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Abstract

We have investigated the superfluid properties of a ring of weakly interacting and degenerate 1D Bose gas a
equilibrium with a rotating vessel. The conventional definition of superfluidity predicts that the gas has a significant su
fraction only in the Bose condensed regime. In the opposite regime, it is found that a superfluid behaviour can still be i
when the probability distribution of the total momentum of the gas has a multi-peaked structure, revealing unambiguo
existence of ‘superfluid’ supercurrent states that did not show up in the conventional definition of superfluidity.To cite this
article: I. Carusotto, Y. Castin, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Superfluidité du gaz de Bose 1D.Cet article étudie, dans le régime d’interaction faible, les propriétés superfluides d’u
de Bose unidimensionnel confiné sur un anneau et à l’équilibre thermodynamique dans un référentiel tournant. La
habituelle de la superfluidité prédit que ce gaz a une fraction superfluide appréciable seulement s’il est aussi un
de Bose–Einstein. Dans le régime non condensé, nous trouvons cependant qu’il est possible d’identifier un comp
superfluide en considérant la distribution de probabilité de l’impulsion totale du gaz : il existe un régime où cette dist
comporte plusieurs pics bien séparés, ce qui démontre l’existence de super-courants superfluides qui passent inape
définition habituelle de la superfluidité.Pour citer cet article : I. Carusotto, Y. Castin, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Is the weakly interacting 1D Bose gas superfluid?
Diverging answers can be found in the literature. The Landau criterion [1] gives a positive answer, since the di

of elementary excitations is linear at low momenta. In the thermodynamic limit, it is argued in [2] that, on the contra
1D Bose gas cannot be superfluid at finite temperature: it does not experience any phase transition, and the field c
function vanishes exponentially at large distances, rather than with a power law. A calculation based on the Bethe an
some additional assumptions on the accessible many-body states, concludes that superfluidity is possible [3]. As show
one of the subtleties of the issue is that there are actually different definitions of superfluidity, one of them based on
(that is thermal equilibrium) property of the system, the other one involving a dynamical response of the system. In 1
two definitions are found to dramatically differ in the thermodynamic limit [5].

E-mail addresses:Iacopo.Carusotto@lkb.ens.fr (I. Carusotto), Yvan.Castin@lkb.ens.fr (Y. Castin).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.01.007
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Fig. 1. Scheme of the different approaches used in this paper and the corresponding applicability domains. The three temperature s
axis differ by a factor(h̄ρ/mg)1/2 � 1 in the weakly interacting regime. ‘fluct.’ stands for ‘density fluctuations’.

In this paper, we restrict to the strict thermal equilibrium regime, in a case where the gas can exchange momen
a rotating vessel with walls that are smooth, at least at the macroscopic scale. Note that this differs from the usua
procedures used in experiments with condensates, where a macroscopic rotating defect is applied [6–9]. We inves
superfluid properties of the quantum gas in various limiting cases, from the ideal Bose gas to the weakly interacting
with weak density fluctuations, where the Bogoliubov approximation applies. We also consider an exactly solvable
field model that allows also to study the interacting case with large density fluctuations. The applicability domain of thi
has some overlap with the one of the Bogoliubov approximation, see Fig. 1, and in this overlap domain the two ap
give coincident results. Investigations are performed by considering not only the mean momentum of the rotating gas
the whole probability distribution of the total momentum: this allows us to reach a much deeper physical understandin
static aspects of the problem.

2. General considerations

2.1. The physical model

Consider a one-dimensional Bose gas as described in a second-quantization approach by the Hamiltonian:

H0 = − h̄2

2m

L∫
0

dx Ψ̂ †(x)
∂2

∂x2
Ψ̂ (x) + g

2

∫
dx Ψ̂ †(x)Ψ̂ †(x)Ψ̂ (x)Ψ̂ (x). (1)

The Ψ̂ (x) and Ψ̂ †(x) operators are respectively the destruction and creation operators for a boson at pointx. They obey
standard bosonic commutation rules[Ψ̂ (x), Ψ̂ †(x′)] = δ(x − x′). The spatial coordinatex runs on a ring of lengthL with
periodic boundary conditions,m is the atomic mass, and the strength of local interactions is quantified byg. We shall restrict in
this paper to the repulsive and weakly interacting case so that we impose 0< g 
 h̄2ρ/m [10] whereρ is the mean density.

The Hamiltonian (1) is a good description of a Bose gas in a cylindrically symmetric toroidal trap [11] provided:
transverse trapping frequencies in the torus are much larger than both the temperature and the interaction energy p
h̄ωρ,z � kBT , ρg; and (ii) the radiusL/2π of the torus is much larger than the width of the transverse harmonic osci
ground state which allows to neglect curvature effects in the kinetic energy. In this regime, the system is effectively
periodic boundary conditions.

The gas is assumed to be at thermal equilibrium in an uniformly rotating frame, which mimics the presence of a
vessel containing the fluid; transfer of angular momentum from the vessel to the fluid is assumed to be possible, so th
equilibrium between the two can be attained. Rotation is then described by the following additional term in the Hamilto

Hrot = −vrotP, (2)

wherevrot = ΩL/2π is the rotation velocity andP is the total momentum operator of the gas:

P = −ih̄
∫

dx Ψ̂ †(x)
∂

∂x
Ψ̂ (x). (3)

Notice that the total momentum operatorP gives the total mass current in the laboratory frame [12].
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2.2. Definition of the normal fraction of the gas

We define the generalized normal fractionfn of the gas as:

fn = 〈P 〉
Nmvrot

, (4)

where the expectation value of the total momentum operator is taken in thermal equilibrium andN is the total number o
particles. The usual normal fraction of the gas is the limitf 0

n of fn for vrot → 0, and the corresponding superfluid fraction
1 − f 0

n [4]. For a rigid bodyfn = 1, which means that it is at rest in the rotating frame: the fluid is completely dragged b
walls of the rotating vessel. On the other handfn = 0 for a pure superfluid: even if the vessel is rotating, the fluid remain
rest in the laboratory frame.

In the following sections, we shall study in detail the behaviour offn for a weakly interacting one-dimensional Bose g
in different temperature and density regimes. The temperature is assumed to be always much larger than the spacin
particle levels:

T � 2π2h̄2

mL2
, (5)

that is, the sizeL of the system is assumed to be much longer than the thermal de Broglie wavelengthλ:

L � λ =
√

2πh̄2

mkBT
. (6)

For our finite-size system, only velocity boostsv which are integer multiples of the characteristic velocity:

v1 = 2πh̄

mL
(7)

are allowed.1 Galilean invariance under such boosts implies that ifψ is an eigenstate of (1) of energyE and momentumP ,
the boosted stateψ ′ is also an eigenstate of energyE′ = E + vP + Nmv2/2 and momentumP ′ = P + Nmv. Provided the
mean number of particlesN is kept constant, the functionP(vrot) giving the mean momentum〈P 〉 as a function of velocity
vrot therefore satisfies a periodicity condition of the form:

P(vrot + v1) = P(vrot) +Nmv1. (8)

Because of the symmetry under spatial inversion,P(vrot) is an odd function ofvrot. This property, combined with (8), implie
thatP(v1/2) = mNv1/2 and thereforefn(v1/2) = 1. For this reason, in the following we shall restrict the definition (4) of
generalized normal fraction to the velocity rangevrot ∈ [−v1/2, v1/2].

2.3. Probability distribution of the total momentumP

In the previous subsection we have introduced the concept of normal fractionfn of the gas in terms of the expectation val
of the total momentum operatorP . We shall extend our analysis by considering not only the average value ofP , but rather the
complete probability distributionp(P ), which gives the probability for the total momentum to be equal to some given valuP .
Notice that this probability distributionp(P ) is totally different and distinct from the usual momentum distribution, which g
instead the mean number of particles in each momentum state.

As usual, the first step for the determination ofp(P ) is the calculation of the corresponding characteristic functiong(ζ ):

g(ζ ) = 〈
eiζP 〉

. (9)

The probability distributionp(P ) is then obtained as the Fourier transform ofg:

p(P ) =
∫

dζ

2π
e−iζP g(ζ ). (10)

1 The effect a velocity boost of velocityv on the many-body wavefunctionψ(x1, . . . , xN ) is

ψ ′(x1, . . . , xN ) = ψ(x1, . . . , xN )eimv
∑

i xi /h̄.

Periodic boundary conditions therefore imposemv = 2πh̄M/L, M being an integer.
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The slow rotationvrot → 0 limit of the normal fraction can be related to the variance ofp(P ) in the non-rotatingvrot = 0 system.
As the total momentumP commutes with the HamiltonianH0, the density matrix of the fluid in the canonical ensemble
given inverse temperatureβ = 1/kBT can be expanded for smallvrot as:

ρ = e−β(H0−Pvrot) � e−βH0(1+ βvrotP). (11)

This expression can be used to calculate the expectation value of the momentumP and then the small velocity limitf 0
n of the

normal fraction.

f 0
n = lim

vrot→0
fn = 〈P 2〉

mkBTN
. (12)

This relation also holds in the grand-canonical ensemble, asP commutes with the number of particles and as the chem
potentialµ varies only to second order invrot for a fixed mean number of particles. It is easy to see that for a Boltzmann g
N distinguishable and non-interacting particles, the equipartition theorem of classical statistical mechanics implies tha〈

P 2〉 = ∑
i

〈
p2
i

〉 = mNkBT, (13)

wherepi is the momentum of thei-th particle. The system is therefore totally normalf 0
n = 1.

3. Non-interacting gas

The present section is devoted to a study of the rotational properties of a non-interacting gas. In the grand-c
ensemble, the population of each one-particle state is described by the usual Bose distribution:

nk = 1

eβ(εk−µ) − 1
, (14)

where the momentumk is quantized as usual as:

k = 2πh̄

L
n, (15)

n being an integer, and the single-particle energyεk(vrot) in the rotating frame atvrot is equal to:

εk(vrot) = h̄2k2

2m
− h̄kvrot. (16)

The mean number of particles is

N =
∑
k

nk, (17)

and the mean momentum is

〈P 〉 =
∑
k

h̄knk. (18)

The normal fractionfn is then immediately obtained from its definition (4). Its zero-velocity valuef 0
n could also be obtaine

from (12) by taking into account the fact that for an ideal gas one has:〈
n2
k

〉 = 2〈nk〉2 + 〈nk〉. (19)

As for vrot = 0 a Bose–Einstein condensate can only appear in thek = 0 mode, the prediction forf 0
n is not affected by the

non-physical grand-canonical fluctuations in the condensate mode.

3.1. Non-degenerate gas

In the limit βµ → −∞, the occupation of all single particle modes is much smaller than unity and the Bose distributio
can be approximated by a Maxwell–Boltzmann law of the form:

nk = e−β(εk−µ). (20)
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As nk is a slowly varying function ofk (the condition (5) is always assumed), one can replace the sum overk in (17) and (18)
by integrals L

2π

∫
dk. By switching to the integration variablek′ = k + mv/h̄, it is then seen immediately that:

〈P 〉 = mNvrot, (21)

which means that the fluid is completely normal and no superfluid fraction is present. Notice that this conclusion d
depend on the specific choice of the Maxwell–Boltzmann distribution (20). It rather depends on the facts that: (i) the oc
number of the mode of wavevectork is a function ofh̄k − mvrot only: and (ii) sums can be replaced by integrals. Notice
the condition (i) no longer holds in the presence of interactions, which allows, e.g., for superfluid behaviour of the 3D B
even in the thermodynamical limit. For the ideal Bose gas, as we shall see in the next subsection, condition (ii) is violat
Bose-condensed regime.

3.2. Classical field approximation

If one assumes that the temperature is larger than the absolute value of the chemical potentialkBT � |µ|, which corresponds
to the limitβµ → 0−, the Bose distribution (14) can be approximated by the classical field one:

nk = kBT

εk − µ
. (22)

Under this approximation, analytical results can be obtained for the normal fractionfn.
The mean densityN can be written as an infinite sum as:

N =
∑
k

kBT

(h̄2k2)/(2m) − h̄kv − µ
= mL2kBT

2π2h̄2

∑
n∈Z

1

n2 − 2nṽ + ν2
, (23)

whereṽ = vrot/v1 is the rescaled velocity andν2 = −mL2µ/2π2h̄2. By applying the Poisson summation formula:∑
n∈Z

f (n) =
∑
n∈Z

f̂ (2πn), (24)

wheref (x) is an arbitrary function and̂f (k) = ∫
dx f (x)exp(−ikx) its Fourier transform, one is led to the final expression

N = mL2kBT

h̄2

1

2πν0

sinh(2πν0)

cosh(2πν0) − cos(2πṽ)
, (25)

whereν0 is defined asν2
0 = ν2 − ṽ2.2 By applying the same Poisson summation formula (24) to the mean momentum〈P 〉, one

obtains:

〈P 〉 = Nmv − mLkBT

h̄

sin(2πṽ)

cosh(2πν0)− cos(2πṽ)
. (26)

Notice the periodicity ofN and〈P 〉 as functions of the reduced velocityṽ. This in agreement with the general result (8). Fr
(25) and (26) we immediately obtain the generalized normal fraction:

fn = 〈P 〉
Nmv

= 1− ν0

ṽ

sin(2πṽ)

sinh(2πν0)
. (27)

The physics of the non-interacting classical field is determined by the dimensionless parameterν and the rotation velocitỹv.
For a given rotation velocityvrot, the crossover fromν � 1 toν 
 1 corresponds to the Bose condensation in the finite sys
In the high densityν → 0 limit where the gas is fully Bose-condensed, one hasν0 → iṽ and the normal fraction (27) tends
zero. On the other hand, forν → ∞, ν0 → ∞ and the normal fraction consequently tends to 1.

In the absence of rotatioñv = 0, Bose condensation in the finite system occurs for [13]:

kBT ≈ kBTBEC = 6Nh̄2

mL2
, (28)

that is, when the coherence lengthlc = ρλ2/2π of the gas becomes larger than the sizeL of the system. Even in this zero
velocity case, the normal fraction

f 0
n = 1− 2πν0

sinh(2πν0)
(29)

2 For ν2 < ṽ2, which happens whenL< [1− cos(2πṽ)]ρh̄2/(mkBT ), ν0 is a purely imaginary quantity and the analytical continuation
(25) has to be taken.
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fnc = N − 〈nk=0〉
N

= 1− cosh(2πν0)− 1

πν0 sinh(2πν0)
. (30)

In particular, in the limit of a well-established Bose–Einstein condensateν0 
 1, one has the peculiar relation:

f 0
n = 2fnc, (31)

which states that the normal fraction is twice as large than the non-condensed one, and, therefore, that the conden
completely superfluid. This prediction is qualitatively opposite to what is found in liquid4He, which at low temperatures
totally superfluid even if the condensate fraction is only of the order of 10% [14,15].

3.3. Probability distribution of the total momentum

For the ideal Bose gas, the total momentum is simply written in terms of the single-particle occupation numbenk as
P = ∑

k h̄k nk , so the characteristic functiongp is equal to:

g(ζ ) = 〈
eiz

∑
k h̄k nk

〉 = ∏
k

〈
eiζ h̄k nk

〉 = ∏
k

1− e−β(εk−µ)

1− e−β(εk−µ) eiζ h̄k
, (32)

which has a factorized form over single particle states. In the classical field approximation, this infinite product can be c
exactly, as shown in Section 5.

The probability distributionp(P ) without the classical field approximation is easily obtained by numerical Fourier trans
of (32) (Fig. 2). For a vanishingvrot, the distributionp(P ) is simply narrowed as the temperature is decreased and no addi
structure appears. An analytical proof of the fact thatp(P ) has a single maximum forvrot = 0 is given in Appendix A in the
classical field approximation. Superfluidity effects can therefore be seen only as a more rapid shrinking of the distrib
compared to the case of a normal gas (cf. (12)). For a slow but finite rotation speedvrot < v1/2, the flow of particles simply
appears as a shift-like distortion in the probability distribution.3

Fig. 2. Probability distributionp(P ) of the total momentumP for an ideal Bose gas of 1000 particles. Rotation velocityvrot = 0 (solid lines),
vrot/v1 = 0.125 (dashed lines). TemperaturesT /(Nmv2

1/2) = 0.05,0.125,0.25 (from top to bottom: the corresponding normal fractions
respectively:fn = 0.3,0.64,0.92).

3 Calculations are made here for the ideal Bose gas in the grand canonical ensemble. In the case where a condensate is present, t
will give predictions forp(P ) in agreement with the canonical ensemble only if the condensate is in the modek = 0. Otherwise the non-physica
grand canonical fluctuations in the condensate mode will dramatically affectp(P ).
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4. Interacting gas I: multi-valley Bogoliubov approach

The present section is devoted to the calculation of the rotational properties of a weakly interacting Bose gas at tem
low enough for density fluctuations to be weak. In this regime, the Bogoliubov theory can be used to describe the
Since we are dealing with one-dimensional systems in which no long-range order is present for the phase of the Bose
extension of the Bogoliubov theory to quasi-condensates with only a finite-range order should be used, as discussed i
simplicity we shall use the version of the method in the canonical ensemble.

Quantitatively, the weakly interacting gas condition can be written in terms of the densityρ = N/L and the healing lengthξ
as [10]:

ρξ =
√

h̄2ρ

mg
� 1, (33)

while the weakness of density fluctuations*ρ/ρ 
 1 requires [16]:

kBT 
 kBTdf = ρg × ρξ =
(
h̄2

m
ρ3g

)1/2
. (34)

In the weakly interacting regime (33),Tdf is always much lower than the temperature

Tdeg= 2πh̄2ρ2/m (35)

for quantum degeneracy.

4.1. Mean total momentum in the Bogoliubov approximation

The preliminary step to the Bogoliubov approach is to use the pure quasi-condensate approximation and identify t
condensate wavefunctionφ0(x) as a local minimum of the Gross–Pitaevskii energy functional:

EGP[φ] =
∫

dx

[
h̄2

2m
|∂xφ|2 + Ng

2
|φ|4 + ih̄vrotφ

∗∂xφ
]
. (36)

A local minimum has to be a stationary state of the Gross–Pitaevskii equation

µφ =
[
− h̄2

2m
∂2
x + Ng|φ|2 + ih̄vrot∂x

]
φ. (37)

Here we take for stationary states the usual form of plane waves:

φ0(x) = 1√
L

eik0x. (38)

The periodic boundary conditions impose that the momentum is quantized ask0 = 2πw0/L, w0 being an integer called th
winding number. The corresponding velocityv0 = w0v1 will be called in the followingquasi-condensatevelocity. The chemica
potential is then

µ = gρ + 1

2
mv2

0 − mv0vrot. (39)

The resulting energy of the pure quasi-condensate is then:

EGP[vrot, v0] = N

[
1

2
mv2

0 − mv0vrot

]
+ 1

2
Nρg. (40)

Under the low-temperature and weak-interaction conditions stated above, the fluctuations of the Bose field around
quasi-condensate field can be described by the Bogoliubov Hamiltonian [16,17]:

HBog = EGP[vrot, v0] −
∑
k �=0

εkV
2
k +

∑
k �=0

εkb̂
†
k
b̂k, (41)

where theb̂k, b̂
†
k operators are the usual (bosonic) destruction and creation operators for the Bogoliubov quasi-particle

dispersion relationεk(vtot, v0) is given by:

εk(vrot, v0) = ε0
k + h̄k(v0 − vrot) (42)
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in terms of the usual dispersion relationε0
k

for a system at rest (v0 = vrot = 0):

ε0
k =

[
h̄2k2

2m

(
h̄2k2

2m
+ 2ρg

)]1/2
. (43)

TheVk coefficients are defined as:

Vk = 1

2

([
h̄2k2/(2m)

h̄2k2/(2m) + 2ρg

]1/4
−

[
h̄2k2/(2m) + 2ρg

h̄2k2/(2m)

]1/4)
. (44)

The fact that theVk do not depend onv0 − vrot is a consequence of Galilean invariance. One has also to calculate th
momentum operator (3):

P = Nmv0 +
∑
k �=0

h̄kb̂
†
k b̂k. (45)

The fact that the total number of particles enters in the first term of the right-hand side of this equation (rather than the
of particles in the quasi-condensate or the number of particles in the superfluid fraction) is again a consequence o
invariance. A derivation ofHBog andP is given in Appendix B.

The quasi-condensate modeφ0(x) is a local minimum of the Gross–Pitaevskii energy functional if all theεk are positive,
which guarantees the thermodynamical stability of the gas. This condition can be reformulated as:

|v0 − vrot| � min
k �=0

[
ε0
k

h̄k

]
. (46)

When the lengthL is larger than the healing lengthξ , this criterion reduces to the usual Landau criterion which states tha
flow velocity as measured in the moving frame has to be smaller than the sound velocityc = (ρg/m)1/2 of the gas at rest.

A key assumption of our multi-valley Bogoliubov approach is that the density matrix of the system is a statistical m
of states of different winding numbersw0 and thus quasi-condensate velocitiesv0 = w0v1. Each value ofv0 corresponds to
a separate minimum – avalley– of the Gross–Pitaevskii energy functional (36) and the fluctuations around each of the
treated within the Bogoliubov approximation previously discussed.

The expectation value of any observable, e.g., the momentumP , is then expressed as an average over the different vall

〈P 〉 = 1

ZT

∑
v0

Zv0〈P 〉v0 . (47)

Obviously, only stable states satisfying (46) are to be taken into account. TheZv0 are the contributions of the different valley
to the total partition function:

Zv0 = Tr
[
e−βH]

v0
= Ae− 1

2βNm(v0−vrot)
2 ∏
k �=0

1

1− e−βεk(vrot,v0)
, (48)

whereA is a overall factor which does not depend onw0 and therefore drops out from all the calculations that follow. The t
partition function isZT = ∑

v0
Zv0.

The expectation value ofP within a given valley〈P 〉v0 is obtained as the thermal average of (45):

〈P 〉v0 = Nmv0 +
∑
k �=0

h̄k

exp{−β[ε0
k − h̄k(vrot − v0)]} − 1

≡ Nmv0 + Nm(vrot − v0)f
v
n (vrot − v0). (49)

The functionf v
n (v) has a very simple physical interpretation: it is the generalized normal fraction of the gas that one

predictin a single valley Bogoliubov treatment(i.e., winding numberw0 = 0) for a rotation velocityv. Hence the superscriptv.
In the remaining part of this section we shall restrict to the case

L � ξ. (50)

This will provide a considerable simplification of the expression of〈P 〉.
First because this allows to replace inf v

n (v) the sum overk by an integral. The resulting integral may be calculated in
limit of low and high temperatures. If the temperature is sufficiently low:

kBT 
 ρg

(
1−

∣∣∣∣vc
∣∣∣∣), (51)
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only the linear part of the spectrum effectively contributes to the integral. This leads to

f v
n (v) = (kBT )2

c3

π

3mh̄ρ

1

(1− v2/c2)2
, (52)

wherec = √
ρg/m is the sound velocity.

For temperatureskBT � ρg but still smaller than the temperatureTdf at which density fluctuations becomes importan
classical field approximation can be performed on the Bose distribution law, which leads to

f v
n (v) = kBT

h̄cρ

1√
1− v2/c2

. (53)

Within their own domain of validity, both (52) and (53) predict a single-valley normal fraction much smaller than one.
Let us assume that|vrot − v0| 
 c for all the relevant terms in the sum (47). In this case, (49) can be simplified as foll

〈P 〉v0 � Nmf
v,0
n vrot + Nmv0

(
1− f

v,0
n

)
, (54)

wheref v,0
n is the zero-rotation limit off v

n :

f
v,0
n = f v

n (0) = 1

NmkBT

∑
k �=0

(h̄k)2
eβε

0
k

(eβε
0
k − 1)2

. (55)

The result (54) can be physically understood in the following terms: for any value of the quasi-condensate velocityv0, the
normal fractionf v,0

n within the valley is moving at a rotation velocityvrot, while the superfluid fraction 1− f
v,0
n moves

independently atv0.
In this limit |vrot − v0| 
 c, the expression (48) for the partial partition function for each valley can be simplifie

expanding the product to second order invrot − v0:∏
k �=0

1

1− e−βεk(vrot,v0)
� e

1
2βNmf

v,0
n (vrot−v0)

2 ∏
k �=0

1

1− e−βε0
k

. (56)

By inserting this expression into (48), the final expression for the expectation value of the momentum (47) gets the sim

P(vrot) = f
v,0
n Nmvrot +N

(
1− f

v,0
n

)∑
v0

q(v0)mv0, (57)

in which the normal gas always moves at a velocityvrot and the probability distributionq(v0) for the quasi-condensate to ha
a velocityv0 has the Gaussian form:

q(v0) =Nq exp

[
−mN(1 − f

v,0
n )

2kBT
(vrot − v0)

2
]
, (58)

whereNq is the normalization factor. Note that only the fraction 1− f
v,0
n of atoms which are superfluid in a single vall

treatment is actually involved in (58). The normal fraction of the gas can be obtained from (57):

f 0
n = f

v,0
n + Nm(1 − f

v,0
n )2

kBT

∑
v0

v2
0 exp[−1

2βmN(1 − f
v,0
n ) v2

0]∑
v0

exp[−1
2βmN(1 − f

v,0
n )v2

0]
. (59)

Remarkably this expression coincides with formula (11) of [5] if one takesρS = (1− f
v,0
n )ρ in [5].

We briefly come back to the condition|vrot − v0| 
 c. Forv0 = 0, this hypothesis is a direct consequence of (50) sincevrot
can be taken in the interval[−v1/2, v1/2]. What happens ifv0 � v1? The maximal accessible valuevmax

0 of v0 allowed by the

probability distribution (58) corresponds tomv2
0/2 ≈ kBT/N . vmax

0 is much smaller thanc providedkBT 
 Nρg. As:

kBT

Nρg
= T

Tdf

ξ

L
, (60)

this is automatically satisfied since we have assumedL � ξ andT 
 Tdf.
Even if the normal fractionf v,0

n within a single valley is always smallf v,0
n 
 1 in the regime of validity of the Bogoliubo

approximation, the true normal fraction tends to one as soon as several valleys are thermally populated

kBT � kBTv = 1
Nmv2

1. (61)

2
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Fig. 3. Average value of the total momentumP as a function of the rotation velocityvrot for a Bose gas of 1000 interacting atoms. Chem
potentialρg/kBTv = 0.1. Temperatures: (a)T /Tv = 0.025; (b) 0.1; (c) 0.25. Solid lines: many-valley Bogoliubov predictions. Dashed lin
for (b) and (c): full numerical solution of the classical field model of Section 5. For curve (a),kBT = ρg/4 
 ρg, outside the applicability
range of the classical field model.

In this case, one can replace the discrete sum overv0 by an integral in (57):

〈P 〉 � Nmvrot, (62)

finding that the transport of atoms in the presence of a finitevrot is essentially due to the redistribution of the population am
the different valleys. In other words, as several different values of the quasi-condensate velocityv0 are accessible, the presen
of a finite rotation velocity causes an imbalance of the relative probabilitiesq(v0) and therefore a net matter flow.

The Bogoliubov prediction for〈P 〉 as function ofvrot is plotted in Fig. 3 for various values of the temperature. In the
temperature regimeT 
 Tv , only the valley withw0 = 0 is generally occupied forvrot < v1/2: the full normal fraction is close
to the single valley prediction, so that the gas is almost fully superfluid. Whenvrot approachesv1/2, the valleysw0 = 0 and
w0 = 1 become nearly degenerate: the Gross–Pitaevskii energies (40) of a condensate at restv0 = 0 and in the first excited
statev0 = v1 are nearly equal. In this case, even ifT 
 Tv , both valleys can be populated and their relative weights wil
strongly dependent onvrot, see the step function in Fig. 3. Forvrot > v1/2, only the valleyw0 = 1 is occupied. The width o
the crossover from a value〈P 〉 
 Nmvrot to a valueNmvrot − 〈P 〉 
 Nm(v1 − vrot) is of the order of

*vrot = kBT

Nmv1
. (63)

In the opposite regime of a temperature on the order ofTv , where several valleys are thermally populated, the step behavio
P(vrot) is smoothed out and the gas become normal, as predicted in (62).

4.2. Comparison with Quantum Monte Carlo simulation

The predictions of the many-valley Bogoliubov approach can be verified against a Quantum Monte Carlo cal
performed using a recently developed stochastic field technique for the interacting Bose gas [18]. As rotation is descri
additional single-particle term−Pvrot in the Hamiltonian, the numerical simulation does not present any further complic
with respect to the ones previously performed, e.g. for the study of the statistical properties of a Bose–Einstein conden

In Fig. 4 we have compared the result of the Monte Carlo simulation with the prediction of the many-valley Bogo
theory. As the conditionL � ξ is not fulfilled, a numerical evaluation of (47)–(49) is necessary. The parameters of the
correspond to a regime in which only a single valley is thermally populatedT 
 Tv : the agreement is good in the slow-veloc
regimevrot 
 v1 as well as close to the pointvrot = v1/2 where the two valleys of winding numbers respectivelyw0 = 0 and
w0 = 1 become degenerate and the system is in a statistical mixture of them.
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Fig. 4. Average value of the total momentumP as a function of the rotation velocityvrot for a 1D Bose gas of 42 interacting atoms. Chemi
potentialρg/kBTv = 0.017, T /Tv = 0.017. Solid line: many-valley Bogoliubov theory. Points: Quantum Monte Carlo calculation.

4.3. Probability distribution of the total momentum

If the temperature is sufficiently low for density fluctuations to be small, the many-valley Bogoliubov theory introdu
the previous subsection can be used to calculate not only the normal fraction but also the complete probability distributp(P )

for the total momentumP .
Using the expression (45) of the total momentum operator in the Bogoliubov approximation, the characteristic functg(ζ )

can be written as:

g(ζ ) = 1

ZT

∑
v0

Zv0 eiζNmv0
〈
eiζ

∑
k h̄knk

〉
v0

= 1

ZT

∑
v0

e− 1
2βNm(v0−vrot)

2
eiζNmv0

∏
k

1

1− e−β[ε0
k−h̄k(vrot−v0)] eiζ h̄k

, (64)

wherenk are now the occupation numbers of the Bogoliubov quasi-particle modes of energiesεk .
It is apparent in the last factor of (64) that the presence ofζ can be reinterpreted as a complex shift ofvrot −v0 by an amount

−ikBT ζ . If we assume that

|vrot − v0 − ikBT ζ | 
 c, (65)

we can simplify (64) in exactly the same way which led to (56):

g(ζ ) � 1

Z̃T

∑
v0

e−βNm(1−f
v,0
n )(vrot−v0)

2/2 eiζmNv0(1−f
v,0
n ) eiζmNvrotf

v,0
n e−mNf

v,0
n kBT ζ2/2. (66)

The distribution functionp(P ) for the momentum can then be calculated by Fourier transform of the characteristic functio

p(P ) = 1

3T

∑
v0

e−βmN(1−f
v,0
n )(v0−vrot)

2/2 e−[P−mv0N(1−f
v,0
n )−mvrotNf

v,0
n ]2/(2mNf

v,0
n kBT ). (67)

The structure of (67) is physically transparent and can be summarized as follows:

– each valley contributes as a peak of width(f
v,0
n NmkBT )1/2 in accord with (12) as applied to a single valley;

– the peak corresponding to each valley is centered at the valuemv0N(1−f
v,0
n )+mvrotf

v,0
n of the momentum: as expecte

the (single-valley) superfluid fraction(1 − f
v,0
n ) moves at the quasi-condensate velocityv0, while the normal onef v,0

n

moves atvrot;
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Fig. 5. Multi-valley Bogoliubov prediction for the probability distributionp(P ) of the total momentumP for an interacting Bose gas of 100
particles. Rotation velocityvrot = 0. Chemical potentialρg/kBTv = 3.2. Temperature:T /Tv = 0.25,0.5,1,2,3 (from top to bottom).

– the occupation probability of each valley is proportional to a Gaussian involving the kinetic energy in the rotating fr
the (single-valley) superfluid fraction.

So, for temperatures such that:

Tv 
 T 
 Tv

f
v,0
n

(68)

the probability distribution of momentump(P ) is given by a series of narrow isolated peaks.
The probability distributionp(P ) is plotted in Fig. 5 forvrot = 0 and different values of the temperature. At low temperatu

T 
 Tv , only a single valley is populated andp(P ) shows a single narrow peak aroundP = 0. In this case, the gas is near
fully superfluid. For temperatures growing acrossT/Tv ≈ 1, higher valleys start to be populated as well, more peaks bec
visible and the width of each of them gets larger. Correspondingly, the superfluid fraction decreases to zero. At sufficie
temperature, the isolated peaks merge into a broad, unstructured, distribution. Note that for all temperatures in the fi
single-valley normal fractionf v,0

n remains always significantly smaller than unity.
Conventional superfluidity occurs only when the width of the envelope becomes of the order of the spacing betwee

so that only the one whose quasi-condensate velocityv0 is closest to the rotation velocityvrot results effectively populated
Otherwise, mass transport occurs in the presence of a finite rotation velocityvrot as a consequence of the redistribution
population between the different valleys more than of the distortion within a given valley. This behaviour can be clearly o
in Fig. 6, where the effect of a finitevrot on the probability distributionp(P ) is shown: although the shape of each single p
is weakly affected, the envelope function suffers a dramatic distortion.

Let us briefly discuss the validity condition of (65). The validity condition of|vrot − v0| 
 c was already discussed
Section 4.1. What is left is to comparekBT |ζ | to c. The narrowest features inp(P ) are found to be the peaks corresponding
single valley normal fractions, of momentum width(f v,0

n NmkBT )1/2. As g(ζ ) is the Fourier transform ofp(P ), this results
in a maximal value ofζ on the order of

ζmax= 1

(f
v,0
n NmkBT )1/2

. (69)

In the regimekBT � ρg, f
v,0
n is given by thev = 0 limit of (53). We then obtain

kBT ζmax

c
� 1

(L/ξ)1/2

 1 (70)
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Fig. 6. Multi-valley Bogoliubov prediction for the probability distributionp(P ) of the total momentumP for an interacting Bose gas of 100
particles. Rotation velocityvrot/v1 = 0 (solid), 0.125 (dashed), 0.5 (dotted). Chemical potentialρg/kBTv = 3.2. TemperatureT /Tv = 0.5.

since we assumedL � ξ . In the regimekBT 
 ρg, we use (52) withv = 0 to obtain

kBT ζmax

c
�

(
h̄c

LkBT

)1/2
. (71)

The condition (65) then imposes a lower bound on the temperature,

kBT � h̄c/L. (72)

Since h̄c/L is the energy of the lowest Bogoliubov excitation in a single valley, this condition is equivalent to a no
temperature regime in the valley. Note that this condition is automatically satisfied in the multi-valley regimeT � Tv for a
weakly interacting Bose gas.

5. Interacting gas II: classical field model

The results of the previous section have been obtained on the grounds of a Bogoliubov theory which assumes that t
fluctuations are weak; this condition requires the temperature to be sufficiently lowT 
 Tdf whereTdf is given in (34). On the
other hand, for temperatures larger than the chemical potential but still lower than the degeneracy temperature

kBTdeg� kBT � ρg, (73)

a classical field model can be applied. In the present section, we shall discuss the predictions of this approach reg
superfluidity properties of the gas. The actual existence of a temperature range (73) is guaranteed by the weak i
condition (33). In this regime, as one can see in the diagram in Fig. 1, the applicability domains of classical field and Bo
theories have a non-vanishing overlap and, in particular, give coincident predictions, as we shall see.

5.1. The model and its solution

We generalize to the rotating case the classical field model of [13,20,21]. In this generalization of the model, the
field ψ(z) has a grand canonical thermal equilibrium distributionP [ψ] proportional to exp(−βE[ψ]) whereE[ψ] is the
Gross–Pitaevskii energy functional:

E[ψ] =
L∫

0

dz

[
h̄2

2m
|∂zψ |2 + g

2
|ψ |4 − h̄

i
vrotψ

∗∂zψ − µ|ψ |2
]

(74)

restricting to the configurations of the complex field obeying the boundary conditionψ(0) = ψ(L).
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Expectation values of quantum observables are obtained by replacingψ̂ with ψ, ψ̂† with ψ∗ and then averaging over th
thermal distributionP [ψ]. At this stage, the reader may argue that a classical field thermal distribution is expected to
divergences in the observables in the absence of an energy cut-off, reminiscent of the black-body catastrophe of 19t
A very fortunate consequence of the 1D character of the gas is that the classical field model gives finite prediction
observables relevant for this paper, such as the mean density, the mean momentum of the gas, the probability distribu
total momentum of the gas, as we shall see. This suppresses the issue of an energy cut-off dependence.

Calculation of expectation values can be performed exactly in the classical field model: the summation over all
complex pathsz → ψ(z) can be viewed formally as a Feynman path integral over trajectories of a single quantum par
2D, z playing the role of a fictitious time, the real and imaginary parts ofψ corresponding to fictitious coordinatesx andy.
Using in the reverse order the Feynman formulation of quantum mechanics, one can map the functional integral over
into a Feynman propagator for a fictitious Hamiltonian of a quantum particle moving in 2D, here inimaginary time. More
details are given in [13,21]. We give here without proof the expression of the fictitious Hamiltonian for a rotating system

Hvrot =
p2
x +p2

y

2M
+ i

mvrot

h̄
Lz + 1

2
h̄βg

(
x2 + y2)2 − h̄β

(
µ+ 1

2
mvrot

2
)(

x2 + y2)
, (75)

where the fictitious mass is

M = h̄3

mkBT
, (76)

px,py are the momentum operators of the fictitious particle alongx, y and Lz = xpy − ypx is the angular momentum
operator of the particle alongz. Note that the fictitious Hamiltonian is not Hermitian forvrot �= 0, but its anti-Hermitian par
commutes with its Hermitian part, which is indeed rotationally invariant. A numerical diagonalization of the Hermitia
of H is therefore very simple, as one has to solve a Schrödinger equation for the radial part of the eigenfunctions o
corresponding eigenvectors are labeled by two quantum numbers, the angular momentuml ∈ Z and the radial quantum numb
n ∈ N, andEn,l is the corresponding real eigenvalue.

5.2. Exact expressions for relevant observables

We give the explicit expression for some useful expectation values. The calculation of the mean density in the class
model is required to determine the chemical potentialµ for a given mean total number of particles. The mean density is g
by

〈ψ∗ψ〉 = 〈
x2 + y2〉

q
, (77)

where the ‘quantum expectation value’ of any operatorO for the fictitious particle is defined as

〈O〉q ≡ Tr[O e−LHvrot/h̄]
Tr[e−LHvrot/h̄] . (78)

The characteristic function for the total momentumP = −ih̄
∫
ψ∗∂zψ is

g(ζ ) = 〈
eiζP 〉 = Tr[e−LHw/h̄]

Tr[e−LHvrot/h̄] , (79)

where we have introduced the complex velocity

w = vrot − iζkBT (80)

andHw is obtained by replacingvrot with w in Hvrot. The mean total momentum of the gas is related to the derivative o
characteristic function inζ = 0:

〈P 〉 = −i
dg

dζ
(0) = Nmvrot − i

mkBT

h̄2
L〈Lz〉q , (81)

where we used (77) to obtain the mean total number of particlesN . The first order expansion invrot of this expression, when
combined with thevrot → 0 limit of (4), leads to the exact expression for the standard definition of the normal fraction:4

f 0
n = 1− mkBTL

ρh̄2

〈L2
z〉q (vrot = 0)

h̄2
. (82)

4 We used the fact that the chemical potentialµ varies only to second order invrot when the mean density is fixed.
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Note that this expression makes explicit the fact that one has alwaysf 0
n � 1, which justifies the name of normal ‘fraction’.

In formula (82) the presence of a non-zero superfluid fraction is related to a non-vanishing expectation value〈L2
z〉q .

This allows us to conclude generally that the superfluid fraction tends to zero in the thermodynamical limit: asL → +∞,
exp(−LHvrot/h̄) becomes proportional to the projector on the ground state of the Hermitian part of the fictitious Hamil
As this ground state has a vanishing angular momentum (l = 0), 〈L2

z〉q tends to zero in the thermodynamical limit. For
non-zerovrot, one gets similarly that〈P 〉/(Nmvrot) → 1 in the thermodynamic limit. One sees that the corresponding cr
length scale isL ∼ h̄/δE, whereδE is the energy difference between the first excited state and the ground state of the He
part ofH. As the minimal energy within a given subspace of angular moment is an increasing function of|l|, δE is either
En=1,l=0 − En=0,l=0 or En=0,l=1 − En=0,l=0. The lengths corresponding to these two possibilities have been identifi
[13]; they are respectively the correlation length and the coherence length of the bulk. As discussed in [13], the c
length is actually always larger than the correlation length. One then sees very generally that superfluidity in the spirit
exponentially suppressed when the length of the sample greatly exceeds the bulk coherence length.

The Bogoliubov approach in previous sections of this paper has produced a physical picture in which a superfluid
can still be identified with valleys even when the standard definition (4) gives a normal fraction close to unity. Wit
classical field model we can test this prediction in an exact manner, without relying on the Bogoliubov approximatio
useful first to identify the dimensionless parameters on which the classical field model actually depends. Let us expres
ψ in units ofρ1/2 (whereρ = N/L is the mean density) and the spatial coordinatez in units of

L0 = ρh̄2

mkBT
. (83)

Note thatL0 is on the order of the coherence length of the bulk gas, whatever the value ofχ is [13]. One then realizes tha
βE[ψ], and therefore the state of the gas, depends only on: (i)ṽrot, the velocityvrot in units ofkBT/(ρh̄); (ii) L̃, the lengthL
in units ofL0; and (iii) on a dimensionless parameterχ controlling the interaction strength:

ṽrot ≡ ρh̄vrot

kBT
, L̃ ≡ L

L0
= 2π2 T

Tv
, χ ≡ ρL0

ρg

kBT
=

(
L0

ξ

)2
=

(
Tdf

T

)2
, (84)

whereξ is the healing length such thath̄2/mξ2 ≡ ρg, Tdf is the temperature upper bound (34) required to have weak de
fluctuations andTv was defined in (61) in the Bogoliubov approach as the temperature lower bound to have several
populated.

For a non-rotating gas,vrot = 0, we explore the plane of the two remaining parameters,L̃ and χ , by a numerical
diagonalization of the fictitious HamiltoniansHvrot andHw . This gives access to the probability distribution ofP without
approximation, and allows to see in which parameter range this distribution has several peaks. The result is plotted in
expected, the presence of a multi-peaked structure requires a lengthL larger thanL0, otherwise the gas is in the Bose-conden

Fig. 7. From a full numerical solution of the classical field model, domain in theχ–L̃ plane where the probability distribution ofp(P ) is
multi-peaked. Only peaks higher than 10−3 times the maximal value ofp(P ) were considered, andχ andL̃ were varied in steps of one.
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regime. It also requires a large enoughχ , that is, weak enough density fluctuations. The boundary of the multi-peaked do
is studied analytically in the next subsection, using a largeχ expansion.

For a rotating gas, we have also performed numerical diagonalizations ofHvrot andHw , which requires in the case ofHw

the diagonalization of a non-Hermitian matrix. We have recovered the phenomenon, obtained within the Bogoliubov a
that the peaks of a well resolved multi-peaked structure forp(P ) are essentially not shifted by the rotation of the vessel, but t
amplitudes depend onvrot. The mean momentum of the gas in the classical field model is close to the Bogoliubov predic
its validity domain, that is for weak density fluctuations, see Fig. 3.

5.3. Asymptotic expressions

Analytical results can be obtained in two extreme cases. First, in the ideal Bose gas case, whereχ = 0. The fictitious
Hamiltonians appearing in (79) are then quadratic in the position and momentum operators and can be diagonalize
The difference with the usual harmonic oscillator case is that the potential energy termMΩ2(x2 + y2)/2 is now complex.
But one just has to choose for the ‘oscillation frequency’Ω the determination of the square root such that ReΩ > 0.5 In this
case the usual Gaussian wavefunction∝ exp[−mΩ(x2 + y2)/2h̄] is a perfectly normalizable ‘ground state’, and the us
repeated action of the creation operators can be used to obtain the ‘excited states’. As a consequence the usual 2
harmonic oscillator spectrum is recovered,En,l = (2n+|l|+1)Ω + imwl wheren is radial quantum number andl is the angular
momentum quantum number. The characteristic function can then be calculated exactly as the sum of a geometrical

g(ζ ) = cosh(ΩvrotL)− cos(mvrotL/h̄)

cosh(ΩwL)− cosh[mL(ζkBT − ivrot)/h̄] , (85)

where the complex oscillation frequencies are such that

Ω2
w = −2m

h̄2

(
µ+ 1

2
mw2

)
and Ω2

vrot
= −2m

h̄2

(
µ + 1

2
mvrot

2
)

(86)

andw was introduced in (80). The resultingp(P ) is shown in Appendix A to have a single maximum, at least forvrot = 0. The
chemical potential was already calculated in the classical field approximation, using the Poisson summation formula,
Using (81) one also recovers the expression (26) for the mean momentum. So, for the ideal Bose gas in the classical fi
using the Feynman formula to relate a path integral to the trace of an evolution operator is similar to the use of the
summation formula!

Second, in the largeχ limit, where intensity fluctuations of the field become weak, one can obtain asymptotic for
for g(ζ ). In this limit, the coherence lengthL0 is much larger than the healing lengthξ . To simplify the calculation, we tak
vrot = 0 in a first stage and we restrict to the case of a lengthL on the order of a few times the coherence length and there
much larger thanξ [13]: in this case, the energy differencesEn=1,l − En=0,l are much larger than̄h/L so that,within each
subspace of fixed angular momentuml, one can restrict to the ground state of the Hermitian part of the fictitious Hamilto
in the calculation ofg(ζ ):

g(ζ ) ∝
∑
l∈Z

e−L(E0,l+mlζkBT )/h̄, (87)

where the normalization factor is obtained fromg(0) = 1 andE0,l is the lowest eigenenergy of the Hermitian part ofHw with
angular momentuml (remember thatvrot = 0 here). Using polar coordinatesr, θ , we write the corresponding wavefunctionφ0,l
as

φ0,l(x, y) = fl(r)
eilθ

(2πr)1/2
, (88)

wherer = (x2 + y2)1/2/ρ1/2. The purely radial wavefunction then solves the Schrödinger equation

−1

2

d2

dr2
fl(r)+ Ul(r)fl(r) = Ẽ0,lfl(r) (89)

with an effective potentialUl including a centrifugal term:

Ul(r) = l2 − 1/4

2r2
+ 1

2
χr4 −

(
µ̃− ζ̃2

2

)
r2, (90)

5 This is not possible ifMΩ2 is real negative, which can occur only forζ = 0 andµ+mvrot
2/2> 0. One can then still use the formulas

come provided that one uses analytic continuation.



I. Carusotto, Y. Castin / C. R. Physique 5 (2004) 107–127 123

e

n
of

imation

values
f

obability
whereζ̃ = ρh̄ζ, Ẽ0,l = L0E0,l/h̄, and where the reduced chemical potentialµ̃ = ρL0µ/(kBT ) is here close to its bulk valu
calculated for largeχ in [13], sinceL exceeds a fewL0:

µ̃ = χ + 1

2
χ1/2 + O(1). (91)

In the largeχ limit, the ground state is deeply localized in the minimum ofUl(r) occurring at a non-zero distancerl from
the origin, solution ofU ′(rl) = 0. One can then expandUl(r) in a power series aroundr = rl , include the quadratic part i
(r − rl)

2 in a harmonic oscillator diagonalization, include the cubic, quartic,. . . terms with perturbation theory. Treatment
up to quartic terms with second order perturbation theory turns out to be sufficient here:

Ẽ0,l = Ul(rl)+ 1

2
ωl + 3U(4)

l
(rl)

96ω2
l

− 11
[
U

(3)
l

]2

288ω4
l

+ · · · , (92)

whereωl = [U(2)(rl)]1/2 is the oscillation frequency in the harmonic approximation toUl(r). The positionrl can be calculated
exactly, sincer2

l
is found to be the root of a cubic equation; when (92) is plugged into (87), one gets a very good approx

for g(ζ ) and, by numerical Fourier transform, a very good approximation for the probability distribution ofP , as compared to
the full numerical solution, forχ � 1, see Fig. 8. A more tractable expression can be obtained by realizing that typical
of ζ̃2 andl2 are of orderχ1/2,6 and by performing a systematic expansion of the cubic equation forrl and of (92) in powers o
χ−1/2:

Ẽ0,l − lζ̃ = const+ 1

2
(z̃ − l)2 + l2

2χ1/2
− 1

8χ

(
l2 − ζ̃2)2 + O

(
χ−1/2), (93)

where const depends onχ only, not onl or ζ . The second term in the right-hand side of the equation is O(χ1/2), the third and
fourth terms are a priori of the same order O(1). In practice the fourth term is typically O(χ−1/2) so we neglect it.7 We then
obtain a Gaussian expressions forg(ζ ) andp(P ).

Fig. 8. Probability distribution of the total momentumP in the classical field model, forχ = 200, vrot = 0 andL/L0 = 20. Symbols: full
numerical solution. Solid line: analytical expression (95). Dashed line: semi-analytical prediction resulting from the use ofrl as given by the
exact solution ofU ′(rl ) = 0 (see text). The dashed line and the symbols are almost indistinguishable.

6 This can be obtained by trial and error, but also by the fact that, in the Bogoliubov theory, the narrowest structure in the pr
distribution ofP scales as(f v

n )1/2, resulting in a maximal value ofζ scaling as 1/(f v
n )1/2. In the temperature regimekBT > µ, which is the

one of the classical field model,f v,0
n scales as 1/χ1/2, see (53).

7 After multiplication of (93) by −L/L0 and exponentiation to getg(ζ ), one realises thatg(ζ ), considered as a function of̃ζ ,
is approximately a superposition of narrow peaks centered in integer valuesl and of width ∝ (L0/L)1/2, with an envelope of width
χ1/4(L0/L)1/2. As a consequence, for a givenl, ζ̃ − l is O((L0/L)1/2), and the fourth term in the RHS of (93) is O(l2/χ) = O(χ−1/2).
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The previous calculations are immediately generalized to the case of a non-zero velocity: asL>L0, µ+mvrot
2/2 depends

weakly onvrot and can be replaced by the bulk value forvrot = 0; one then has to replacẽζ2 by ζ̃2 − 2iṽrotζ̃ in the above
calculation ofẼ0,l , whereṽrot, being independent onχ , is O(1). We then obtain forg(ζ ):

g(ζ ) = A
∑
l∈Z

e−L̃(l−ζ̃+iṽrot)
2/2 e−L̃l2/(2χ1/2), (94)

whereA is a constant factor such thatg(0) = 1. Performing the Fourier transform of this expression and using the Po
summation formula leads to

p(P ) = B e−(P̃−L̃ṽrot)
2/(2L̃)

∑
q∈Z

e−(P̃−2πq)2χ1/2/(2L̃), (95)

whereP̃ = P/(ρh̄). The constant factorB is such that the integral ofp(P ) over P is equal to unity. Formula (95) is ver
suggestive, as it is simply a Gaussian envelope centered inP̃ = L̃ṽrot on top of a periodic train of Gaussian peaks separate
2π in P̃ space. Therefore the functionp(P ) is multi-peaked if the envelope has a width larger than 2π and if each Gaussian o
the train has a width less than 2π :

L̃1/2 > 2π and
(
χ1/2/L̃

)1/2
> 2π. (96)

One recovers the conditions (68) using the fact thatf 0
n = χ−1/2 in the classical field regimekBT > ρg, see (53).

The asymptotically exact expression (95) is successfully compared with the full numerical solution in Fig. 8. O
also compare it to the Bogoliubov prediction (67): the two predictions are found to be identical up to higher orde
(see Appendix C). As a consequence, all the physical discussion following (67) also holds for the classical field mod
(94) one can also calculate the normal fractionf 0

n for vrot = 0 by taking the second order derivative of (94) with respect tζ .
Equivalently one may calculate the variance ofP from (95) and use (12). One gets two equivalent forms:

f 0
n = 1− L

L0

∑
q q2 exp(−L̃effq

2/2)∑
q exp(−L̃effq

2/2)
= 1

χ1/2 + 1
+ 1

L(1+ χ−1/2)2

∑
q∈Z

(2πq)2 e−(2πq)2/(2L̃eff)∑
q∈Z

e−(2πq)2/(2L̃eff)
, (97)

where the reduced effective length isL̃eff = L(1 + χ−1/2)/L0. The first form immediately shows thatf 0
n tends to one

exponentially forL � L0. The second form recovers the formula (11) of [5] in a calculation up to first order inχ−1/2 where
one replacesρS of [5] by ρ(1− χ−1/2).

6. Conclusions

We have investigated the superfluid properties of a ring of degenerate and weakly interacting 1D Bose gas a
equilibrium with a rotating vessel at velocityvrot. Provided the transverse trapping is strong enough, our model is a
description of a Bose gas confined in a toroidal trap [11].

Using the conventional definition of the superfluid fraction, which relies on the variance of the total momentum of th
the limit vrot → 0, we find that the gas has a significant superfluid fraction only in the Bose condensed regime, that is w
length of the ring does not exceed the coherence length of the bulk gaslc ∼ ρλ2, ρ being the mean density andλ the thermal
de Broglie wavelength.

To investigate more carefully the regime where the length of the ring exceeds the coherence length, we have cons
full probability distribution of the total momentumP . We have identified a regime where several peaks appear in this proba
distribution, each peak corresponding to a quasicondensate in a plane wave state with a given winding number, the
supercurrents in superconductors. Each supercurrent state exhibits some superfluid behaviour: in presence of a non-zvrot, the
peaks in the probability distribution ofP are indeed not shifted. This allows us to define a local normal fraction for an indiv
supercurrent. Quantitatively, we have found that the probability distribution ofP shows several isolated peaks provided that
length of the ring in units of the coherence length does not exceed the inverse of the local normal fraction.

In this non-Bose-condensed regime, it is obvious that the conventional criterion for superfluidity based on the var
P is sensitive to the envelope of the distribution but does not catch its multi-peaked structure. To get it, a direct mea
of the total currentP is required, which, e.g., could be performed by means of the technique proposed in [22]: in a slo
regime, the dielectric susceptibility of the atoms depends on the local value of the matter current so that the phase ac
by light after a round-trip around the ring is proportional to the total currentP .
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Appendix A. Absence of multiple peaks inp(P ) for the ideal gas

The characteristic function for the ideal gas in the classical field regime is:

g(ζ ) =
∏
k

β(εk − µ)

β(εk − µ) − iζ h̄k
. (A.1)

In thevrot = 0 case, we can regroup the pairs±k and rewrite (A.1) as:

g(ζ ) =
∏
k>0

gk(ζ ) =
∏
k>0

β2(εk − µ)2

β2(εk − µ)2 + (h̄k)2ζ2
. (A.2)

The Fourier transformpk(P ) of each termgk(ζ ) is then:

pk(P ) = ηk

2
e−ηk |P |, (A.3)

with ηk = β(εk − µ)/h̄k. In particular,pk(P ) has the property of being an even function that is decreasing forP > 0 (let us
call this propertyP). As the characteristic functiong(ζ ) is the product of thegk(ζ ), the distribution functionp(P ) is the
convolution of thepk(P ). As the convolution of two functions with the propertyP gives again a function with the propertyP
(a sketch of the proof is given below), we can conclude that the probability distributionp(P ) for the ideal gas has a sing
maximum, which is atP = 0. The possibility of multi-peaked structures is therefore ruled out for the ideal gas in the cla
field regime.

We can prove that the propertyP is preserved by convolution operations in the following way. Letp1(P ) andp2(P ) be two
arbitrary functions sharing propertyP . We have to prove that:

pc(P ) =
∫

dP ′p1(P
′)p2(P − P ′) (A.4)

(i) is an even function;
(ii) is a monotonically decreasing function forP > 0. Let us compute its derivative forP > 0:

p′
c(P ) =

∫
dP ′ p1(P

′)p′
2(P − P ′) =

∫
dP ′ p1(P − P ′)p′

2(P
′)

=
∞∫
0

dP ′ p′
2(P

′)
[
p1(P − P ′) −p1(P + P ′)

]
. (A.5)

As |P − P ′| < |P + P ′| andp1 is a decreasing function of the absolute value of its argument, the integrand is ne
This guarantees thatp′

c(P ) < 0 for all P > 0.

Appendix B. Derivation of the Bogoliubov Hamiltonian and momentum operator

The Hamiltonian (41) can be obtained either by directly solving the Bogoliubov–de Gennes equations for a moving
or, better, by applying Galilean invariance arguments to the well-known case of a system at rest. The eigenstates of
interacting Bose gas at rest (v0 = 0) are labeled within Bogoliubov theory by the occupation number of the bosonic quasip
modes{nk}. Thanks to translational invariance, these eigenstates are also eigenstates of the momentum: each qu
carrying a momentum̄hk, the total momentum of the gas is given by:

P
[{nk}] =

∑
k �=0

h̄k nk. (B.1)
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Omitting for the moment the rotation energy−Pvrot, the total energy is given by:

Evrot=0
[{nk}] = EGP[vrot = 0, v0 = 0] −

∑
k �=0

ε0
k V 2

k +
∑
k �=0

ε0
knk. (B.2)

The properties of a moving quasi-condensate atv0 �= 0 can be obtained from the ones of a quasi-condensate at re
transforming the energy and the momentum via a Galilean transformation of velocityv = v0. As discussed in Section 2.1, th
total momentumP ′ in the moving frame is in fact given by:

P ′[{nk}] = P
[{nk}] + Nmv0 =

∑
k �=0

h̄knk + Nmv0. (B.3)

Inserting back the rotation term−P ′vrot, the energyE′ turns out to be:

E′[{nk}] = Evrot=0
[{nk}] + 1

2
Nmv2

0 + (v0 − vrot)P
[{nk}]

= EGP[vrot, v0] −
∑
k �=0

ε0
kV

2
k +

∑
k �=0

[
ε0
k + h̄k(v0 − vrot)

]
nk. (B.4)

The eigenstates and eigenenergies obtained in this way exactly correspond to the ones of the Bogoliubov Hamiltonian
each state, the total momentum (B.3) agrees with (45).

Appendix C. Comparison of Bogoliubov and classical field theory forp(P )

In the regime of weak density fluctuations and a temperaturekBT � ρg we compare the expressions for the total momen
probability distributionp(P ) obtained by Bogoliubov theory, (67) on one side, and by a largeχ expansion of the classical fiel
model, (95) on the other side. At first glance, (95) looks much simpler and therefore different than (67). However one
identity

L̃−1(P̃ − L̃ṽrot
)2 + L̃−1(

P̃ − 2πq
)2

χ1/2 = L̃−1(
1+ χ1/2)(P̃ − P̃0

)2 + L̃−1 (2πq − L̃ṽrot)
2

1+ χ−1/2
, (C.1)

where

P̃0 = L̃ṽrot + 2πqχ1/2

χ1/2 + 1
. (C.2)

ExpandingP̃0 up to first order inχ1/2 and using the fact thatf v,0
n = χ−1/2 in the Bogoliubov theory, one finds that̃P − P̃0

coincides with the expression in square brackets in (67). The factor in front of this expression, proportional to 1/f
v,0
n , recovers

L̃−1(1+ χ1/2) within leading order inχ1/2. The last term in (C.1) coincides with the argument of the first exponential fa
in (67) when expanded up to first order inχ−1/2.
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