
effets

lts

o et al.
standing
tzmann–
problems.
e spatially
with the
Bose–

Lu
graph 4
superfluide
heim, qui
matiques.
roblème de

rition d’une
–Einstein.

which is
y

C. R. Physique 5 (2004) 65–75

Bose–Einstein condensates: recent advances in collective effects/Avancées récentes sur les
collectifs dans les condensats de Bose–Einstein

Kinetic models for superfluids: a review of mathematical resu

Laure Saint-Raymond

Laboratoire J.-L. Lions, UMR 7598, Université Paris VI, 175, rue du Chevaleret, 75013 Paris, France

Presented by Guy Laval

Abstract

The mathematical contributions by X.G. Lu (J. Statist. Phys. 98 (5/6) (2000) 1335–1394) and by M. Escobed
(Electronic J. Differential Equations, Monograph 4 (2003)) presented in this Note constitute the first stage in the under
of the superfluid dynamics, especially of the Bose–Einstein condensation, by means of kinetic models. The Bol
Nordheim equation, which is physically relevant to describe dilute quantum Bose gases, sets important mathematical
Nevertheless, under an unphysical truncation of the collision cross-section at low energies, it has been proved that th
homogeneous Cauchy problem is well-posed. Furthermore, relaxation towards equilibrium holds in a weak sense,
appearance of a singularity in infinite time if the initial mass is supercritical, which corresponds to the formation of a
Einstein condensate.To cite this article: L. Saint-Raymond, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modèles cinétiques des superfluides : des résultats mathématiques.Les contributions mathématiques de X.G.
(J. Statist. Phys. 98 (5/6) (2000) 1335–1394) et de M. Escobedo et al. (Electronic J. Differential Equations, Mono
(2003)) qui sont présentées dans cette Note constituent la première avancée dans la compréhension de la dynamique
et notamment de la condensation de Bose–Einstein grâce aux modèles cinétiques. L’équation de Boltzmann–Nord
permet de décrire l’évolution d’un gaz quantique dilué constitué de bosons, pose de nombreux problèmes mathé
Néanmoins, sous une hypothèse non physique de troncature des collisions à basse énergie, on peut montrer que le p
Cauchy homogène en espace est bien posé. De plus, le système relaxe vers l’équilibre (en un sens faible), avec appa
singularité en temps infini si la masse initiale est supercritique : cela correspond à la formation d’un condensat de Bose
Pour citer cet article : L. Saint-Raymond, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

As for classical gases the only way to model quantum gases without any approximation (i.e., the only approach
valid in all regimes) is the atomistic point of view. The Newton system of motion equations forN particles is then replaced b
the linear Schrödinger equation for theN body wavefunction:

ih∂tψN =HNψN, (1)

whereHN is the Hamiltonian, or in other words, the energy operator of the system.

E-mail address:Laure.Saint-Raymond@math.jussieu.fr (L. Saint-Raymond).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.01.005
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Of course the terminology of ‘gas’ holds for a system which contains a large numberN � 1 of particles (with an additiona
dilution condition of the formNa3/Ω � 1 wherea denotes the typical molecular diameter andΩ is the volume of the system
and in general equation (1) cannot be studied as it stands.

1.1. Various approximations to get the qualitative behaviour of superfluids

The usual way to understand the qualitative properties of the gas is then to derive approximate models dependi
regime under consideration.

For superfluids at very low temperatures, we expect almost all bosons to be in the lowest energy state, which mean
gas is almost a pure Bose–Einstein condensate.

At zero temperature, for a Bose gas in a non-dissipative trap, the one body density is governed by the following e
the so-called Gross–Pitaevskii model:

ih∂tψ =
(

− h2

2m
�+U + g|ψ |2

)
ψ, (2)

whereU is the trapping potential, and the cubic term describes the microscopic interaction between particles.
In order to study the interaction between the condensate and the normal component of the superfluid, that is the

at very low but finite temperature, a natural idea is then to proceed by perturbative expansion around the pure conden
which is known as the Bogoliubov method [1]. This procedure leads actually to technical difficulties linked, in particular
fact that the spectrum of the fondamental Hamiltonian is discrete. Moreover, this perturbative method does obviously
one to catch certain phenomena, such as the formation of the condensate.

1.2. Three models to study the Bose–Einstein condensates at finite temperature

An alternative way of studying the Bose–Einstein condensate at finite temperature consists in modelling separ
condensate phase and the normal component of the superfluid.

As usual, the condensate is governed by a time dependent Gross–Pitaevskii equation, that is, an equation of the sa
(2) with coupling terms modelling the mass and energy exchanges with the non-condensate part of the fluid. This last co
of the superfluid is considered as a gas of particles whose motion is classical. This means that we will use a classi
either at kinetic or at fluid level, taking into account the collisions between bosons which do not belong to the conden
mean field created by the condensate, and the mass exchange with the condensate.

We will actually distinguish three types of models (see Fig. 1):

• a time dependent Gross–Pitaevskii equation for the condensate (and possibly the particles of low energy) and a
probabilistic description of the normal component (kinetic equation of Boltzmann type with corrections to ca
degeneracy of bosons) coupled by exchange terms;

• a time dependent Gross–Pitaevskii equation for the condensate (and possibly the particles of low energy) and a
fluid description of the normal component (with a state relation taking into account the modified form of thermod
equilibria for bosons) coupled by exchange terms;

• two fluid models for the condensate and the normal component coupled by exchange terms as predicted by Land
this last model the superfluidity of the gas is taken into account in the fact that the suprafluid phase does not tran
entropy (no heat flux), and slips into the normal component without any dissipation.

Note that all these models can be related through various asymptotics.
The kinetic equation for the non-condensate part of the superfluid can be obtained from the primary Schrödinger eq

using the BBGKY expansion in the low density limit (h → 0, N → ∞, λh2N/mkTΩ → 0 whereλ states for the diffusive
length for the interaction between particles of low energy, andm, k, T denote as usual the mass of particles, the Boltzm
constant and the temperature) [3]. This kinetic equation describes the dynamics of the momentum distribution that is
Wigner transform of the one-particle density.

The connection between kinetic and macroscopic fluid dynamics results from two types of properties of the c
operator: the operatorC satisfies the usual conservation laws, as well as an entropy relation that implies the relaxation
equilibrium (which are Planckian distributions for Bose gases). The macroscopic limits are obtained when the particles
many collisions over the scales of interest. Indeed, local equilibrium is reached everywhere, and the fluid is fully d
by its moments. Such asymptotics have been extensively studied for classical perfect gases: the formal expansions
derived by Hilbert [4] in inviscid regimes, then by Chapman and Enskog [5] in viscous regimes. An important mathe
literature is devoted to the rigorous proofs of these fluid limits. In the case of Bose gases, even the formal hydrodynam
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Fig. 1. The different models, and their interactions.

are not completely understood : a first work in this direction can be found in [6]. One of the difficulties is to deal with s
equilibria, another one is to obtain a relative velocity between the normal and the suprafluid components of the gas.

2. A model kinetic equation for bosons: the Boltzmann–Nordheim equation

To study the dynamics of the non-condensate part of the superfluid and the formation of the condensate, we
considering only the kinetic equation for bosons (the corresponding fluid equations being not really well defined).

2.1. Description of the dynamics of the momentum distribution

In kinetic theory, a monoatomic gas is represented as a cloud of like point particles and is fully described by its mo
distributionF . The phase space of kinetic theory is the set of(x, v) ∈ R3 × R3 wherex is the position variable whilev is the
velocity variable. The meaning ofF is as follows: any infinitesimal volume dx dv centered at(x, v) contains at timet about
F(t, x, v)dx dv particles. The interaction of particles through collisions is modelled by an operatorC; this operator acts only
on the variablev and is generally nonlinear. If there is neither external force, nor other interaction of particles, the evolu
the momentum distribution is given by an equation of Boltzmann type

∂tF + v · ∇xF =C(F). (3)

For bosons, Nordheim [7] has proposed a Boltzmann like quantum kinetic theory. The collision operator describ
microscopic interactions takes then into account the propensity of the bosons to occupy the same quantum state:

C(F)=
∫∫

R3×S2

(
F ′F ′

1(1+ F)(1 +F1)−FF1(1+ F ′)(1+ F ′
1)

)
b(v − v1,ω)dωdv1, (4)
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where the notationsF1, F ′ andF ′
1 designate respectively the valuesF(t, x, v1), F(t, x, v

′) andF(t, x, v′
1), with v′ andv′

1
given in terms ofv1 ∈ R3 andω ∈ S2 by the formulas

v′ = v − (v − v1) · ωω, v′
1 = v1 + (v − v1) ·ωω. (5)

These formulas give all possible solutions to the system with unknownsv′ andv′
1

v′ + v′
1 = v + v1, |v′|2 + |v′

1|2 = |v|2 + |v1|2, (6)

in terms of the datav andv1 and of an arbitrary unit vectorω. The relations (6) are the conservation of momentum and kin
energy for each binary collision between gas molecules (of like mass). The collision kernelb ≡ b(z,ω) is, in general, an almos
everywhere (a.e. in short) positive function defined onR3 × S2 that encodes whichever features of the molecular interaction
relevant in kinetic theory; it satisfies the symmetries

b(v − v1,ω)= b(v1 − v,ω) = b(v′ − v′
1,ω), (7)

for a.e.(v, v1,ω) ∈ R3 × R3 × S2. These properties of the collision kernelb together with the identity dv dv1 dω = dv′ dv′
1 dω

imply that the following relation holds∫
C(F)(v)φ(v)dv = 1

4

∫∫∫ (
F ′F ′

1(1+ F)(1+ F1)− FF1(1+ F ′)(1+ F ′
1)

)
× (

φ(v)+ φ(v1)− φ(v′)− φ(v′
1)

)
b(v − v1,ω)dωdv1. (8)

Although this model does not contain all the physically relevant features of superfluids, it has raised the interest of p
[3,8,9] because it simultaneously shares many similarities with the classical Boltzmann model and seems to take int
the specificity of bosons which present a degeneracy at very low temperatures. By (8), we have, at least formally,
conservation of mass

∂t

∫
F dv + ∇x ·

∫
vF dv = 0, (9)

the local conservation of momentum

∂t

∫
vF dv + ∇x ·

∫
v ⊗ vF dv = 0, (10)

the local conservation of energy

∂t

∫
1

2
|v|2F dv + ∇x ·

∫
1

2
|v|2vF dv = 0, (11)

as well as the entropy inequality

H
(
F(t)

) −
t∫

0

∫∫
D

(
F(s)

)
dv dx ds �H

(
F0)

, t > 0, (12)

where the entropy is defined for all nonnegative measurable functionf ≡ f (v) by

H(f )=
∫∫ [

f log(f )− (1+ f ) log(1+ f )
]
dv dx ∈ [−∞,0] (13)

while the dissipation termD(f ) is defined by

D(f )= 1

4

∫∫ (
f ′f ′

1
(1+ f ′)(1+ f ′

1)
− ff1

(1+ f )(1+ f1)

)
log

(
f ′f ′

1(1+ f )(1+ f1)

(1+ f ′)(1+ f ′
1)ff1

)
× (1+ f )(1+ f1)(1+ f ′)(1+ f ′

1)b(v − v1,ω)dv1 dωdv. (14)

This last inequality shows furthermore that the equilibrium states for the Boltzmann–Nordheim collision integral, in othe
the number densitiesE ≡E(v) such thatC(E)= 0, are the so-called Bose–Einstein distributions, i.e., the distribution func
of the form

P(β,u,µ)(v)= 1

eν(v) − 1
with ν(v)= β(v − u)2 −µ, (15)

for someβ ∈ R+, µ ∈ R− andu ∈ R3.
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2.2. Formal analysis of the formation of singularities

The fundamental properties of the Boltzmann–Nordheim model stated above show that any solution of (3) has t
simultaneously the global conservation of mass, momentum and energy and the growth of entropy. In particular, in o
the dissipation of entropy

t∫
0

∫∫
D(F)(s, x)dx ds

stays bounded ast → ∞, any solution has to relax towards equilibrium.
This leads to an apparent contradiction, since, for a given temperatureT (and a given mean velocityu ∈ R3), there exists a

critical massρT (depending only onT by translation invariance) such that

∀µ� 0,
∫

dv

eνµ,u,T (v) − 1
� ρT ,

whereνµ,u,T is the quadratic function defined by

νµ,u,T (v)= 1

kT
(v − u)2 −µ

andk denotes the Boltzmann constant. The question is therefore to understand what happens for initial data such thaρ > ρT .
Note first that this problem is a specificity of the Boltzmann–Nordheim model for Bose gases; it does not arise in

of the classical Boltzmann equation, neither for the Boltzmann–Nordheim model for Fermi gases. It expresses the de
of Bose gases, i.e., its propensity to present a state of congestion especially at low temperatures. The contradictio
therefore removed by considering all equilibria of the following form

Eρ,u,T (v)= 1

eνµ,u,T (v) − 1
+ (ρ − ρT )+δv−u, (16)

with the same mean velocityu for the singular part as for the normal component. The Dirac mass expresses the exist
a condensate phase in the system, or in other words the fact that a macroscopic part of the system has coherent o
Indeed the distributionEρ,u,T so defined has the prescribed densityρ and momentumρu, and further satisfies

C(Eρ,u,T )= 0,

which is obtained by a formal computation using the spherical symmetry. Such singular equilibria have been mathe
introduced by Caflisch and Levermore [10] for the Kompaneets equation, which is a simple model for photon/electron sc

Note that these equilibria are physically admissible insofar as the Dirac mass leads to an increase of the entropy a
not modify the entropy dissipation. A natural question is then to determine if the formation of the singularity arises i
time, that is, if some solutions of the kinetic equation may blow up in finite time. For the solutions of the Kompaneets e
with supercritical initial mass, it has been proved that singularities appear in finite time [11].

From a physical point of view we cannot expect that phase correlations with an infinite range set in after a finite time
would imply that the information of phase propagates at infinite speed). Nevertheless, the growth of a singular pa
momentum distribution is an indication that a condensate is formed in some sense. In order to obtain a condensatio
time, it seems then necessary to add some physics in the model. The theory proposed in [12] indicates that the phase
range of the condensate grows actually as the square root of the time.

From a mathematical point of view the first step consists in describing precisely how the particles pile-up nea
momentum before collapse: an argument of selfsimilarity developed in [9] allows one to predict a dynamical proce
power law distributions. The mathematical study of the formation of such a singularity in finite time could involve argu
as in [13]. The next step would be to give sense to singular solutions, in particular to study the Boltzmann–Nordheim
in a class of functions containing the generalized equilibria given by (16). This would require an important work of ana
define the entropy and entropy dissipation functionals in such a class of functions.

3. Mathematical results for the Boltzmann–Nordheim model

3.1. Existence of global spatially homogeneous solutions

The mathematical theory of the Boltzmann–Nordheim equation is just at the start; in particular, it does not allow
present time, to consider some important features of the model such as the mass and energy exchanges between the
and non-condensate components of the superfluid, nor to have an idea of its hydrodynamic limits.
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The difficulty which is encountered trying to proceed as for the classical Boltzmann equation is the nature of the non
On the one hand, this nonlinearity is essentially cubic

C(F)=
∫∫

R3×S2

(
F ′F ′

1(F + F1)− FF1(F
′ + F ′

1)
)
b(v − v1,ω)dωdv1 +

∫∫
R3×S2

(F ′F ′
1 − FF1)b(v − v1,ω)dωdv1,

which is much more complicated to control than the quadratic nonlinearity of the Boltzmann equation (which already
a theory of renormalized solutions). On the other hand, the estimates given by the entropy and entropy dissipation
weaker than the corresponding estimates coming from the classical Boltzmann equation: these functionals are sub
do not provide any compactness. A crucial element to make a rigorous theory for the Boltzmann–Nordheim theory w
then to give a sense to the collision operator in a space of functions defined in terms of the entropy and entropy d
functionals (and containing in particular the general equilibria given by (16)).

In order to give sense to the kernelC, the few mathematical works [14–16] dealing with the Boltzmann–Nordheim m
use three main simplifications: they first assume that the momentum distributionf ≡ f (t, x, v) is independent on the spac
variablex and isotropic with respect to the velocity variablev.

(H0) The momentum distributionf depends only on the quantityr = |v|.
In view of this assumption, it is natural to introduce the following notation

ŵ(r, r1, r
′, r ′1)=

∫∫∫
S2×S2×S2

w(rσ, r1σ1, r
′σ ′, rσ + r1σ1 − r ′σ ′)dσ dσ1 dσ ′,

w(v, v1, v
′, v′

1)
def= b

(
v − v1,

v − v′
|v − v′|

)
|v − v1|.

(17)

Of courseŵ satisfies the same symmetry properties asw. Also the collision operator can be rewritten in a simpler way

C(F)=
∫∫∫
R3+

(
F ′F ′

1(1+ F)(1+ F1)− FF1(1+F ′)(1+ F ′
1)

)
ŵ(r, r1, r

′, r ′1)δr2+r2
1−r ′2−r ′

1
2 dr1 dr ′ dr ′1, (18)

where the notationsF1, F ′ andF ′
1 designate respectively the valuesF(t, r1), F(t, r

′) andF(t, r ′1).
Then, in order to give sense to the collision operatorC, a strong (and unphysical) truncation assumption is made on

collision kernelb, which kills interactions between particles with low energy.
More precisely, the various assumptions can be stated as follows

(H1) sup
z∈R3

1

1+ |z|s
∫
S2

b(z,ω)dω <+∞ with s = 2,

which is the usual Grad cut-off for the Boltzmann collision operator (meaning that the singularity due to grazing collis
made integrable);

(H2) ŵ ∈L∞(
R4+

)
, whereŵ is defined by (17),

which has to be understood as a truncation assumption near the origin, meaning more or less that

∃B0 > 0, b(z,ω)� B0(cosθ)2 sinθ |z|3.
Note that such a condition is satisfied for any cross-sectionw such that

∃w0 > 0, w �w0 min
(|v′ − v||v′

1 − v|,1)
.

Under these assumptions, the Cauchy problem for the homogeneous equation

∂tF =C(F) (19)

is globally well-posed in the spaceM2 of bounded measures with two bounded moments.

Theorem 3.1[16]. Let b be a collision kernel satisfying assumptions(H1), (H2). Consider an initial dataF in ∈ M(R3) with
radial symmetry

F in(v)= gin(|v|)
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for some bounded measuregin defined onR+, and such that∫
gin(r)r4 dr <+∞.

Then there exists a unique solutionF ∈C([0,+∞[,M2(R3)) to (3).

The proof of this result is based on standard arguments once we are able to give sense to the collision operatorC(f ) for any
f in the class of functions under consideration. The first result in that direction is due to Lu [14]:

Lemma 3.2.Denote byC+ (resp.C−) the gain part(resp. the loss part) of the collision operator. Then, under assumptio
(H1), (H2) on the collision kernelb, the following functional inequality holds:

∀F ∈ L1
2,

∥∥C+(F)
∥∥
L1 + ∥∥C−(F)

∥∥
L1 � CB‖F‖2

L1
2
+Cw̃‖F‖3

L1, (20)

whereL1
2 denotes the space of inegrable functions with two integrable moments.

This crucial a priori bound is obtained estimating separately each term of the collision integrand.
The quadratic terms may be defined thanks to assumption (H1) and they are bounded by the first term in the right-

of (20).
The cubic terms are defined making one more integration in the representation formula (18) (on one of the variablesr, r ′, r ′1)

and they are bounded by

‖ŵ‖L∞‖F‖3
L1 .

This estimate can actually be extended for bounded measures, as proved by Escobedo and Mischler [15]. Their
inspired by the work of Povzner [17], it consists in defining the various terms by duality.

For instance, in order to define the cubic term∫∫∫
R3+

F ′F ′
1Fŵ(r, r1, r

′, r ′1)δr2+r2
1−r ′2−r ′

1
2 dr1 dr ′ dr ′1

we consider its distributional bracket with any test functionφ ∈ C∞
c (R+)∫

φ(r)

∫∫∫
R3+

F ′F ′
1Fŵ(r, r1, r

′, r ′1)δr2+r2
1−r ′2−r ′

1
2 dr1 dr ′ dr ′1 dr =

∫∫∫
dF(r1)dF(r2)dF(r3)B[φ](r1, r2, r3),

where the quantityB[φ] is defined as follows

B[φ](r1, r2, r3)= ŵ
(
r1, r2, r3,

√
r2
1 + r2

2 − r2
3

)√
r2
1 + r2

2 − r2
3

2
H
r2
1+r2

2−r2
3
φ(r1),

whereH denotes the Heaviside function. The condition

B[1] ∈ C
(
R3+

)
guarantees that this cubic term is well defined for any isotropic measureF ; it holds if

b ∈ C
(
R3 × S2)

which is implied by (H1), and if moreover

lim
(r1,r2,r3)→0

ŵ
(
r1, r2, r3,

√
r2
1 + r2

2 − r2
3

)√
r2
1 + r2

2 − r2
3 = 0

which is a consequence of (H2).
Similar computations for the other terms lead finally to

∀F ∈ M2,

∫
C+(F)+

∫
C−(F)� CB

(∫ (
1+ |v|2)

dF

)2
+Cw̃

(∫
dF

)3

which allows one to establish Theorem 3.1 [16].
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Remark 1. A refined version of (20) has been used by Lu [14] to establish a global existence result whens = 0 in (H1). For
s = 1, Lu also proves an existence result making the additional assumption thatb has the particular shape

b(z,ω)= |z|γ ζ(θ)
with γ ∈ [0,1], ζ ∈ L1.

3.2. Relaxation towards equilibrium

In theL1 framework, Lu has obtained some results on the long-time behaviour of such solutions: the relaxation
equilibrium holds at least in a weak sense.

Theorem 3.3[14]. Let b be a collision kernel satisfying assumptions(H1), (H2). Consider an initial dataF in ∈ L1(R3) with
radial symmetry

F in(v)= gin(|v|)
for some functiongin ∈L1

4(R
+). Denote byg ∈C([0,+∞[,L1(R3)) the corresponding solution of(3).

Then, for all sequence of timestn going to+∞, there exist a massρ � ρ in, an energyE � Ein and a subsequence of(tn)
such that

g(tn)→ Pβ,0,µ

in renormalized sense whereβ � 0 andµ� 0 are uniquely defined by∫
Pβ,0,µ dv = ρ,

∫
Pβ,0,µ|v|2 dv = 2E

(this very weak notion of convergence does not take into account the singular part of the limit).
Moreover, if the initial mass is subcritical, the previous convergence holds in weakL1 (since there is no singular part in th

limit).

These asymptotics are established by means of a rather weak concept of convergence, the biting-weak con
introduced by Chacon, in the form proposed by Ball and Murat [18]. The study is based on the following equivalent form
of Eq. (19)

∂tβ(F) = β′(F)C(F),
whereβ denotes appropriate functions ofC∞

c (R+).
The proof is rather technical and will not be detailed here for the sake of simplicity.

Remark 2. For the spatially homogeneous Boltzmann–Compton equation (which describes the photon–electron scat
means of a collision operator being more or less a ‘linearized’ version of the Boltzmann–Bose collision operator),
detailed study of the asymptotic behaviour of the solutions can be made: indeed, it has been proved by Escobedo an
[15] that the equation may be split in a system of two equations for the regular partf dv and the singular partµ of the measure
dF (with respect to the Lebesgue measure).

Unfortunately such a decomposition does not hold for the general isotropic solutionsF of the original Boltzmann–Nordheim
equation (19) unless the singular part reduces to a single Dirac mass. Indeed, following [15], we split the collision op
many parts, and we define in particular

Q(µ)=
∫∫∫

R3+

µ′µ1µ
′
1ŵ(r, r1, r

′, r ′1)δr2+r2
1=r ′2+r ′

1
2 dr1 dr ′ dr ′1.

If µ is not a single Dirac mass then supp(µ) \ {0} is strictly contained in supp(Q(µ)). Then there existsµ singular such tha
Q(µ) has a regular part which is not equal to zero.

In the particular case where we assume that for every timet > 0, µ(t, v) = α(t)δ(v), Eq. (19) may be split into a couple
system of equations for the pair(f,α). Nevertheless, because of the truncation hypothesis, such a case is not very inter

As was said at the beginning of this paragraph, the mathematical results on the Boltzmann–Nordheim mode
satisfactory from a physical point of view.
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First of all the truncation on the collision kernel prevents the solutions of (3) from blowing-up in finite time: if the
distribution is integrable with respect to the Lebesgue measure, no singular measure can appear in finite time, which
particular that the mass of the non-condensate component is conserved. The convergence towards equilibrium has
understood as a long time behaviour. In order to take into account the interactions between particles of low energy w
expected to produce the blow-up, it would be necessary to work in a different functional framework to be determined.

Before being able to deal with such a difficult analysis, it would be interesting to better understand the qualitative pr
of the solutions built by Lu. A natural problem is indeed to describe precisely the long time behaviour of the solutio
actually expect the concentration to take place with a power law profile. Two preliminary questions would have to be an
can we prove that

• a solution with supercritical mass converges to the corresponding generalized equilibrium in the sense of measur
• the non-singular part of a solution with supercritical mass converges to the corresponding Boltzmann–Bose dis

say inL1-norm?

In the case where the initial distribution contains already a condensate, the correlation range is infinite and the
exhibits transfer of mass between the condensate and non-condensate components of the fluid. A natural question
describe precisely the dynamics associated with this transfer of mass, and to understand how it is modified by ta
account the interactions between particles of low energy.

4. Back to the modelisation

In view of the previous section, the mathematical theory of the Boltzmann–Nordheim equation seems to give v
results, and to be at the present time of no help to understand the physics of the Bose–Einstein condensation.

In order to further study this equation, we have actually to distinguish two types of difficulties, the first ones c
from technical points or mathematical methods, and the second ones being inherent to the model (depending on i
of validity).

Let us first recall that an important part of the physics has been taken away to get the Boltzmann–Nordheim equatio
all, this equation is expected to govern only the non-condensate part of the superfluid; in order to take into account the
of mass and energy with the condensate part it would be necessary to add coupling terms. Moreover, this equation
using the BBGKY hierarchy in the low density limit∫

f (t, x, v)dv � 1,

considering velocities which are very large compared with the sound speed (computed with the Bogoliubov theory),
could be not relevant to study it in regimes where singularities arise (even before collapse).

4.1. From a physical point of view

To obtain a model which is more relevant from a physical point of view, the first step is to involve a mechanism (w
typically a quantum effect) that allows one to go from a singularL1 distribution to a congestion state: as the formation of
condensate is predicted to occur through a solution with a finite time singularity, the rate of evolution of this solution d
like the inverse of the time remaining until the singularity, which makes the kinetic theory invalid when this time scale b
shorter than the period associated with free-particle motion by the Planck–Einstein correspondence.

Then, in the presence of a Bose–Einstein condensate, the model has to be modified and the resulting system
equations has to compatible with the various hydrodynamic models, either the classical two-fluid hydrodynamics of La
the hydrodynamic models out of equilibrium such as [6].

In [3], such a system is derived: it involves a nonlinear Schrödinger equation for the wave function of the condensate
with a kinetic equation for the normal (thermal) component of the superfluid. This system shows a possible exchange
between the two components through a kind of induced emission preserving the coherence of the condensate. This
expected to give a relevant description of the superfluid in the low density limit since it is obtained more or less by a B
expansion. The main features of the homogeneous model are the following:

• it takes into account Bogoliubov’s renormalization for the energy spectrum;
• it is based on a decomposition of the Boltzmann–Nordheim collision operator as obtained in Remark 2.
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Extended to the inhomogeneous case:

• it implies that the exchange of mass between the condensate and the normal component occurs without any mo
in the phase of the wave function;

• it takes into account the frequency dθ/dt of the wave function in the conservation of energy, and the wave numberh∇θ in
the conservation of momentum for each binary collision, which modifies the definition of the cross-section.

4.2. From a mathematical point of view

The difficulties encountered in the mathematical study of the Boltzmann–Nordheim equation (at least in the homo
case) are essentially due to the presence of a cubic term in the collision operator. In other words, the problem comes
lack of integrability of the momentum distribution. Of course, if the model is relevant to describe the dynamics of a Bo
we cannot expect to get estimates on theLp-norms forp > 1.

A first approach inspired by the work of Pomeau et al. [3] would be to split the density in many components:

– a very regular component (bounded in someLp for p > 1);
– another component regular with respect to the Lebesgue measure which models the flux towards mean mome

which could play a crucial role in the formation of the singularity;
– a condensate part in the form of a Dirac mass,

and to write a formally equivalent system of coupled equations for these three components. Note that, in order that the
occurs in finite time, the coupling between the last two components has probably to be slightly modified.

The difficulty is then to do a similar analysis of the splitting as in Remark 2 without the unphysical assumption
cross-section.

An alternative would be to modify directly the Boltzmann–Nordheim operator and to renormalize the various terms i
in the integrand. For instance, the operatorC could be replaced by

C̃(F )=
∫∫

R3×S2

(
F ′F ′

1
(1+ F ′)(1+ F ′

1)
− FF1

(1+ F)(1+ F1)

)
b(v − v1,ω)dωdv1

=
∫∫

R3×S2

(F ′F ′
1(1+F)(1 +F1)− FF1(1+ F ′)(1+F ′

1))

(1+ F ′)(1+F ′
1)(1+ F)(1+ F1)

b(v − v1,ω)dωdv1, (21)

which has the same equilibrium states, and which can be easily defined for bounded measures.
From a certain point of view, such a renormalisation is not absurd, since the Boltzmann–Nordheim equation can be r

derived in the low density limit, under the stronger assumption

f � 1

(see [19]), and that in this limit

f ∼ f

1+ f
.

Of course, such a model does not lead to a singularity in finite time (since the right-hand sideC̃(F ) is bounded inL∞).
However, it could be interesting to understand precisely the mechanism of relaxation for this simplified model.

Note that an equation of this type has been obtained by Laloë et al. in [20] or [21] using a phenomenological a
(without any link with the BBGKY hierarchy), the so-called free Wigner transform. The general idea is to replace the c
introduced by the collisions by a singularity in the phase space. The model so obtained seems to present qualitativ
which are relevant from a physical point of view (for instance, it allows one to establish the Bethe–Uhlenbeck formula
contribution of the binary collisions to the equilibrium pressure).
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