(ek −µeff)
]−1 = β−1[(

h̄2k2/2m
) −µeff

]−1 ∼ [
(kζ )2 + 1

]−1
, (27)

where the mean field correlation lengthζ is defined by−µeff = h̄2/2mζ2, as in [3,4]. We then see thatζ plays the role of a
scaling factor for thek dependence of the energies:

W(k)∼ a2

λ2
v(kζ ), (28)

wherev(x) is a dimensionless function. We can finally use this result to calculate the critical density shift, Eq. (16), and
�nc ∝ ζ−1, which is proportional to(a/λ2)

√
log(λ/a).

For extremely small values ofa, the logarithmic dependence ona of the correlation length then dominates the shift of
critical temperature. This explains why the table of [3] gives values ofc that depend slightly on the ratioa/λ. Nevertheless, this
logarithmic scaling is spurious, an artifact of the truncation of the self-consistent equations at the first iteration; as we h
in Section 3.1.2, the complete self-consistent solution leads to a shift ofTc linear ina.

More generally, the relation between IR convergence and linearity is easy to understand. The critical condition (1
key to the calculation of the scaling factorζc at the critical point, which in turn determines the critical density. SinceΣ0 can be
written as:

Σ0 = 4aλ2n

β
−

(
a

λ

)2
I (ζ ), (29)

whereI (ζ ) is a positive integral depending on the chemical potential throughζ , the critical condition (13) can be expressed

−µeff = λ2

4πβζ2
=

(
a

λ

)2
I (ζ ). (30)

Graphically, as shown in Fig. 4, the critical value ofζ−2 is obtained by intersecting a straight line with large slope(λ/a)2 with
the functionI , considered as a function ofζ−2. The intersection point is close to the vertical axis. IfI has a finite limitI0
whenζ−2 → 0, we immediately obtainζ−2 ∼ βI0 a

2/λ4, and from this simple scaling factor linearity ina follows. On the
other hand, if this function diverges whenζ−2 → 0, the scaling factor has a more complicateda dependence.

Reference [3] discusses various models illustrating the relation between the absence of IR divergences and the
in a of the leading term in the correction. For instance, the “bubble sum”, or the “ladder sum”, both contain integran
fractions that automatically control the divergences, and therefore lead to linear dependences of the density shift ia. This
property explains why [19] predicts a lineara dependence, in an approach based on the many bodyT matrix approximation,
similar to a ladder sum approximation. Clearly, these results do not establish the linearity ina for the full theory, since there i
no special reason why only bubbles or ladder should be retained from the full series. The disappearance of the IR di
from the bubble or ladder sums is a special property of these subseries. For the reasons discussed above, one c
the density corrections to be dominated by other diagrams containing IR divergences, therefore providing a result ina lna for
instance (this is indeed the result obtained later in [16]), and making the contribution of isolated ladders negligible.
discuss the full theory to examine why the linearity ina is actually preserved.

Fig. 4. Graphical construction to obtain the mean field correlation length,ζ ; the lowest full line corresponds to the absence of IR divergen
the upper full line to an IR diverging function. The slope of the dashed line is proportional to(λ/a)2 and diverges in the limita→ 0.
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3.2.2. Linearity in the full theory
The reasoning of Section 3.1.2 can be extended to the more complicated structure of the effective energies in the

theory. We refer the reader to the discussion given in §4 of [3]; here, we give only a brief discussion of the argument le
linearity. The various terms inΣk , corresponding to a series of diagrams with increasing powers ofa/λ, may be obtained by
recurrence from one order to the next. At each step, one includes one more power ofa/λ, one morek integral with a factorλ3,
and two moreρk ’s, introducing two fractions with exponentials ofW(k) in the denominator. Now, if we make the same cha
of variablex = kλ2/a as before, we see that the change of integration variable introduces an additional factor(a/λ2)3, which
comes in addition to ana/λ2 from the two coefficients above; altogether, we get precisely the factor(a/λ2)4 that is necessar
to add a factor(a/λ2)2 to the numerator of each fraction, exactly as in (23). As a consequence, we obtain again a pa
free non-linear equation, generalizing (24).

This new integral is more ultraviolet convergent than in the right side of (24) since, for largex, two additional factors ofx2

overcompensate the additional integration factor d3x. As for IR convergence, again it is obtained because the solutionv(x) has
to adapt its smallx behavior to ensure it. Finally, the reasoning of Section 3.1.2 can be made again with the more com
non-linear equation, so that linearity is obtained in this case also.10

This result is another illustration of the general property mentioned in the preceding section: here, it is the self-co
character of the calculation that avoids the IR divergences – the solution automatically adjusts its lowk behavior – and linearity
is indeed obtained.

3.2.3. Calculation of the linear coefficientc
Even when linearity is proved, a difficult problem remains: the calculation of the linear coefficientc. Analytically, this is

an intricate problem, because of its highly non-perturbative character. In the context of non-linear self-consistent equa
have seen that the problem is non-perturbative at two levels: the choice of the non-linear equation, and the resolut
equation by successive approximations. In usual perturbation theory, infrared divergences occur in all the integrals co
the expression ofΣk , preventing any expansion in the small parametera/λ around the ideal gas spectrumW(k)= ek . When
one includes higher and higher order ina/λ terms in the energy, these IR divergences become more and more severe,
higher powers ofa/λ in the denominator compensate exactly those in the numerator. As a result, all terms are compara
the more detailed discussion of [3,4], which show that diagrams of all orders ina/λ may contribute comparable amounts to t
small momentum part of the spectrum, and therefore to the critical temperature shift. The complexity of the general pr
illustrated by the second leading correction: instead of being proportional toa2, as one could naively expect, it is proportion
to a2 loga, and therefore manifestly non-analytic [5,20].

However, if we are only interested in the leading order (linear) shift ofTc , a simplification is that factors[eβ(ek−µ+Σk)
− 1]−1 can systematically be replaced by[β(ek − µ+Σk)]−1; in other words, the problem reduces to classical field the
a case in which the temperature shift is exactly proportional toa to all orders [4]. This simplification can be regarded as
generalization to all higher order contributions of the approximation of (23) by (24). In the absence of non-lineara terms,
numerical calculations for finite values ofa are in principle easier, since a sometimes delicate extrapolation to zeroa values
becomes unnecessary. Nevertheless, in practice, space discretization introduces another length, the lattice parameter
re-introduce non-linearities; a careful extrapolation of the lattice parameter to zero is then necessary. Taking this into
numerical lattice calculations [14,15] have indeed provided a precise value,c � 1.3, which appears to be the best determinat
to date of this coefficient. On the other hand, classical field theory does not offer an analytic solution, since it is a p
possible to select a class of well defined perturbation diagrams that are sufficient to give a reasonable value forc.

Finally, another approach to the problem is given by the “largeN ” expansion, where one studies the critical tempera
of a gas containing particles with many internal states, resulting in an order parameter withN components; the problem
exactly soluble in the limitN → ∞ [21] and the calculation of various 1/Np corrections [21,22] allows one to extrapolate
the case where the particles have only one internal state (N = 2). Other perturbative-variational methods have also been u
see [23–28].

3.3. Discussion

We have already mentioned in Section 3.1 that a spatial rearrangement of atoms with low energies takes place,
effect to that discussed by Lamb et al. [13], but in the space of the relative positions of the particles (correlations) in
their ordinary positions. The effect is maximal atk = 0, so that the atoms in this level condense more easily than they w
in a simple repulsive mean field with nok dependence; of course, atoms with very lowk undergo a similar effect, whic

10 In our proof, we have taken for granted the existence of a self-consistent expression for the effective energies, as in Green’s funct
The other assumption is the existence of a solution to the non-linear equation.
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Fig. 5. (a) plot of the functionek +Σk (full line), with the origin of the energies atΣ0, and of the same function for the ideal gas (dashed li
(b) the populationsρk , multiplied byk2, far above Bose–Einstein condensation (curve (i)), and exactly at the condensation point (cur
again, the ideal gas curve is shown by a dashed line. Because of the modified spectrum, the curve goes to zero at the origin in the
repulsive interactions, unlike the ideal gas.

vanishes progressively when their momentum increases beyondkc. The resulting spectrumek +Σk is shown schematically
in Fig. 5(a), with the origin of the energies atΣ0 (the value of the chemical potential at transition); for comparison, a pu
parabolic spectrum is also shown (dashed line). Fig. 5(b) shows the corresponding variations of the populationsρk , multiplied
by k2 in order to give directly their contribution to the total populationN . At condensation, whenk → 0, the function goes
to a constant for the ideal gas (dashed line), but to zero for the ideal gas (full line) – in the presence of interactions,
function corresponding to the presence of a Bose–Einstein condensate appears with no pedestal. The comparison b
situations for the ideal gas and the repulsive gas immediately shows that everyk �= 0 level is less populated at the critical poi
in the presence of interactions. Therefore,�nc is negative at constantT , or conversely�Tc is positive at constantn11.

3.3.1. Role of the spectrum
As in [3,4], we introduce the functionU(k) by:

U(k)= 2m

h̄2
[Σk −Σ0] = (

2πλ2)−1[
W(k)− βek

]
. (31)

If we replace in (10)ρk by the long wavelength approximate form[β(ek +Σk −Σ0)]−1, we can express the change of t
critical density created by the interactions as:

�nc � − 2

πλ2

∫
dk

U(k)

k2 +U(k)
. (32)

A priori, one could imagine that the value of�nc depends crucially on the details of the spectrum neark = 0. Actually, the
density change depends mostly on one parameter, the crossover point whereU(k) becomes equal tok2 (the point at which the
energy shift introduced by the interaction equals the kinetic energy); it is relatively insensitive to the details of the va
of the spectrum. For very low values ofk (� kc), the role of the functionU(k) is to harden the free particle spectrum so t
integrals such as (15) converge; thereforeU(k)� k2 and the integrand in (32) is almost unity. For a valuekc of k comparable
to a/λ2, see Eq. (20), there is a crossover between the two functions, and one can expect that one rapidly reaches th
regime wherek2 �U(k) and the integrand in (32) is almost zero. Altogether, we almost find an “all or nothing” regime w
the population depletion jumps rapidly from complete to zero, so that:

�nc � − 2

πλ2
kc (33)

which depends only on the value ofk at the crossover and not on the details of the variations ofU(k). This explains in particula
why the calculation of the critical density, or of the critical temperature, is relatively insensitive to the exact value of the u
coefficientη which characterizes the power dependence ofU(k)∼ k2−η at low k.

11 Mathematically, a negative value is not totally excluded, but it would require complicated compensation effects and so
implausiblek variations ofΣk .
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3.3.2. Role of exchange cycles
Feynman has emphasized the role of exchange cycles in Bose–Einstein condensation [29,30]: condensation takes

a macroscopic exchange cycle can propagate across the whole sample – see also Elser’s work [31], as well as [32] fo
The notion of exchange cycles arises in first quantization, where identical particles are numbered, and where a symm
operatorS is applied in a second step to obtain the correct physical states. This operator can be decomposed into
particles, usually visualized as a closed path joining all the particles involved [32]. The probability of occurrence of a giv
decreases rapidly when the distance between two consecutive particles much exceeds the thermal wavelengthλ; this provides
the length scale for the maximum jump of a cycle between particles.

Reference [33] discusses how the shift of the critical temperature introduced by the interactions in a homogeneou
can be interpreted in terms of exchange cycles. In an ideal Bose gas just above the transition point, the density fluctu
large because exchange effects tend to bunch the particles together. There will be regions of space where the dens
than average and where, because of the maximum lengthλ of the jump of an exchange path, cycles will not easily propag
clearly, this effect will oppose the appearance of Bose–Einstein condensation. On the other hand, in a dilute repu
mutual repulsions create a restoring force which tends to make the system more homogeneous; the occurrence of la
of low density fluctuations becomes unlikely. This will facilitate the propagation of large exchange cycles across th
system, i.e., Bose–Einstein condensation. Therefore, a lower density (or conversely a higher temperature) are neede
condensation.12

At this point, one may wonder what is the relation between this physical explanation and the calculations presente
what is relevant is the effects of IR divergences, and therefore physical properties of the system at very large distanc
section, what matters is the correlations of particles at a distance of the order ofλ. This apparent paradox is removed if o
remembers that, in our preceding discussion, we were studying one-body properties; here we are dealing with the pr
of exchange cycles, which depends on two-body properties. A phenomenon which appears at long distances for singl
can translate into shorter range properties for correlations. Here, we will not give a precise discussion of this point
develop a plausibility argument. We use a simplified model where the two-body density operatorρII in the gas is given by:

ρII (1,2)=
[
ρI (1)⊗ ρI (2)

][1+ Pex] + · · · , (34)

whereρI is the one-body density operator andPex is the exchange operator between particles 1 and 2. This relation is exa
the ideal gas, but only an approximation for the interacting gas. Even if some effects of the interactions are already c
in (34) through changes of theρI ’s, it is clear that more terms should be added to the right of (34) to get an exact formu
particular terms that introduce short range correlations between the particles. This approximation is sufficient for ou
qualitative discussion.

The direct term in the right side of (34) is simply a product containing no spatial correlation, so that we will ignore
focus on the exchange term containingPex with diagonal elements:〈

r1, r2 | ρex
II (1,2) | r1, r2

〉 = 〈
r1, r2 | ρI (1)⊗ ρI (2) | r2, r1

〉
. (35)

Since one-particle density operators are diagonal in the momentum representation (translational invariance), thi
proportional to:∫

d3k1

∫
d3k2ρk1ρk2 ei(k1−k2)·(r1−r2). (36)

Therefore the two-body correlation function is independent of the sumr1 + r2 (position of the center of mass of the tw
particles), while itsr1 − r2 = r dependence is given by the Fourier transform of the integral:∫

d3K ρ(K+k)/2 × ρ(K−k)/2 (37)

which, using parity, can be expressed as a convolution integral:∫
d3K ρ(k+K)/2 × ρ(k−K)/2. (38)

At the critical point, we have seen above that the distribution functionρk is the sum of two components: a Bose–Einst
distribution obtained within a mean-field approximation with a slightly negative value of the effective chemical po

12 This is actually an interesting situation: in most cases, repulsive interactions between particles tend to mask quantum effects,
exchange effects (for instance, hard core potential effects reduce exchange effects in liquid helium three and four); for the dilute sy
they actually enhance them.



M. Holzmann et al. / C. R. Physique 5 (2004) 21–37 33

d

contains
ed

pendence
extends to
two

nt scale,
ase, the

ter,

ensity at
by the

to each
re at
cts in a

a trap,
nter, from
e critical
iscussed
roach; the
, which is

large
is large

at
hose
d by the
, this

tion

is

ud then
es
ly, a second
(proportional to the square of the scattering lengtha), and a critical perturbation introduced for smallk (comparable tokc)
by the correlation effects; the latter is difficult to calculate, but small. We therefore have:

ρk = ρ
(0)
k +�ρk , (39)

where the first term has a width comparable to 1/λ while the second has a widthkc. The two-body correlation function now

appears as the sum of three terms: a term in[ρ(0)k ]2, a crossed term inρ(0)k ×�ρk on which we will focus our interest, an

finally a term in[�ρk]2, which we will ignore since it is smaller.
The first term is well-known [34]: it corresponds essentially to an ideal Bose gas close to the transition point and

the usual “exchange bump”, with a width comparable toλ, as well as a long exponential tail.13 The second term is the cross

term; its Fourier transform appears as the convolution of the functionρ
(0)
k/2 by�ρk/2. Since�ρk/2 is much narrower thanρ(0)k/2,

the function�ρk/2 may be approximated by a delta function at the origin, with a positive weightd. We then obtain for the
Fourier transform of this term:

d × ρk/2. (40)

This corresponds to a change of the spatial correlation function that is positive; it has basically the same spatial de
as the zero order term, except that no squared function appears here. It therefore contains an exchange bump that
distances comparable to the thermal wavelength, but slightly further because it no longer includes a convolution ofρ ’s;
there still is a long exponential tail, with twice the range of the zero order tail.

This simple model illustrates how the physics behind the reduction of the critical density may appear at a differe
depending whether it is expressed in terms of single particle properties or in terms of correlations. In the former c
critical phenomenon is contained in�ρk , which contains mostly smallk ’s and is dominated by long distances; in the lat
�ρk disappears from the leading term, so that distances of the order ofλ remain relevant.

4. Mean field and correlation effects combined in a trap

As already mentioned, in the thermodynamic limit, Bose–Einstein condensation is reached in a trap when the d
the center of the trap is exactly the critical density for a uniform gas, including of course the corrections introduced
correlations. Two effects (the compressibility effect of Section 2 and the correlation effect of Section 3) then add
other14 to determine the change of the critical value ofN at a given temperature (or, conversely, the critical temperatu
fixedN ). Nevertheless, as remarked by Arnold and Tomasik [35], their combination is not trivial because spatial effe
trap mix up various orders ina. In this section we study the effects of the interactions on the density profile of a gas in
assuming that the temperature is above, or just at the critical temperature. We start from the number density at the ce
which we can calculate the density profile by using an equation of state obtained within mean field approximation. Th
density profile is then derived by setting the density at the center to its critical value, including the correlation effects d
in the preceding sections, which are beyond mean field theory. There is nevertheless no inconsistency in this app
reason is that the calculation of the equation of state of the gas reduces to an ordinary virial correction to the pressure
perturbative, while the calculation of the critical density remains essentially non-perturbative.

We will see that the specific properties of the curves of Fig. 1 play a role in this problem, in particular the
compressibility of the gas at the critical point. Roughly speaking, the compressibility of the gas at the center of the trap
(∼ 1/a), but remains much smaller in most other regions of the trap (practically independent ofa). One can then anticipate th
a change of the pressure that is only second order ina will correspond to a change of the density of the same order in t
regions, but first order at the center. This will allow one to meet the change of the condensation condition introduce
correlations effects. But, sinceN is primarily determined by the density of the gas in those low compressibility regions
change corresponds to a second order variation15 of N . We now discuss this question more precisely.

13 The tail can easily be obtained by using the approximationρ
(0)
k ∼ β−1(ek −µ)−1, equivalent to a zero Matsubara frequency approxima

– see for instance exercise 12.9 of [1]. Since the effective chemical potential is proportional toa2 at the transition point, the range of th
exponential tail is of orderλ2/a.

14 More precisely, subtract from each other, since they have opposite signs.
15 Conversely, one can assume thatN is fixed and that the temperature is reduced from above the transition; the size of the atomic clo

decreases progressively. When the system reaches a temperature close to condensation, the compressibility at the center becom∼ 1/a and
therefore very large, so that particles tend to accumulate more around this point of space than elsewhere in the trap. Consequent
order ina change of the temperature is sufficient to create a first order change of the local density.
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4.1. Density profile

In a first step, we consider the number density of the gas at the center of the trapn(0) as a free parameter. We come back
Eq. (7) and distinguish two cases:

(i) Classical gas (nλ3 � 1).
The relation between the chemical potential and the density is thenβµeff � ln(nλ3) , which impliesJ ′ � 1/nλ3, so that
(7) becomes:

−∇[
βV + 4aλ2n

] = ∇ ln(n). (41)

An r integration then gives:

n∼ exp
[−βV − 4aλ2n

]
(42)

which is nothing but the usual Boltzmann exponential. Around the center of the trap, the density varies proportio
the potential energyV :

n(r)� n(0)

[
1− βV (r)

1+ 4aλ2n(0)
+ · · ·

]
(if r → 0). (43)

(ii) Quantum noncondensed gas (1� nλ3 � ζ3/2).

For simplicity, we assume that the gas is strongly degenerate at the center of the trap (n(0)λ3 is close toζ3/2), and we limit
our study to the region of the trap where this degeneracy remains strong. We can then use the Mellin formula li
lowest order (a more precise calculation is given in the appendix):g3/2(expβµ)� ζ3/2 − 2

√−πβµ [2,37], whereζ3/2 is
the value at the origin of theg3/2 function (ζ3/2 = g3/2(z= 1)� 2.61. . .). This provides:

J � − 1

4π

(
nλ3 − n0

cλ
3)2 + · · · , (44)

where:

n0
c = ζ3/2λ

−3 (45)

is the critical density of the ideal gas. This result, inserted into (7), allows us to integrate the gradients on each si
equation and yields (assuming that the potential at the center of the trap vanishes):

−βV = − λ6

4π

[(
n− n0

c

)2 − (
n(0)− n0

c

)2] + 4
a

λ

(
n− n(0)

)
λ3. (46)

This equation is second degree inn; choosing the solution which tends ton(0) whenr → 0 provides:

n(r)= n0
c + 8πa

λ4
−

√[
n0
c − n(0)+ 8πa

λ4

]2
+ 4π

λ6
βV (r). (47)

Eq. (47) gives the density profile of the gas as a function ofr , provided that the gas is in the quantum regime.

For an ideal gas (a = 0), Fig. 6(a) shows the density profiles obtained as a function of the central densityn(0), assuming
a quadratic potentialV (r) ∼ r2; as usual, the thermal rangeRT is defined16 by (r/RT )

2 = βV (r). If n(0) = n0
c , the density

variations are linear inr in all the quantum region; for lower values ofn(0), there is a parabolic variation near the center of
trap, in a domain that becomes larger and larger whenn0

c − n(0) increases.
For an interacting gas (a > 0), one can distinguish in (47) two possibilities, depending whether the potential energyβV is

larger or smaller than[(n0
c−n(0))λ3 +8πa/λ]2. Near the center of the trap,V is small and the density variation is proportion

to V (quadratic inr for a harmonic potential):

n(r)� n(0)− 2πβV (r)

λ3[(n0
c − n(0))λ3 + (8πa/λ)] + · · · (if r → 0). (48)

This formula is similar to (43) but predicts significantly different results. For instance, ifa is sufficiently small and if the centra
density is sufficiently close to its critical value, the change of the density induced by the potential becomes arbitrarily

16 RT is the size of the ideal classical gas in the trap at temperatureT .
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Fig. 6. (a) the modification of the density profile for the trapped ideal gas when increasing the central density until it reaches the con
condition (full line:n(0)λ3 = ζ3/2; dashed line:n(0)λ3 = 2ζ3/2/3; dash-double dot line:n(0)λ3 = ζ3/2/2; dash-dot line:n(0)λ3 = ζ3/2/3);
(b) the corresponding density profile for the trapped repulsive gas calculated within mean field theory. The asymptotes at the center
are calculated with the lowest order approximation of the Mellin formula, Eq. (47).

while it remains constant for a classical gas; this is a consequence of the large compressibility of the quantum gas at
Further from the center of the trap,V is large, and (47) becomes:

n(r)� n0
c + 8πa

λ4
−

√
4πβV (r)

λ6

[
1+ [(n0

c − n(0))λ3 + (8πa/λ)]2
8πβV (r)

+ · · ·
]

(49)

which now predicts a square root dependence inV . Fig. 6(b) illustrates these two different behaviors of the density.

4.2. Critical density profile

We are now in position to discuss the effects of the interactions on the density profile at the transition point, at lea
central region of the trap where the gas remains strongly degenerate. We set the central density to its critical valuenc and use
the above equations to calculaten(r). This calculation is of course not exact, for different reasons: first, (47) is only valid w
mean field theory; second, the use of the first correction only in the Mellin formula limits us to a sufficiently degener
Both approximations could be improved: the first by including second order perturbative corrections to the equation of
done in [35]; the second by including more terms in the Mellin formula, as done in the appendix. Our calculation neve
remains sufficient for a qualitative discussion.

Let us first ignore the effects of the correlations on the critical density at the center. We then setn(0)= n0
c and see that the

density corrections are positive and first order ina everywhere in the trap – second term in the right side of Eq. (49) – exce
a small region around the center where the density change is still positive but∝ 1/a – fraction in the right side of Eq. (48). Fo
a harmonic potential, this small region has a size proportional toa, so that the corresponding contribution toN is only second
order ina. Therefore, the main contribution arises from all the rest of the trap and provides a first order ina change ofN (at
constant temperature); conversely, calculating the temperature shift at constantN provides (8), as shown in [8].

We now take into account the effects of the correlations on the critical density at the center of the trap. We then
choose a slightly smaller value ofn(0) since, according to (26),nc is reduced by an amount that is first order ina. With respect
to the calculation of the preceding paragraph, Eq. (48) predicts an additional negative change, first order ina, of the density
around the center of the trap. On the other hand, Eq. (49) predicts only a second order change induced by the new valun(0);
the crossover between the regions of space where these equations apply is obtained when the potential energy is se
in a, i.e., at a first order distance from the origin if the potential is harmonic. This corresponds only to a fourth order corre
the total number of particlesN , because the volume of this region is proportional toa3 for a harmonic potential; this correctio
remains therefore negligible when compared to the second order ina contribution from all other regions in the trap. Altogeth
we see that the additional change ofN introduced by the correlation effects is therefore only second order ina; this is to be
compared with the first order correction introduced by mean field effects contained in the term ina/πλ4 on the right side
of (47).

We therefore recover the conclusions of Arnold and Tomasik [35]: the twoN changes subtract from each other, but no
the same order ina. This offset of one order illustrates again the relatively loose connection between the total number o
in the trapN and the physics at the center, where Bose–Einstein first takes place: most of the particles contributingN are
too far from condensation to play a role in it. If the central densityn(0) were accessible, it would provide a more adequ
variable thanN for the study of the BEC phenomenon. See [36] for a proposal of a method (adiabatic ramping down of
frequency) aimed at enhancing the visibility of the correlation effects against the background of mean field effects.



36 M. Holzmann et al. / C. R. Physique 5 (2004) 21–37

rse try to
ations
change
es in the
ge of the
would

oratoire
CNRS et
and to
tion Grant

te until

n of the
5. Conclusion

The calculation of the critical temperature of a dilute Bose gas has several distinguishing features. One could of cou
go further than the leadinga correction to the critical temperature and attempt to describe analytically the full density vari
obtained by path integral Monte Carlo methods in [33]. Quantitatively it is clear that at high densities the blocking of ex
created by the repulsive hard core part of the potential tends to reduce the critical temperature, an effect which go
opposite direction to what happens for dilute gases. Reference [38] gives a discussion of this effect in terms of chan
effective mass of the particles, arising from ak dependence of the exchange term in the expression of the mean field. It
be interesting to make this idea more quantitative and to explore the specific details of BEC in all density regimes.
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Appendix

A better approximation forg3/2 than that used in Section 4 is:

g3/2(expβµ)� ζ3/2 − 2
√−πβµ− b βµ+ · · · (50)

with b = 1.46. . . [2,37]. Adding a linear term to the square root actually provides values which are reasonably accura
βµ reaches values where the classical regime is obtained (βµ<−1). Inverting the relationnλ3 = g3/2(expβµeff) then gives:

−βµeff = π

b2

[
2+ b

π

(
n− n0

c

)
λ3 − 2

√
1+ b

π

(
n− n0

c

)
λ3

]
(51)

which defines the functionJ (nλ3). We therefore have:

J ′ = −1

b

[
1− 1√

1+ bλ3(n− n0
c)/π

]
. (52)

Relation (7) then becomes, after integration of the gradients:

−βV = 4aλ2(
n− n(0)

) − λ3

b

[(
n− n(0)

) − 2π

bλ3

√
1+ bλ3(n− n0

c)

π
+ 2π

bλ3

√
1+ bλ3(n(0)− n0

c)

π

]
. (53)

Fig. 7. Full line: mean field density profile calculated exactly (Eq. (4)). Dashed line: same profile with the lowest order approximatio
Mellin formula (Eq. (47)). Dotted line: same profile with the inclusion of the linear correction (Eq. (53)).
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This equation provides a direct relation between the potential energy and the local density. For instance, for a quadratic
the positionr is obtained by taking the square root of the right side, multiplied by some coefficient. This allows one to
precise calculation of the density profile in all regions of the trap where the gas is in a quantum regime. Fig. 7 gives a co
between the density profile obtained in the mean field approximation with (53) and (47).
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