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Abstract

In this article we discuss the role played by kinetic theory in describing the non-equilibrium dynamics of dilute systems of
weakly interacting bosons. We illustrate how a simple kinetic equation for the time evolution of the spectral particle density can
be derived from the spatially homogeneous Gross—Pitaevskii equation. This kinetic equation agrees with the usual Boltzmann—
Nordheim equation of quantum kinetic theory in the long wavelength limit where the occupation numbers are expected to
be large. The stationary solutions of the Gross—Pitaevskii kinetic equation are described. These include both thermodynamic
equilibrium spectra and finite flux Kolmogorov—Zakharov spectra. These latter spectra are intrinsically nonequilibrium states
and are expected to be relevant in the transfer of particles to low momenta in the initial stage of the condensation process. This
is illustrated by some computations of a solution of the kinetic equation beginning with initial conditions far from equilibrium.

The solution generates a flux of particles from large to small momenta which results in a singularity at zero momentum
within finite time. We interpret this singularity as incipient condensate formation. We then present some numerical results
on the post-singularity dynamics and the approach to equilibrium. Contrary to our original expectations we do not observe the
Kolmogorov—Zakharov spectrum during the period of condensate growth. In the closing sections we address the issue of the
connection between the Gross—Pitaevskii and Boltzmann—Nordheim kinetic equations. We argue that the two equations have
differing regimes of applicability in momentum space, matching in an intermediate range. We make some suggestions of how
this matching can be modeled in practi@e.cite thisarticle: C. Connaughton, Y. Pomeau, C. R. Physique 5 (2004).

0 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Lathéoriecinétiqueet lescondensats de Bose-Einstein. Dans cet article nous discutons le role joué par la théorie cinetique
dans la dynamique hors équilibre d’'un gaz de Bose dilué avec des interactions faibles. Nous montrons comment arriver a une
équation cinétique assez simple pour I'évolution temporelle de la densité spectrale des particules en commencant avec I'équation
de Gross—Pitaevskii pour le cas spatialement homogene. Cette équation cinétique est en accord avec I'équation de Boltzmann—
Nordheim de la théorie cinétique quantique dans la limite ou les longueurs d’onde sont grandes et on prévoit que les nombres de
particules soient grands aussi. Les spectres stationaires de I'équation cinétique de Gross—Pitaevskii sont décrits. lls comprennent
des spectres d'équilibre thermodynamique et des spectres qui supportent des flux finis dit spectres de Kolmogorov—Zakharov.
Ces derniers spectres sont essentiellement des objets hors-équilibre et on suppose qu'ils sont importants dans I'apport des
particules au moments faibles dans les premiéres étapes du processus de condensation. Ce point est illustré avec des calculs
numériques de I'équation cinétique qui commencent avec des données qui sont loins de I'équilibre. La solution crée un flux de
particules des moments élevés aux petits pour qu’une singularité se déclenche en temps fini au moment nul. Nous interprétons
cette singularité comme le commencement du condensat. Ensuite quelques calculs numériques de la dynamique aprés le temps
de singularité et I'approche a I'équilibre sont presentés. Contre nos intuitions le spectre de Kolmogorov—Zakharov n'est pas
observé pendant la croissance du condensat. Enfin nous discutons les liens entre la théorie cinétique de Gross—Pitaevskii et celle
de Boltzmann—Nordheim. Nous proposons que les deux équations ont des domaines d’'applicabilité différents dans I'espace des
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moments et qu'il faut faire un raccordement dans un domaine intermédiaire. Nous présentons nos idées pour construire un
modele pratique qui pourrait faire ceRour citer cet article: C. Connaughton, Y. Pomeau, C. R. Physique 5 (2004).
0 2004 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

The phenomenon of Bose-Einstein condensation occurs when a large niviptafrparticles of a Bose gas enter the same
single particle quantum state such that the fracfiQiiN remains finite in the thermodynamic limi§] — oo, N/V finite. In
the case of a uniform gas, the particles condense in the single particle state having zero momentum. Predicted by Bose and
Einstein in 1924 [1,2], this phenomenon has generated intense interest in the past decade following the extensive experimental
progress which has been made in condensing atomic gases since the initial experiments in 1995 [3,4]. See [5] for a review.

The theoretical description of BEC relies either on kinetic theory, the so-called Boltzmann—Nordheim kinetic equation or on
the Gross—Pitaevskii equation, an equation for the time—space dependant amplitude of the condensate.

The Boltzmann—Nordheim (B—N) kinetic equation,

dnp,
ot

= / Wpikakoka[kaks (14 npy) (L4 nk,) — npyngg (14 ng,) (14 ng,) |
2,,2 .2 .2
Xa(p1+k1—k2—k3)5(p1+k1—k2—k3) dkq dkodks (1)

was derived by Nordheim [6] for the time evolution of the spectral densjty,of a statistically homogeneous ensemble of
interacting quantum particles soon after the development of quantum statistical mechanics in the early twentieth century. In the
above equation

1 .
Wpikikoks = m(\fpl—kﬁz + |fk1—p1‘2)7 @)

wheref is the scattering lengtly is the particle mass aridis Planck’s constant. In this article boldface type represents a vector
in d-dimensional space. We shall typically uséo represent a dummy variable which is integrated overptarepresent one
which is not. The distribution is normalised such that the particle density is given by

1
On the other hand, the Gross—Pitaevskii (G—P) equation,
il 2 s 5
ih— =——V°Y¥ 4+ V(X vy, 4
Py o + V)Y +gl¥| 4)

first derived in the 1960s [7,8], is a mean equation for the space-time dependent amplitude of the condensate. The nonlinear
interaction coefficientg, is

A7 h2f
g:
m

: ®)

Heres is the effective scattering length of the two-body potential in the s-wave approximation. This approximation, inherent in
the G—P equation, is valid provided thAtis much smaller than the average distance between atoms, that is to say the gas is
dilute. V (x) represents the external potential — the trap in the case of real experiments. For an extensive review of the role of the
G—P equation in the theory of BEC see [9]. In the absence of an external potential, we are considering a spatially homogeneous
gas and the Gross—Pitaevskii equation becomes the nonlinear Schrodinger equation.

The outline of this article is as follows. In Section 2 we derive a kinetic theory for the G—-P equation which describes the
time evolution of the average spectral particle density. We refer to the resulting kinetic equation, Eq. (41), as the G—P kinetic
equation to distinguish it from the B—N equation. This kinetic equation implies(that= 0, meaning it describes the regime
where only short waves are relevant. It is the same kinetic equation as that used for a long time to describe the statistics of optical
turbulence, see for example [10], and other physical systems governed by the nonlinear Schrodinger equation. Following this
derivation, we address the issue of stationary solutions to the kinetic equation in Section 3. We particularly emphasise the



C. Connaughton, Y. Pomeau / C. R. Physique 5 (2004) 91-106 93

non-equilibrium stationary states which carry fluxes of energy and particles through momentum space. The spectra associated
with these non-equilibrium stationary states are called Kolmogorov—Zakharov (K-Z) spectra. They are an analogue of the
Kolmogorov—Obukhov spectrum of hydrodynamic turbulence which is responsible for energy transport in far from equilibrium
fluids. Of particular interest in the G—P kinetic theory is the inverse cascade which is responsible for the transfer of particles
from high to low momenta required for BEC to occur in a system which is initially away from thermodynamic equilibrium.

In Section 4 we look at some time dependent solutions of the kinetic theory. Using self-similarity arguments and numerical
simulations we show that the inverse cascade can generate a finite flux of particles to the zero momentum state starting from a
continuous particle distribution within finite time. This can be seen in some sense as corresponding to the onset of condensation
proper. In Section 5 we present some preliminary numerical computations of a system of kinetic equations which describe the
post+* evolution. Surprisingly we do not see the K-Z scaling in the pdstgime but rather a rapid approach to a spectrum

very close to thermodynamic equilibrium. In the penultimate section we address the subtle question of the connection between
the B—N and G-P kinetic theories. We argue that the B—N kinetic theory should be relevant for large momenta and the G-P
equation relevant for the low momenta where condensation occurs. The two should match in some intermediate range of scales.
We argue that this matching should be realised by thinking of the K-Z spectrum of the B—N equation with its flux of particles
as a source of particles for the G—P equation. We outline some arguments of how this might be achievable in practice by adding
a source term to the G—P equation which models the effect of the particle cascade from larger momenta. We close with some
comments about the unanswered questions which we feel are important to a fuller understanding of the relationship between
kinetic theories and BEC.

2. Kinetictheory for the Gross—Pitaevskii equation

2.1. Hamiltonian description of G—P

Let us consider now the spatially uniform case where the external poténtial, is absent. The G—P equation,

4 72

ih— = —— V20 4+ g|¥ 2w, 6
ot 2m i (6)
follows from the variational principle
. oY §H
ih—= , 7
ot 1'% ™
where the Hamiltonian,
h? 2, 8yt
H= | dx| —|V¥ =, 8
[ (5 v+ S ®
measures the total energy of the condensate. In addition to consekujy. (6) also conserves the total particle number,
N:/dx|l1/|2. 9
2.2. Wave and condensate solutions
The trivial solution of (6) corresponds to a spatially uniform condensate,
W (x, 1) = |Wp| e~ T8/ Mo+ (10)

where|¥y| is an arbitrary condensate amplitude anid an arbitrary phase.
The other obvious type of solutions of (6) are the wave-packet solutions to the linearised equation. These should be relevant
wheng « 1 corresponding to the dilute, weakly interacting regime. These are best expressed through their Fourier transform

_ - —iK-X+iwgt
w(X, z)_( )d/Z/ak(O)e dk, (11)
whered is the number of spatial dimensions and
ho2
= —k*°. 12
wk (12)

We note from (12) that linear waves on a Bose—Einstein condensate are highly dispersive. In the weakly interacting regime,
these waves and their interactions play an important part in the dynamics which will be examined in more detail in this article.
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2.3. Fourier space description

Since we are dealing with waves, it is convenient to work in Fourier space. We adopt the following notation for the Fourier
transform pair

l .
A= ——— | wx, 1) e *Xdx,
k(@) (Zn)d/2/ (X, 1)
) (13)
_ ik-x
(X, t)_—(zﬂ)d/Z/Ak(t)é dk.
In Fourier transformed variables, the Hamiltonian is
1 g
H:/a)kAkAﬁdk—l— EW/AkAklAﬁzAiﬁsS(k-i-kl—k2—k3)dkdk1dk2dk3 (14)
and Hamilton’s equations, (7), give
94D | impAp = ——% x Ky — Ko — k3) dkq dky dk 15
7+'prp——W/AklAk2Ak35(p+ 1 — k2 —k3) dkq dkp dks, (15)

with a corresponding complex conjugated equationAgr For notational reasons it is expedient to work in the interaction
representation adopting the variables,

ap(t) = Ap(1) P, (16)
The equation of motion faap (¢) is

Bap _ |g82 ikal.kzkgt * S dk 17

T _W € ), Ak 9k3 O pky koks UK123 17

Here we have introduced the following notation which we shall continue to use throughout the article to compact the formulae:

2 pky kokg = Wp + Wky — Wk, — Okz,
8 pky,koks = 8(P + K1 — Kz —K3),
dk123=dk1dko dks.
In order to avoid doing a perturbation expansion in the dimensional parametes,have introduced the formal dimensionless

parameter,sz, by making the replacememp — ¢Ap. The statement that is small is the statement that the nonlinear
contribution to the energy is small with respect to the linear one.

2.4. Essentials of a statistical description

Since the full solution of (17) contains much redundant information about the phases and fast oscillations of almost linear
waves, it is more sensible to look for a statistical description of the system. Given a random ensemble of initial conditions
for the Ay’s, can we compute the probability distribution &f at later times? For simplicity, we shall assume that the initial
distribution is Gaussian although if we were willing to do a bit more work, this assumption could be weakened considerably.
We are interested in the behaviour of the momenta pfvhich we define as follows

M3(p1; P2) = (Ap; Ap,),
M4(P1. P2; P3. Pa) = (Ap; Ap, A, A, ):
Mg(P1, P2, P3; P4, P5, Pe) = (Ap; App Aps A, Aps Aps)

and so on. We remark that the odd moments are zero because, in effect, we average over phases. We are particularly interested in
the second momen#/2(p1, P2), Since it is simply related to the Fourier transform of the particle distribution of the condensate.

Itis a simple matter to derive the equations of motion for the moments from (17). We shall need the first two. By integrating
these equations we obtain the following formal expressions for the moments.
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0
t
iga2

M4(p1, P2; P3, P4) (1) =

W/|:/ei9k2k3,1’3klrM6(p1’pZ’kl’ P4, ko, k3)(7) dtj|5p3k1,k2k3 dk123
0

ot -
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n (zg;r)d/ / e $%kaka. a1 Mg (py, p2, K1, Pa, Ko, k3) () dr 8 paky koks K123
Ly J
. 2 rt T
8¢ 2911 42457 M (o, Ko, Ka, K d dk
T 2 6(P2, k2, K3, K1, P3, P4)(T) AT (81 4y koks IK123
Ly J
ot -
1g¢ Ky koka T
" and $pak1koks® Mg (p1, Ko, Ka, K1, P3, Pa) (1) dr 8 poky,koks HK123 (19)

Note that these expressions form an unclosed hierarchy of equations with the expression for each moment involving the moment
of next order up.

2.5. Derivation of the kinetic equation from the dynamical equation

We shall look for an asymptotic expansion, or each moment as a power serfes in

o0
Ma(Ke,... k)= Y e2"MZ Ky, ... Kn), (20)
m=0
for eachn. We are particularly interested M>(p1; p2):
Mo(p1: p2) = MY (p1. p2) + £2M57 (1. p2) + 4 M5P (p1. ) + - (21)
We require that this series be asymptotic, meaning that
1 S (m)
. 2m p(m —
SQTQsZ_M |:Mn(k1, k) — mgos R (kq, ..., k,,)} =0, (22)

for azmy finite M. We now substitute the expansion, (20), into the expressions, (18),.(1@nd solve iteratively, order by order
in <.

To zeroth order, each moment is constant and given by it's initial value. By assuming Gaussian initial conditions, we can
close the hierarchy of moment equations by expressing higher order moments as a sum of products of pairs of second order
ones using a Wick decomposition. This allows us to get at the results without recourse to the more complex asymptotic closure
arguments [11,12] required in the case of non-Gaussian initial conditions.

At higher orders, the perturbation series includes ‘secular’ terms which grow as powerfafexample, for a given
moment, we might have the following schematic behaviour at aréter

MP () = MP @) + 1112 1), (23)

where bothll71,£2) (r) and M,<,2)(t) are 1) ast — oo. The presence of the secular teﬂi;ﬂz)(t) means that the expansion (20)
for M, (7) is no longer valid for times greater tharic®. This is because at this time, the second term becomes of order one.
Since we are interested in the long time behaviour of the system, this is a problem.

It is however, a problem with a well-known solution, known as the method of multiple scales. The secular terms can be
removed in a consistent way by allowing the zeroth order solution to depend weakly on time. We postulate the existence
‘multiple time-scales’75,, = £¢2", which we take to be independent, and replace

MO > Oty =mO (T 7. . ). (24)
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Our iteration procedure will then generate additional terms which come from differentiating these weak time dependences. In
our example we now find that at order we would have

(0)

2 ~(2 ~ (2 IM,
MP () = MP (1) + 171} %z)—rﬁ. (25)

We can now render the perturbation series valid for times larger ty%by choosing the weak time dependenceM)SD) to
cancel the secular terms. Thus we arrive at the following consistency condition governing the large time behaviour

0)
oM, ~(2)
— =M . 26
VT w (1) (26)

Of course, in our example, we have only removed secular terms which arise at®réerther such terms will arise at order
&% which would invalidate the expansion for times larger thasf1 Hence then multiple scale procedure must be applied order
by order.

In the present article we shall focus on the second order moment where the multiple scale consistency condition yields the
kinetic equation governing the long time dynamics of the spectral particle density. In this case we shall find that there are no
secular terms at ordef and the first nontrivial consistency condition arises at oedetVe shall not go any further than this
since the algebra involved quickly becomes difficult to manage.

Note that the assumption of statistical homogeneity implies

Mp(p1; p2) = mp(p1)8(P1 — P2). (27)

Here we have introduceg(p1) to represent the spectral particle density. We now expdha@q; p2) in powers ofe? up to
ordere?. Egs. (18) and (19) then give

M52 (p1: p2) (1) = MY (P1, P2)(0) = n(PD3py. pye (28)
@) .. _ 18 0) .
M5~ (p1; P2) (1) = (zn)d/A[Qk2k3,p2k1](t)M4 (P2, K1: K2, K3)8 oy koks K123
ig )
- W/A[-Qplkl,kzlg](f) M, (K2, K3; P2, K1)8 p kg koks IK123 (29)

M5P (p1: p2) (1)

2
& . (0) .
= 2nd / E[$2p1koksks. pokiksks $2kaks. poke | (Mg (K1, Ks, K Ka, k2, K3)8 poky kokadpika kske IK123456
g ©
(27)2d / E[82p1kykaka, pokokskes 2 prky . koka () Mg~ (K2, K3, Ka; K1, K5, K6) 8 py kg koks 8 poka, kske K123456
g ©
+ 202 /E[9p1k5k6,k2k3k4;Qplkl,kzksl(f)Me (k2, k3, k4; P1, K5, K6) 8 k7, koks Okika, kske TK123456
g ©
- (2m)2d / E[$2 p iy, kpkskes $2 prie, koks 1 () Mg~ (K2, K5, Kg; P4, P2, K1) 8 p1ky koks Skgka, kske IK123456
g ©
- (27{)2d / E[Qp1k1k4,k3k5ke§ Qplkl,kzks](t)Me (k3, ks, ke: ka, p2, k1) ‘Splkl»kzks 5](2](4’](5](6 dk123456
g ©
T 2 /E[Qk2k5k6>l’2klk4;‘Qk2k3>l’2k1](t)M6 (P1. K1, K4 k2, K5, K6) 8 poiy koks Skaka, kske AK123456
g ©
" 20 / E[Qkgkske, pokika> Pkoks, poki /()M (P1, K1, Ka: K3, K5, K6) 8 poky koks Skoka ksks IK123456
o2

0
2n / E[Riokska, poksks: Choks, poka (DM (1. K5, Ke: Ka, K2, K3) 8 ok koks Skaka kske 123456 (30)
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Note that the time dependence of the above terms has been localised into the following two integrals

t
A[x](t):/ei”dt, (31)
0
t
E[x + y; yl(t) = / Alx](t) dV dr. (32)
0

Their behaviour for large times will determine the secular terms arising in the expansion.

The really tedious step in the analysis is to split Méo) appearing in these expressions into products of second order
momentg invoking the Gaussianity of the initial distribution. We shall onIy_ keep pairs of thg(%gn;z) = n_pla(pl —p2)
since pairs of the formfAp, Ap,) or <A;1A;§2> are zero because of averaging over fast oscillations. Bearing this in mind we
write

0
Mz(l ) (p1.P2: P3. P4) = 1p11p; (81, p3bpo, pa + 8p1, padpo. p3)s (33)

Mg(P1, P2, P3; P4, P5, P6) = npynpyiip3 (8py, padpa, psdpa, ps - Op1,padpa. pedpa, ps + Op1,psOpa. padps, pe

+8p1.p58p2. pe®pa. pa + 8p1.pedp2. padps. ps + p1.pedpa. psdps. pa)- (34)
Upon substitution into (30) and integrating out the pair delta functions arising from these decompositions we find

MP (p1: p2)(1) =0, (35)
@ .. 2¢°
M57(p1; P2)(7) = W (1K kMg F M1k, Tkg — Py ftky ik — Mpyliky Ik, ]
X (E[O, Qp1k1,k2k3](t) + ET0, _Qplkl,k2k3](t))8(pl + k1 - k2 - k3) dk1238[71»172' (36)

Since the ordet? term in the expansion (20) fa¥l>(p1, p2)(¢) is zero there is no secular behaviour and the multiple scale
consistency condition arising at this order is the trivial one:

3M§2)(I01: P2)

0. 37
T @)

However the ordes* term does exhibit secular behaviour. It arises when we take the long time limit:

E[O, x](¢) ~ (m?(x) + iPV<E>><t - |i> ast — 0o, (38)
X 0x

wherePV(-) denotes the Cauchy Principal Value. Thus at this order, the multiple scale procedure yields a non-trivial consistency
condition:

oMY (p1:pp)  drg?
T (em

i 8np16

- 8721 pP1,p2-

/[nklnkznkg + ”plnk2”k3 - np1”k1"k3 - nplnklnkz](s(Qplkl,kzkg)aplkl,kzks dk1238[71,p2
(39)

Note that the delta function expressing spatial homogeneity factors out. Recallirfy that*s we note that this equation is
actually the well-known kinetic equation governing the relaxation of the spectral particle density in an ensemble of weakly
interacting waves:

onp, 4 47tg2
P45

T /(”klnkznka + 1y iy Nkg — Rpy kg kg — Mpaltky Mky)

X 8(wp, + Wk, — Wky — a)ks)(s(p]_ + k1 — ko —k3)dk123. (40)

Note that the structure of this equation is very reminiscent of the B—N equation (1). We shall be primarily interested in the
idealised situation where the momentum distributigg,, is statistically isotropic. In this casep, is a function ofpy = |p1].



98 C. Connaughton, Y. Pomeau / C. R. Physique 5 (2004) 91-106

We can simplify our discussion by writing the kinetic equation in energy space rather than momentum space. We introduce the
variablese; as follows:

15 15 12 15
€= EPL €= Ekl, €3= Ekz, €4 = §k3.
Some algebra then allows the kinetic equation to be re-written as
one, 1
=—T, R 41
o1 NG alne ] (41)
where
Talnel = / Seqepegeq MepNeghe, + NegNegley — NegNeey — NeqNeyles)d(€1 + €1 — €2 — €2) deo deg degy, (42)
and
)
Serezezes = € W«/qezésm/ 8(p1 + k1 — ka2 —k3) ds22ds23d$24. (43)

In this formula, d2,ds23ds24 represents the integration over polar angleskikoks space. Note thale;cyeze, iS @
homogeneous function of degre¢2l The angular integration of the delta function can be done explicitly in two and three
dimensions. We are interested in the three-dimensional case wke it is found [13]
4 47rg2
S€1€263€4 =

e min{ /€1, 2. v/€3. v }. (44)

The two-dimensional case, along with many other aspects of the kinetic theory for the nonlinear Schrédinger equation, is
explained in detail in [10].

Eq. (41) is the wave kinetic equation well known in the theory of wave turbulence. In this article we shall refer to (41) as
the Gross—Pitaevskii kinetic equation to distinguish it from the Boltzmann—Nordheim kinetic equation, (1). Having shown how
the G—P kinetic equation can be derived from averaging solutions of the nonlinear Schrédinger equation for the condensate
wave-function, we now turn our attention to its solutions. We shall first examine the time-independent solutions which describe
stationary equilibrium and non-equilibrium momentum distributions. Then we shall study time-dependent solutions.

3. Equilibrium and non-equilibrium stationary states

It is a trivial matter to verify that the kinetic equation, (40), formally conserves the total energy and total particle number
given by

E :/wknk dk (45)
and
N = / ny dk (46)

respectively. The stationary solutions are intimately linked with these conservation laws. There are equilibrium stationary states,
which describe equipartition of conserved quantities, and non-equilibrium stationary states, which describe constant fluxes of
conserved quantities in momentum space. The two thermodynamic equilibrium solutions can be seen from (41) almost by
inspection. They are

ne =c1, (47)
ne = czefl, (48)

wherec1 and ¢y are constants. The first of these corresponds to an equidistribution of particle number, the second to an
equidistribution of energy.
To study the non-equilibrium solutions it is convenient to write the conservation laws as continuity equations in energy
space:
dNe 90
at e’
d(eNe) oP

at Be’

(49)

(50)
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whereN¢ is the integrated particle number obtained from

/@@:/NAe (51)

The fluxes,P and Q, are easily obtained from (41):

o
&:—/nmu%c (52)
€
€
P, :/G/T4[n€/]de/. (53)

0

Note that these fluxes are defined such thas positive for particles flowing to the left corresponding to an inverse cascade
and P is positive for energy flowing to the right corresponding to a direct cascade in the energy scale. If we consider power law
spectra of the form = ¢ ¢ ~* then dimensional analysis suggests that the flugesnd P are independent effor x = 7/6 and

x = 4/3 respectively. These power laws are the Kolmogorov—Zakharov spectra corresponding to constant fluxes of particles
and energy respectively. For BEC it is the inverse cascade which is of particular interest since it is reponsible for the transfer of
particles to low momentum states which characterises the final state of the condensate.

The Kolmogorov—Zakharov spectra discussed above are more than dimensionally consistent however. They are exact
stationary solutions of the kinetic equation [14,10]. This fact can be demonstrated and the value of the Kolmogorov constant
computed using an ingenious transformation due to Zakharov [15,16]. The details of Zakharov’s method are well explained in
the references so here we shall only give a brief outline.

Bearing in mind that, = €3+ €4 — €1 > 0, the integration region for the collision integral, (42), in kg, €4) plane is the
shaded region shown in Fig. 1. The idea of the Zakharov transformation is to assume a power law distribeticsT,*, and
then to map the the three regions R2, R3 and R4 into the region R1 in a scale-invariant way. It will then be possible to spot the
criterion whereby the integrand vanishes. We define new variatgesé, eﬁl) in each of the regions R2, R3, R4 as follows

2 / /
€ €1€ €1€
Z2:R2> R1:(ep, €3, €4) — (—}, 1,?#), (54)
€© €9 9
€1€3 €16, 6]2_
Z3:R3 Rl:(62,63,64)—>< 2, = ,—,), (55)
4 €14 €
€1€4 6% €165
Z4 R4+~ Rl:(ez,eg,e4)—>< = = ) (56)
63 63 63
R3 R2
€4
R1 R4
€3

Fig. 1. Region of integration for the RHS of Eq. (42).
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Adding the resulting four contributions together we obtain

CS/ Serepesea(€1€2€3€4) 7 (] + €5 —e3 — ej{)e{ (el_y + 62—)7 — €3—y — e;y)ﬁ(el +ep — €3 — €4) deozy,
R1
wherey = 3x — 7/2. Itis immediately clear that the collision integrdj,[n], vanishes for

i i(l) } thermodynamic equilibrium solutions, (47) and (48) 57)
y=1=x=3/2 ~ _
y=0=x=7/6 K—Z solutions .

Of course, the K—Z solutions cannot exist in isolation. The fluges P must be sustained by coupling the system to external
sources. It is to be understood that these sources are localised at sufficiently large or small scales to allow for the existence of
‘inertial ranges’ where the dynamics is entirely dominated by the wave-wave interactions. In such situations the K—Z solution
is the relevant one within the inertial range of energies. However this solution must then match to the particular forcing and
dissipation profiles which provide the fluxes. The question of when the K—Z spectrum is a universal object, independent of the
details of sources and sinks at large and small scales is a nontrivial one from the point of view of analysis. On the other hand,
experimental observations of various wave turbulence systems suggest that in many cases the K—Z spectrum is more robust than
the mathematical simplifications underlying its derivation might suggest.

The Kolmogorov constant, can be computed in terms of the flux carried by the K—Z spectrum; for details see [12,14].

4. Nonstationary solutionsand condensate for mation

Suppose the initial particle distribution(e, t = 0), is far from the equilibrium configuration for the system which would
like to see particles drop into the zero momentum state in order to generate the uniform condensate solution (10). The time
dependent solution of (41) describes the relaxation process which then occurs. However, since we know from our discussion of
the previous section, the inverse cascade only has finite capacity to absorb particles so the solution of Eq. (41) will eventually
break particle number conservation. We denote the time at which this failure occtitsTHye failure of the conservation law
can be interpreted as the generation of a non-zero flux of particles-t@. Beyond this time, Eq. (41) no longer provides an
appropriate description of the physics, since it fails to account for the singular nature of the zero mode. Lacazethald17]
proposed a system of kinetic equations for the pdsvolution based on an ansatz which splits the particle distribution into
smooth and singular parts. We consider these equations in the next section.

We consider for now the dynamics pré-Let us look for a self-similar solution of the form

1
ne=— o), (59)

where the similarity variables, andz, are defined as

€

_ *
=z

T=1*—1. (60)

The exponenta andb are to be determined. Note that if there is a quasi-stationary power law distribution at large momenta,
ne ~ ¢, then the ansatz (59) implies that= —a/b. Thus the exponents of the similarity transformation are related to the
scaling of the high momentum part of the solution. Upon substitution of (59) and (60) into the equation we find that we can
remove the time dependence from the problem by choosing

4b+1=2a. (61)
We are left with an integro-differential equation for the functiog):

do
agn, — by d;l

—-1/2
=1 / / Snananana(PnaPnz@na + On1PnaPra — PraPuaPng — PurPna®nz)d(n1 +n1— n2 — n2) dppdnzdnz,  (62)

1 This reference shows in particular how a condensate can be created from a continuous momentum distribution, via a finite time singular
solution of the Boltzmann—Nordheim kinetic equation.
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Fig. 2. Computation of the inverse cascade in the unforced kinetic equation for parameter values describing Bose—Einstein condensation in 3
dimensions (NLS). This is a finite capacity system. The traces shown are snapshots of the spectrum at a series of consecutive times. The final
trace is close to the finite time singularity at zero momentum. The fitted power law at large momenta has exponent 1.2345.

With Syn.n3n4 Qiven by Eq. (43). We must supplement this equation with a second relation betveeetd in order to solve

the problem. In some cases, it makes sense to assume that the total amount of some conserved quantity grows linearly in time
due to a constant input flux. This can sometimes yield a second relation betvesetb, which as shown by Falkovich and
Shafarenko [18], implies that the self-similar solution exhibits the Kolmogorov—-Zakharov scaling at large momenta.

In our case, the total number of particles contained in the spectrum cannot increase linearly in time since we know that the
final spectrum contains a finite amount of particles. We do not know of any other rational constraint which the system much
satisfy in order to furnish a second relation although we have made some conjectures for the analogous problem for the direct
cascade in wave turbulence [19].

Since we cannot analytically determine the values ahdb and hence the scaling at large momenta, a priori, we solved the
original equation numerically to measure what scaling is selected. A numerical computation of the solution of equation (41) is
shown in Fig. 2 with an initial condition given by

n(e, t =0) = 10 3. (63)

In line with recent investigations of finite capacity systems in wave turbulence [19] and elsewhere [20] we find that’the pre-
scaling is not the Kolmogorov—Zakharov scaling. We measure a quasi-stationary power law distribubtion at high momenta with
exponent 1234 providing independent verification of the exponent measured by Lacaze et al. [17] in their simulations.

5. Post-singularity dynamics

Lacaze et al. [17] have proposed a system of kinetic equations for the*pegbiution based on an ansatz which splits the
particle distribution into smooth and singular parts as follows:

n(p, 1) =no()8(p) + ¥ (p, 1), (64)

where is a regular function ap = 0 andng(¢) is the amplitude of the singular part of the particle distribution which we
loosely think of as the condensate (see Section 6 below). These equations couple the smooth part of the particle distribution
to the singular part allowing for an exchange of mass between finite momentum particles and the condensate. If we assume
an isotropic particle distribution we can average the equations of Lacaze et al. over angles and write them in terms of energy
variablese = pz. The resulting system of equations can then be written:

Y1

;= 141+ noTslvl, (65)

dno

=0 = 0o+ noUsly]. (66)



102 C. Connaughton, Y. Pomeau / C. R. Physique 5 (2004) 91-106

whereQy is the Kolmogorov—Zakharov flux at zero momentum coming from the inverse casicettle continuous part of the
spectrum and

1 .
Taly]l= — / MiN(/€1, /€2, V€3, /€4) [V2v3va + Y1vava — Y1vavs
Je1
— Y1¥2yr318(€1 + €2 — €2 — €4) dep dez dey, (67)
T[w]—i/[ww — Y12 — Y1valsley — e — g depde
sl= "= [ W23 —vav2 —y1vshiter — ez~ eg) dep ey

+ \/ié_l /[1//21//3 — Y12 + Y1¥3]8(e2 — €3 — €1) dep deg

1
+— /[1//21//3 + V1Y — Y1¥3l8(e3 — €1 — €2) dep deg, (68)
NG
Ualy1=2n /[1//31//4 — Yoz — Y2V4l8(e2 — €3 — €4) dep dez deg. (69)

The first term written symbolically a&4[v/] is the regular collision term of the G—P kinetic theory, the second term written as
T3[v] is the collision term arising from 3-wave interactions [14] and describes the nonlocal coupling of the smooth part of the
spectrum to the condensate. The térgiy ] couples the condensate back to the smooth part of the spectrum. We are developing
a numerical code to integrate these equations in time with the aim of exploring the behaviour of the system after the singularity
time, #*, described in the previous section. In this section we report the preliminary findings of our investigations.

We performed the following numerical experiment. We took an initial distributionyfar) which behaves like: —1-234
at low energies and decays exponentially for high energies. This profile mimics the essential features of the pre-singularity
distribution shown in Fig. 2 which we have discussed in the previous sectiongfe took an initial ‘seed’ value which was
of the order of 1x 102 of thetotal mass of the system. This arbitary assignment is necessary because by Eq. (66) an initially
zero amplitude condensate remains of zero amplitude for all time if the f}gxis also zero for > * as our simulations

1e+06 T T T

T T T
1=0.0f Mass in continuous part
1=0.0; - 1oL Mass in singular part ———- |
t=0.1 Total mass ------
Total energy

10000 F.

mass

mass

0.01

0.0001

L 1 L L s
0 1 1 1

0.0001 0.001 0.01 0.1 1 10 0 0.05 0.1 0.15 0.2
energy time

Fig. 3. Post* relaxation of an initial profile exhibiting the transient Fig. 4. Monitoring conservation laws for the padtevolution. We

scaling,e 1234, characteristic of the pre-singularity regime. The low see how the mass of the singular part of the spectrum grows at the

momentum behaviour very quickly changes over to a spectrum close &xpense of the smooth part. The total mass and total energy remain

e~ 1 characteristic of thermodynamic equilibrium. constant throughout this exchange. Presumably the system comes
to equilibrium if one waits a sufficiently long time.

2 We are not excluding the possibility thatg = 0 and all the transfer of mass to the condensate is carried by the nonlocal interactions
described by’3[v] andU3[v]. Indeed our initial numerical results suggest tBatis probably zero or at least very small. This is in agreement
with the arguments in Section 6.
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suggest. At present we are trying to determine a consistent way of determining the value for this ‘seed’. However it is our
opinion that the detailed mechanism whereby the physical system passes through the singularity iat order to generate
this seed is outside of the scope of the kinetic theory for reasons which we shall discuss in the next section.

Some early results from our computations are shown in Figs. 3 and 4. Fig. 3 illustrates our first main observation: the
spectrum very quickly begins to relax back to a spectrum which is very close to the thermodynamic equilibrium spectrum,
e~ 1. With ane 1 spectrum we knowpg = 0. There is some evidence to suggest that the spectrum is slightly steeper than
although this might be an effect coming from the relatively small scaling range which we have been able to resolve so far. Our
second major observation, illustrated in Fig. 4, is the exchange of mass between the continuous part of the spectrum and the
singular part. This exchange conserves the total mass and energy of the system as can be easily checked from Egs. (65) and (66).
At present the maintenance of the these conservation laws is problematic in our code and requires some tweaking and tuning
(as was done to produce Fig. 4) with mass tending to leak from the system. We are currently trying to pin down the reason for
this sensitivity in order to perform some more robust simulations over larger ranges of scales and and longer times. Despite the
difficulties which still require resolution within our numerical scheme, we believe that the main features of our computations as
described above are quite robust.

6. Connection between Boltzmann—Nordheim and Gross-Pitaevskii kinetic theories

One notices a striking similarity between the B—N equation and the kinetic equations for the amplitude of waves interacting
via the nonlinear term in the Gross—Piaevskii equation for a statistically homogeneous condensate. Therefore one may
legitimately ask if there is some connection between the two description: B—N versus G-P, the point we shall consider below.

The connection comes from the fact that the occupation numbers associated to the long-wave excitation are large. At
equilibrium, the Bose distribution predicts that this number divergesnike- 2mkpT/p? at small momentunp, with m
mass of the identical particlesg Boltzmann constant anfl absolute temperature (less than the temperature of transition). For
energies notably less than the thermal endrg¥', ), is much bigger than 1. Therefore quantum fluctuations in those states
are relatively small, by the familiar Bogoliubov argument extended to non-zero momenta: the quantum amplitude associated
to (np) = (1]1;1/7,,) is of order of magnitud@’}p ~ /2mkgT/p?, and is large. Therefore the quantum commutation condition
[1[/;, ¥p] = 1 introduces negligible correction, to the large order of magnitude estifnate 12/; ~ 2mkg T/ p?. This means

that in the rangep small, one can neglect the quantum fluctuations and conside@ﬁumnd 12/,, are the Fourier transform
of a classical complex-valued fieldl(x). This function has to be the solution of a nonlinear field equation, that is the Gross—
Pitaevskii equation.

This G—P equation, when the nonlinear term is considered as a perturbation, yields a wave kinetic equation that has exactly
the same form as the B—N kinetic equation, when restricted to its cubic terms as discussed in Section 2. This is not surprising
since, in the limit of large occupation numbers, one expects that a classical field equation, like G—P, approximates well the full
dynamical problem. However, this is not the complete solution of the problem of extending the B—N kinetic equation to the full
range of possible wavenumbers. This only shows that the wave kinetic equation and the B—N kinetic equation overlap in some
range of wavenumbers, the range where the occupation numbers are very large compared to one, or— for a thermal gas— the
range of energies far smaller than the thermal energy.

This leaves, however, another domain of very small wavenumbers, where the occupation numbers are still very large, but
where the interaction energy and the kinetic energy are of the same order of magnitude. For a number dedsitgcattering
length f, the cross-over occurs whenever the wavenumber is of order of or smallgrdfaas= h(fn)l/z. In this range of very
small wavenumbers, one cannot no longer neglect the interaction energy. However, on the other hand, the quantum fluctuations
are totally negligible in the same domain. Therefore the relevant equation is G—P. However this equation should be completed
to include some information coming from the short wave part of the spectrum, the one described by the B—N kinetic theory.
This information comes in in two different ways:

(i) There is a coupling between the short wave part of the spectrum and the long wave part that amounts to change the cubic

interaction term in G—P from the usuafﬁ%\l]/mz% to 27 }"27/(\1110\2 + 2n,), wheren,, is the density of the normal gas,
mostly accounted for by the short wave part of the spectrum.

(i) There is a mass exchange between the condensate described by the term proportgdatited from B—N by assuming
a component of momentum distribution with a Dirac delta part at zero momentum as described in Section 5.

From Eq. (65) various important consequences can be drawn. First there does not seem to be a possibility of Kolmogorov—
Zakharov solution post*, except perhaps in a very transient state. In principle such K—Z solutions are interesting because they
give a constant flux toward zero momentum. The inverse cascade has a power law behavigue like~7/3 as described
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in Section 3, this cancels the first collision terf@[vy] in Eq. (65). However, such a constant flux solution cannot be a steady
solution near zero energies with a smooth time dependent coefficiehhis is because, by plugging this type of behaviour
in the collision term written explicitly, one obtains a contribution to the time derivati¥éc1) /9t that is of ordere~17/6 far
bigger neak small than the expectec_uq/6 power law.

This leads one to look for other type of behaviourjofe) for e small. Actually, we expect that the solution will evolve in
one way or the other to equilibrium. This equilibrium solution behavesike) ~ Cg/e neare small. Therefore we try an
expansion of the solution of the kinetic equation (65) as

C
(€)= ?0 + 59 (e), (70)

wheredy (¢) is a function ofe that is much smaller than the dominant contributi©g/e to v in the limit e small. This
perturbation series is necessary to get an equation of motioifobecause by putting the one oweterm in the collision

terms, one gets zero, because it is the behaviour of the equilibrium solution at small energies. Simple scaling arguments show
that by inserting into the collision term explicitely written in Eq. (65), one gets a functiontbft scales likeCodyr/ /€,

this being restricted to terms linear in the relatively sndgll Balancing this with the dominant term on the left side, namely
(1/€)(dCq/dr) one gets thady () must behave lik&'1/./€ neare small. From this we derive the equation of motion &,

like dCo/dt = KnCpC1 + K’Ccz)Cl. The constanK is computed by rather complicated multidimensional integrals. The same

is true for the constank’ that represents another contribution to the time derivativ€pfoming from the tern¥y[v] in the

kinetic equation.

One could continue at higher orderérnto get coupled equations for the time derivative of the coefficients of the Laurent
expansion ofyr (¢) neare = 0. We are presently working on an explicit way of using all this information to get practically a
numerically solvable coupled set of kinetic equations for the condensate density and the smooth momentum/energy distribution.

However, this does not end the story. We still have to deal with the question of the condensate by itself. We have in mind
a rather obvious question: given initial conditions for the density and energy such that the equilibrium state has a condensate
at zero momentum, how does this initial condition evolve toward the final equilibrium state? We shall limit ourselves to rather
sketchy remarks on this question, that would require a rather long discussion.

At the moment, from numerical and analytical studies [17], one understands well that, if the initial density is too large for
a given energy, a smooth initial condition of the B—N kinetic equation becomes singular in a finite time. The solution blows
up because its value at zero energy becomes infinite at a well defined finite tirdepending on the initial conditions. This
does not mean however that something like a condensate per se is formed at the singularity time. This is for two reasons. First
at the time of the singularity the mass inside the singularity is zero, because the momentum distribution, although singular
at zero energy, remains integrable. Furthermore, the condensate, as usually understood, implies infinite range correlations in
space: all particles there are in the same homogeneous ground state. This infinite range (phase) correlation cannot build-up
instantaneously at the collapse time. It cannot even build-up at infinite distances in any finite time interval [21]. Therefore, one
expects that after the initial blow-up, there will be something like a continuous process of growth of the range of the correlations
associated to a modulus of the wavefunction growing itself in the course of time until it reaches its equilibrium value.

This process cannot be described by the B—N kinetic theory because it assumes that the wavelength is less than the one for
which the interaction energy becomes significant compared to the kinetic energy of the excitations. This leads one quite naturally
to assume that the long wave part of the spectrum is described by the G—P equation, that has to be matched somehow with the
B—N equation at short scales. This is done in two different ways, depending on the time at which it is done. The wave kinetic
equation is the same as the B—N equation restricted to its cubic terms, the one relevant to describe the collapse. Therefore it is a
good approximation to the collapse process to take as initial condition of the G—P equation a function that represents accurately
the self-similar solution of the kinetic equation. This means that it must have the spectral distribution known numerically [17]
with random phases for each spectral mode. The time evolution afterwards should be without singularity (for the G—P equation)
and should describe a smooth transition from a regime with finite range spatial corelations to a regime of phase correlations
extending at larger and larger distances as time goes on. Once the phase correlations extend at distances far longer than the
typical length scale where the kinetic energy and the interaction are of the same order of magnitude, one can take the density
associated to these long wave fluctuations as the density of the singular part of the momentum disteiputidime kinetic
equation. This gives a way to get the initial condition for tiyjsn the B—N kinetic equations coupling the condensate amplitude
and the smooth part of the distribution. At the same time, the initial value for the smooth part of this distribution can be taken as
the spectrum found in the solution of the G—P equation with the self-similar initial condition. This gives a well defined (although
rather complicated) procedure for describing the transition across the singularity of the B—N kinetic equation.

The B—N kinetic equation is self-contained, and it describes the final evolution toward equilibrium, but for one piece of
information, the ever going process of phase synchronization of the condensate throughout all space. This is described by the
G—P equation, as already explained. However this is not sufficient, because G—P, when left to itself, yields a never ending
cascade of energy toward the small scales [22]. This is clearly incompatible with the final relaxation toward equilibrium, since
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the ultimate result of this cascade should be all the mass concentrated in the zero wavenumber part of the spectrum, plus a noise

at infinitely small wavelength. We expect instead finite occupation numbers diverging éferlsmall energies, not something

tending to zero. To represent this one has to add to the G—P equation a noise and a damping term ensuring that at any given time

the spectrum of the solution of this equation matches the one given by the solution of the kinetic equation near zero energies:

this is the usual strategy of inner-outer expansion, the ‘large’ energies or momenta of a solution of the G—P equation is actually

a small energy (or momentum) when seen from the point of view of the B—N kinetic equation. Therefore it makes sense to use

the small energy behaviour of a solution of B—N to determine the properties of a noise term at small scale for the G—P equation.
This is done by adding to the G—P equation a Gaussian ngise) and a damping term. They intend to represent different

physical processes. The damping term (added to the right-hand side of G—P) must be of théﬁértm(x, 1), with ¢ real

positive. It represents the loss of particles in the long wave domain by collisions with particles in the thermal bath. If this

damping term were alone, the density of the condentate would decay at the constantrralhe kinetic picture this takes into

account all loss terms of the equation fgy. Therefore; has a well defined expression given by the B—N equation. Once this

is done, the other piece of the puzzle, namely the noise term, is easy to find. It is a Gaussian noise in time because it represents

the addition of random waves to the condensate. Furthermore we expect this noise term to have no correlation in time, since

it concerns waves with frequencies much larger than what is described by G—P. Moreover it should have space correlations

fitted to yield back theCg/e = 2mCo/p2 spectrum in the wavenumber space. This concerns the short wave part of the G-P

equation for which the nonlinear term is negligible. Therefore it is only a mattenedr algebra to find the explicit form of

the correlations of the noise term that yield back the presciihge = 2mCp/ p2 in the wave number space for solution of the

G-P equation. We refer the interested reader to a coming publication on this topic.

7. Concluding remarks

We conclude with a brief discussion of some of the many questions which remain to be answered before a full understanding
of the connection between kinetic theory and BEC is obtained. Firstly, both the B—N equation (1) and the G—P kinetic equation
(41) are in some sense mean field results. Both are obtained by truncating an expansion at the lowest nontrivial order and
neglecting the higher order terms which describe fluctuations arising from higher order nonlinear interactions. It is not clear a
priori that these fluctuations can always be neglected. Indeed it is highly likely (see, for example, the arguments in [12]) that
the higher order terms do become relevant at very low momenta and are expected to modify the K—Z spectrum in some way.
To further understand these issues is a very challenging problem which is not unique to the particular physical situation under
consideration here. It arises in many areas of equilibrium and non-equilibrium statistical mechanics where mean field a picture
requires modification to account for fluctuations.

A second issue relates to the scaling behaviour of thepsslution of the kinetic theory. Since the scaling observed is
non-trivial in the sense that it corresponds neither to the K—Z scaling nor to the equilibrium one, it makes sense to wonder
whether there is some physical basis for the scaling exponent, 1.2347 It is possible that this exponent is nothing more than the
solution of the nonlinear eigenvalue problem (62) and contains nothing deeper. From a physical perspective however, it would
be nice to have a more rational explanation for the value of the exponent.

We would also like to understand more clearly what happens to this system after the singularity ti@®the one hand,
the derivation of a modified kinetic theory which takes into account the possibility of a uniform condemgates 0, might
shed some light on this. The inclusion of a non-zero mean should be possible in the approach of Section 2 although it will
result in a significant jump in algebraic complexity of a problem which already contains a lot of terms. The resulting equations
presumably would resemble those suggested in [17] and studied numerically in the present article. On the other hand such a
theory would be getting rather far away from the real physical system we began with and even further from the experimental
situation. Itis clear that in a real physical system we cannot grow infinite correlations within a finite time as the singular solution
of Section 4 suggests. Furthermore real BEC experiments are very spatially inhomogeneous. Probably more interesting insights
could be found by trying to understand how spatial correlations grow and how the inhomogeneity of the trap influences the
physics of the inverse cascade phenomenon described here. Both these issues are somewhat outside of the remit of standard
kinetic theories.
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