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Abstract

We have investigated the superfluid properties of a ring of weakly interacting and degenerate 1D Bose gas at thermal
equilibrium with a rotating vessel. The conventional definition of superfluidity predicts that the gas has a significant superfluid
fraction only in the Bose condensed regime. In the opposite regime, it is found that a superfluid behaviour can still be identified
when the probability distribution of the total momentum of the gas has a multi-peaked structure, revealing unambiguously the
existence of ‘superfluid’ supercurrent states that did not show up in the conventional definition of superflaiditg.this
article: I. Carusotto, Y. Castin, C. R. Physique 5 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Superfluidité du gaz de Bose 1DCet article étudie, dans le régime d’interaction faible, les propriétés superfluides d'un gaz
de Bose unidimensionnel confiné sur un anneau et a I'équilibre thermodynamique dans un référentiel tournant. La définition
habituelle de la superfluidité prédit que ce gaz a une fraction superfluide appréciable seulement s’il est aussi un condensat
de Bose-Einstein. Dans le régime non condensé, nous trouvons cependant qu'il est possible d'identifier un comportement
superfluide en considérant la distribution de probabilité de I'impulsion totale du gaz : il existe un régime ou cette distribution
comporte plusieurs pics bien séparés, ce qui démontre I'existence de super-courants superfluides qui passent inapergus dans la
définition habituelle de la superfluiditBour citer cet article: |. Carusotto, Y. Castin, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Is the weakly interacting 1D Bose gas superfluid?

Diverging answers can be found in the literature. The Landau criterion [1] gives a positive answer, since the dispersion
of elementary excitations is linear at low momenta. In the thermodynamic limit, it is argued in [2] that, on the contrary, the
1D Bose gas cannot be superfluid at finite temperature: it does not experience any phase transition, and the field correlation
function vanishes exponentially at large distances, rather than with a power law. A calculation based on the Bethe ansatz, with
some additional assumptions on the accessible many-body states, concludes that superfluidity is possible [3]. As shown in [4,5]
one of the subtleties of the issue is that there are actually different definitions of superfluidity, one of them based on a static
(that is thermal equilibrium) property of the system, the other one involving a dynamical response of the system. In 1D, these
two definitions are found to dramatically differ in the thermodynamic limit [5].
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Classical field model

Bogoliubov approximation
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Fig. 1. Scheme of the different approaches used in this paper and the corresponding applicability domains. The three temperature scales on the
axis differ by a factot(hp/mg)l/2 > 1 in the weakly interacting regime. ‘fluct.” stands for ‘density fluctuations’.

In this paper, we restrict to the strict thermal equilibrium regime, in a case where the gas can exchange momentum with
a rotating vessel with walls that are smooth, at least at the macroscopic scale. Note that this differs from the usual stirring
procedures used in experiments with condensates, where a macroscopic rotating defect is applied [6-9]. We investigate the
superfluid properties of the quantum gas in various limiting cases, from the ideal Bose gas to the weakly interacting Bose gas
with weak density fluctuations, where the Bogoliubov approximation applies. We also consider an exactly solvable classical
field model that allows also to study the interacting case with large density fluctuations. The applicability domain of this model
has some overlap with the one of the Bogoliubov approximation, see Fig. 1, and in this overlap domain the two approaches
give coincident results. Investigations are performed by considering not only the mean momentum of the rotating gas, but also
the whole probability distribution of the total momentum: this allows us to reach a much deeper physical understanding of the
static aspects of the problem.

2. General considerations
2.1. The physical model

Consider a one-dimensional Bose gas as described in a second-quantization approach by the Hamiltonian:
L
H hz/dxﬁ()az b+ 5 [dedtwdtwbmie &)
= - X)—— X = X X X X).
0= " om dx2 2
0

The ¥ (x) and ¥ T(x) operators are respectively the destruction and creation operators for a boson at. pitiely obey
standard bosonic commutation rulek(x), lf/T(x/)] = §(x — x’). The spatial coordinate runs on a ring of lengtt. with
periodic boundary conditions; is the atomic mass, and the strength of local interactions is quantified\bg shall restrict in
this paper to the repulsive and weakly interacting case so that we impogeq th/m [10] wherep is the mean density.

The Hamiltonian (1) is a good description of a Bose gas in a cylindrically symmetric toroidal trap [11] provided: (i) the
transverse trapping frequencies in the torus are much larger than both the temperature and the interaction energy per particle,
hwp ;> kpT, pg, and (ii) the radiusL /27 of the torus is much larger than the width of the transverse harmonic oscillator
ground state which allows to neglect curvature effects in the kinetic energy. In this regime, the system is effectively 1D with
periodic boundary conditions.

The gas is assumed to be at thermal equilibrium in an uniformly rotating frame, which mimics the presence of a rotating
vessel containing the fluid; transfer of angular momentum from the vessel to the fluid is assumed to be possible, so that thermal
equilibrium between the two can be attained. Rotation is then described by the following additional term in the Hamiltonian:

Hrot = —vrotP, (2

whereuvrot = §2 L /27 is the rotation velocity an@ is the total momentum operator of the gas:
. At 0 4
P=—it | dxd ) =¥ (). (3)
X

Notice that the total momentum operat®rgives the total mass current in the laboratory frame [12].
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2.2. Definition of the normal fraction of the gas

We define the generalized normal fractifpof the gas as:
(P)

- NmUrot’

In

(4)

where the expectation value of the total momentum operator is taken in thermal equilibriuvi Bnthe total number of
particles. The usual normal fraction of the gas is the Iifgﬂtof fn for vt — 0, and the corresponding superfluid fraction is
1- f,? [4]. For arigid body f,, = 1, which means that it is at rest in the rotating frame: the fluid is completely dragged by the
walls of the rotating vessel. On the other hafiyd= 0 for a pure superfluid: even if the vessel is rotating, the fluid remains at
rest in the laboratory frame.
In the following sections, we shall study in detail the behaviouy,pfor a weakly interacting one-dimensional Bose gas
in different temperature and density regimes. The temperature is assumed to be always much larger than the spacing of single
particle levels:
21212
mL2 "’ )

that is, the sizd. of the system is assumed to be much longer than the thermal de Broglie wavelength

| 2nh2
L>i= : 6
> Y (6)

For our finite-size system, only velocity boostsvhich are integer multiples of the characteristic velocity:

2rh
=TT

T>

@)

are allowedt Galilean invariance under such boosts implies that i an eigenstate of (1) of energy and momentun?,
the boosted stat¢’ is also an eigenstate of enerdy = E + vP + Nmv2/2 and momentunP’ = P + Nmv. Provided the
mean number of particle¥ is kept constant, the functiof (vrot) giving the mean momenturfP) as a function of velocity
vrot therefore satisfies a periodicity condition of the form:

P (vrot + v1) = P(vrot) + Nmvy. ®

Because of the symmetry under spatial inversiByrot) is an odd function obyot. This property, combined with (8), implies
that P(v1/2) = mNv1/2 and thereforef;, (v1/2) = 1. For this reason, in the following we shall restrict the definition (4) of the
generalized normal fraction to the velocity range: € [—v1/2, v1/2].

2.3. Probability distribution of the total momentufm

In the previous subsection we have introduced the concept of normal frgitioithe gas in terms of the expectation value
of the total momentum operat@tr. We shall extend our analysis by considering not only the average valRelnft rather the
complete probability distributiop(P), which gives the probability for the total momentum to be equal to some given Falue
Notice that this probability distributiop(P) is totally different and distinct from the usual momentum distribution, which gives
instead the mean number of particles in each momentum state.

As usual, the first step for the determinationpgfP) is the calculation of the corresponding characteristic funcgi@n):

g(©) =) 9)

The probability distributiorp(P) is then obtained as the Fourier transfornyof

_ [ % icp
p(P)—/ > € g(2). (10)

1 The effect a velocity boost of velocity on the many-body wavefunctiof (x1, .. ., xy)is
VL) =W, xy) €M

Periodic boundary conditions therefore impese=2rAM /L, M being an integer.
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The slow rotationrot — 0 limit of the normal fraction can be related to the variance @) in the non-rotatingrot = 0 system.
As the total momentun? commutes with the Hamiltoniakg, the density matrix of the fluid in the canonical ensemble at a
given inverse temperatuge= 1/ kg T can be expanded for smallot as:

p=e Pt Pued) ~ g FT0(1 4 purorP). (11)

This expression can be used to calculate the expectation value of the momerandithen the small velocity Iimif,? of the
normal fraction.

2
0= iim_fy= )

Er— 12
vrot—0 mkgT N (12)

This relation also holds in the grand-canonical ensembl&? asmmutes with the number of particles and as the chemical
potentialu varies only to second order ingt for a fixed mean number of particles. It is easy to see that for a Boltzmann gas of
N distinguishable and non-interacting particles, the equipartition theorem of classical statistical mechanics implies that

(P?)= "(pf)=mNkgT, (13)

i

wherep; is the momentum of theth particle. The system is therefore totally norrpf;QI: 1.

3. Non-interacting gas

The present section is devoted to a study of the rotational properties of a non-interacting gas. In the grand-canonical
ensemble, the population of each one-patrticle state is described by the usual Bose distribution:

1

"= PBle—m — 1 -
where the momenturh is quantized as usual as:
21 h
n being an integer, and the single-particle energivrot) in the rotating frame airot is equal to:
n2k2
e (vrot) = o ikvrot. (16)
The mean number of particles is
N=> . a7
k
and the mean momentum is
(P)=Y " hkn. (18)
k

The normal fractiony, is then immediately obtained from its definition (4). Its zero-velocity vqfﬁa:ould also be obtained
from (12) by taking into account the fact that for an ideal gas one has:

(n2) = 2(n)% + (mp). (19)

As for vrot = 0 a Bose—Einstein condensate can only appear it tadd mode, the prediction fofnO is not affected by the
non-physical grand-canonical fluctuations in the condensate mode.

3.1. Non-degenerate gas

In the limit 8u — —oo, the occupation of all single particle modes is much smaller than unity and the Bose distribution (14)
can be approximated by a Maxwell-Boltzmann law of the form:

ny = e PlEr—1 (20)
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As ny is a slowly varying function ok (the condition (5) is always assumed), one can replace the sunt avéi7) and (18)
by integrals% [ dk. By switching to the integration variablé = k + mv/#, it is then seen immediately that:

(P)Y = mN vrot, (21)

which means that the fluid is completely normal and no superfluid fraction is present. Notice that this conclusion does not
depend on the specific choice of the Maxwell-Boltzmann distribution (20). It rather depends on the facts that: (i) the occupation
number of the mode of wavevectbiis a function ofik — muret only: and (ii) sums can be replaced by integrals. Notice that

the condition (i) no longer holds in the presence of interactions, which allows, e.g., for superfluid behaviour of the 3D Bose gas
even in the thermodynamical limit. For the ideal Bose gas, as we shall see in the next subsection, condition (ii) is violated in the
Bose-condensed regime.

3.2. Classical field approximation

If one assumes that the temperature is larger than the absolute value of the chemical pgténtialu |, which corresponds
to the limit g — 07, the Bose distribution (14) can be approximated by the classical field one:

kpT

ng = . (22)
e — 1
Under this approximation, analytical results can be obtained for the normal fragtion
The mean density can be written as an infinite sum as:
kT L%pT 1
= Z 2 5 == Bz Z 2 =20 (23)
 (n k2)/(2m) —hkv—pu  2n2h nf—2ni+v
wherei = vrot/v1 is the rescaled velocity and? = —m L2 /27212, By applying the Poisson summation formula:
Yo fmy=)" frn), (24)

nez nez

where f (x) is an arbitrary function angf(k) = [dx f(x) exp(—ikx) its Fourier transform, one is led to the final expression:

L%pT 1 sinh(2
N L% inh(2mvg) _ 25)
K2 2mvg cosh(2mvg) — coS2 b))
whereug is defined as3 = v2 — 52.2 By applying the same Poisson summation formula (24) to the mean moméftyrne
obtains:
LkgT sin(2r v
(P)= Nmy — =18 2 0) (26)

h  cosh2mrvg) —cos2nd)’
Notice the periodicity ofV and(P) as functions of the reduced velocity This in agreement with the general result (8). From
(25) and (26) we immediately obtain the generalized normal fraction:

_ ) sin(2r )
T Nmv 1 ¥ sinh(27vg) 27

In

The physics of the non-interacting classical field is determined by the dimensionless pataameté¢ne rotation velocity.
For a given rotation velocityrot, the crossover from > 1 tov « 1 corresponds to the Bose condensation in the finite system.
In the high density — O limit where the gas is fully Bose-condensed, one lgs> i v and the normal fraction (27) tends to
zero. On the other hand, for— oo, vg — oo and the normal fraction consequently tends to 1.

In the absence of rotatiah= 0, Bose condensation in the finite system occurs for [13]:

6N 72
mL2’
that is, when the coherence lendth= p12/2x of the gas becomes larger than the sizef the system. Even in this zero-
velocity case, the normal fraction

kpT ~kpTgec= (28)

2mvg

0_1_
fi=1 sinh(27 vg)

(29)

2 Forv2 < #2, which happens wheh < [1 — cos(2r 9)]ph2/(mkgT), g is a purely imaginary quantity and the analytical continuation of
(25) has to be taken.
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differs from the non-condensed orfigc:
. N — (ng—o) cosh(2rvg) — 1
D e 30
Jre N 7 vg Sinh(2r vg) (30)

In particular, in the limit of a well-established Bose—Einstein condenggate 1, one has the peculiar relation:
12=2fnc, (31)

which states that the normal fraction is twice as large than the non-condensed one, and, therefore, that the condensate is not
completely superfluid. This prediction is qualitatively opposite to what is found in li§Hie, which at low temperatures is
totally superfluid even if the condensate fraction is only of the order of 10% [14,15].

3.3. Probability distribution of the total momentum

For the ideal Bose gas, the total momentum is simply written in terms of the single-particle occupation numagrs
P =", hkny, so the characteristic functiqy), is equal to:

1-— e*/s(é‘k —K)

8(0) = (€ 2 m) = T(eeM ) = T 1— e Bler—w gehk’

k k

(32)

which has a factorized form over single particle states. In the classical field approximation, this infinite product can be calculated
exactly, as shown in Section 5.

The probability distributiorp (P) without the classical field approximation is easily obtained by numerical Fourier transform
of (32) (Fig. 2). For a vanishingrot, the distributionp(P) is simply narrowed as the temperature is decreased and no additional
structure appears. An analytical proof of the fact théP) has a single maximum faret = O is given in Appendix A in the
classical field approximation. Superfluidity effects can therefore be seen only as a more rapid shrinking of the distribution as
compared to the case of a normal gas (cf. (12)). For a slow but finite rotation spgedv1/2, the flow of particles simply
appears as a shift-like distortion in the probability distributfon.

p(P) [a.u]

0
P/’vaI

Fig. 2. Probability distributiorp(P) of the total momentun® for an ideal Bose gas of 1000 particles. Rotation velogijgy = 0 (solid lines),
vrot/v1 = 0.125 (dashed lines). Temperatum,ﬁ(vaf/Z) =0.05,0.125 0.25 (from top to bottom: the corresponding normal fractions are
respectively:f,, = 0.3, 0.64, 0.92).

3 Calculations are made here for the ideal Bose gas in the grand canonical ensemble. In the case where a condensate is present, this ensemble
will give predictions forp(P) in agreement with the canonical ensemble only if the condensate is in thekreo@eOtherwise the non-physical
grand canonical fluctuations in the condensate mode will dramatically affétt.
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4. Interacting gas |: multi-valley Bogoliubov approach

The present section is devoted to the calculation of the rotational properties of a weakly interacting Bose gas at temperatures
low enough for density fluctuations to be weak. In this regime, the Bogoliubov theory can be used to describe the system.
Since we are dealing with one-dimensional systems in which no long-range order is present for the phase of the Bose field, the
extension of the Bogoliubov theory to quasi-condensates with only a finite-range order should be used, as discussed in [16]. For
simplicity we shall use the version of the method in the canonical ensemble.

Quantitatively, the weakly interacting gas condition can be written in terms of the density /L and the healing length
as [10]:

h2
pk=—2s1, 33)
mg

while the weakness of density fluctuationg /p < 1 requires [16]:

2 3 1/2
kpT < kpTgt = pg x p€ = (;p g) : (34

In the weakly interacting regime (33Jgs is always much lower than the temperature
Tqeg= 2ﬂh2p2/m (35)

for quantum degeneracy.
4.1. Mean total momentum in the Bogoliubov approximation

The preliminary step to the Bogoliubov approach is to use the pure quasi-condensate approximation and identify the quasi-
condensate wavefunctiafy(x) as a local minimum of the Gross—Pitaevskii energy functional:

_ h? 2 Ng a4 . *
Egpl¢] = | dx E\axw + 7|¢| +ihvrotd ™ 0x ¢ |. (36)
A local minimum has to be a stationary state of the Gross—Pitaevskii equation
", 5
no = _Eax + Nglo|“ + ihvrotdx |@. (37)

Here we take for stationary states the usual form of plane waves:
1 i
(x) = —= 0¥, 38
) N (38)
The periodic boundary conditions impose that the momentum is quantizeg=a®r wq/L, wg being an integer called the

winding numberThe corresponding velocityy = wgv1 will be called in the followingjuasi-condensateelocity. The chemical
potential is then

1
nw=gp+ Emv(z) — mugurot. (39)
The resulting energy of the pure quasi-condensate is then:
1 5 1
Egplvrot, vol = N >Mvg — mvovrot | + ENP& (40)

Under the low-temperature and weak-interaction conditions stated above, the fluctuations of the Bose field around the pure
guasi-condensate field can be described by the Bogoliubov Hamiltonian [16,17]:

HBog = EGplvrot, vol — Z ek VE+ Z Skl;zl;kv (41)
k#£0 k0

where thd?k, ZQZ operators are the usual (bosonic) destruction and creation operators for the Bogoliubov quasi-particles. Their
dispersion relatiomy, (vtot, vg) IS given by:

&k (vrot, v0) = 8;? + Ak (vo — vrot) (42)
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in terms of the usual dispersion relatio%for a system at resbf = vrot = 0):
h2k2 h2k2 1/2
0
Sk:[zm (2m +ng>] ' w
The V;, coefficients are defined as:
v 1 ({ h2k?/(2m) ]1/4 [hzkz/am) - 2pg]1/4>
=2\ h22)2m) + 208 1n2k2/(2m) '

2
The fact that theV;, do not depend omg — vrot iS a consequence of Galilean invariance. One has also to calculate the total
momentum operator (3):

(44)

P =Nmvg+ Y hkb} by (45)
k£0

The fact that the total number of particles enters in the first term of the right-hand side of this equation (rather than the number
of particles in the quasi-condensate or the number of particles in the superfluid fraction) is again a consequence of Galilean
invariance. A derivation oHgog and P is given in Appendix B.

The quasi-condensate mogg(x) is a local minimum of the Gross—Pitaevskii energy functional if all¢heare positive,
which guarantees the thermodynamical stability of the gas. This condition can be reformulated as:

o
v — Vrot| < min| £ |. 46
lvg — vrot| k;eo[hk] (46)
When the lengthL is larger than the healing lengéh this criterion reduces to the usual Landau criterion which states that the
flow velocity as measured in the moving frame has to be smaller than the sound v1=3Ize<mg/m)l/2 of the gas at rest.

A key assumption of our multi-valley Bogoliubov approach is that the density matrix of the system is a statistical mixture
of states of different winding numbersg and thus quasi-condensate velocitigs= wgv1. Each value ofig corresponds to
a separate minimum —alley — of the Gross—Pitaevskii energy functional (36) and the fluctuations around each of them are
treated within the Bogoliubov approximation previously discussed.

The expectation value of any observable, e.g., the mome®uimithen expressed as an average over the different valleys:

1
(P)= 2 > Zug(Phyg. 7
vo

Obviously, only stable states satisfying (46) are to be taken into accountz;fhare the contributions of the different valleys
to the total partition function:
1

—TrfePH] — Ae 3BNm@o—vo)® TT —__ *
ZUO_Tr[e ]vo_Ae 2 ° 1_[ 1 — e—Bek(vrot,v0) ’

k0

(48)

whereA is a overall factor which does not dependwog and therefore drops out from all the calculations that follow. The total
partition function isZr =3, ' Zy,.
The expectation value @ within a given valley(P),, is obtained as the thermal average of (45):

hk
(P)yg = Nmuvg +
° ° éexm—ﬁ[sg—hk(vrot—vo)]}—l

= Nmvg + Nm(vrot — vo) f (vrot — v0). (49)

The function f,Y (v) has a very simple physical interpretation: it is the generalized normal fraction of the gas that one would
predictin a single valley Bogoliubov treatmefite., winding numbeivg = 0) for a rotation velocity. Hence the superscript
In the remaining part of this section we shall restrict to the case

L>E. (50)

This will provide a considerable simplification of the expressiokRf.
First because this allows to replacefi(v) the sum ovek by an integral. The resulting integral may be calculated in the
limit of low and high temperatures. If the temperature is sufficiently low:

v
kBT<<pg<1—H), (51)
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only the linear part of the spectrum effectively contributes to the integral. This leads to

o (kgD? = 1
)= 3 3mhp (l—v2/c2)2’

(52)

wherec = {/pg/m is the sound velocity.
For temperaturegg T > pg but still smaller than the temperatufg; at which density fluctuations becomes important, a
classical field approximation can be performed on the Bose distribution law, which leads to

kpT 1
hep /1 — UZ/CZ'

Within their own domain of validity, both (52) and (53) predict a single-valley normal fraction much smaller than one.
Let us assume thétrot — vg| < ¢ for all the relevant terms in the sum (47). In this case, (49) can be simplified as follows:

fa ) = (53)

(P)og =~ Nmf,"Cvrot + Nmvg(1— £2°0), (54)

wheref,,”’O is the zero-rotation limit off,}:

0

W0_ ot Sz O 55
fa = 5O NkaTk% L (55)
The result (54) can be physically understood in the following terms: for any value of the quasi-condensate wgldbo#ty
normal fractionf,f’0 within the valley is moving at a rotation velocityot, while the superfluid fraction + f,f’o moves
independently atg.

In this limit |urot — vg| K ¢, the expression (48) for the partial partition function for each valley can be simplified by

expanding the product to second ordepjs — vg:

I 1 2BNmf orv0)? I1 ;0 (56)
k0 1 — e—Bek(vrot. vo) k20 1— e Bk

By inserting this expression into (48), the final expression for the expectation value of the momentum (47) gets the simple form:
P(vrop) = fil "Nmurot + N (1~ £°%) Y g(vo)mu, 57)
vo

in which the normal gas always moves at a veloejy and the probability distribution(vg) for the quasi-condensate to have
a velocityvg has the Gaussian form:

mN@L— f20)

q(vo) =Ny exp[— T

(vrot — 00)2]7 (58)

where N is the normalization factor. Note that only the fractiorﬂrlf,f’o of atoms which are superfluid in a single valley
treatment is actually involved in (58). The normal fraction of the gas can be obtained from (57):

. ,0
o w0 Nm@—fU92Y, viexd—3pmN@1— £,"")v3]
fo=dn kpT 1 0,0, 2
B Zvoexq_fﬂmN(l_fn )UQ]

(59)

Remarkably this expression coincides with formula (11) of [5] if one takes (1 — f,}”o)p in [5].
We briefly come back to the conditidnrot — vg| < ¢. Forvg = 0, this hypothesis is a direct consequence of (50) sifge
can be taken in the intervil-vy /2, v1/2]. What happens ifig > v1? The maximal accessible valug“"lX of vg allowed by the

probability distribution (58) correspondsﬁwg/Z ~kgT/N. vg‘ax is much smaller than providedkpT < Npg. As:
kT T &
Npg Tyt L’

this is automatically satisfied since we have assumgsd & andT < Tys.

Even if the normal fractiorf,f‘o within a single valley is always smaﬂf‘o <« 1inthe regime of validity of the Bogoliubov
approximation, the true normal fraction tends to one as soon as several valleys are thermally populated

(60)

1
kBT>kBTv:ENmu§. (61)
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Fig. 3. Average value of the total momentuPnas a function of the rotation velociyot for a Bose gas of 1000 interacting atoms. Chemical
potential pg/kp T, = 0.1. Temperatures: (d) /T, = 0.025; (b) Q1; (c) 0.25. Solid lines: many-valley Bogoliubov predictions. Dashed lines
for (b) and (c): full numerical solution of the classical field model of Section 5. For curvé £d),= pg/4 < pg, outside the applicability
range of the classical field model.

In this case, one can replace the discrete sumqyby an integral in (57):
(P) = Nmurot, (62)

finding that the transport of atoms in the presence of a finggs essentially due to the redistribution of the population among
the different valleys. In other words, as several different values of the quasi-condensate wglac&yaccessible, the presence
of a finite rotation velocity causes an imbalance of the relative probabiitigp and therefore a net matter flow.

The Bogoliubov prediction fotP) as function ofvret is plotted in Fig. 3 for various values of the temperature. In the low
temperature regim& < Ty, only the valley withwg = 0 is generally occupied farot < v1/2: the full normal fraction is close
to the single valley prediction, so that the gas is almost fully superfluid. Whgrapproaches,/2, the valleyswg = 0 and
wo = 1 become nearly degenerate: the Gross—Pitaevskii energies (40) of a condensategat@sind in the first excited
statevg = vy are nearly equal. In this case, everfikk T, both valleys can be populated and their relative weights will be
strongly dependent onyot, See the step function in Fig. 3. Fant > v1/2, only the valleywg = 1 is occupied. The width of
the crossover from a valug?) <« Nmurot to a valueNmuyot — (P) << Nm(v1 — vrot) is of the order of

kpT

. 63
Nmuvq 63)

Avrot =

In the opposite regime of a temperature on the orddr,ofvhere several valleys are thermally populated, the step behaviour of
P (vrot) is smoothed out and the gas become normal, as predicted in (62).

4.2. Comparison with Quantum Monte Carlo simulation

The predictions of the many-valley Bogoliubov approach can be verified against a Quantum Monte Carlo calculation
performed using a recently developed stochastic field technique for the interacting Bose gas [18]. As rotation is described by an
additional single-particle term Purot in the Hamiltonian, the numerical simulation does not present any further complication
with respect to the ones previously performed, e.g. for the study of the statistical properties of a Bose—Einstein condensate [19].

In Fig. 4 we have compared the result of the Monte Carlo simulation with the prediction of the many-valley Bogoliubov
theory. As the conditior > £ is not fulfilled, a numerical evaluation of (47)—(49) is necessary. The parameters of the figure
correspond to a regime in which only a single valley is thermally populated 7, : the agreement is good in the slow-velocity
regimeuvrot < v1 as well as close to the pointot = v1/2 where the two valleys of winding numbers respectivey= 0 and
wo = 1 become degenerate and the system is in a statistical mixture of them.
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Fig. 4. Average value of the total momentutas a function of the rotation velocityot for a 1D Bose gas of 42 interacting atoms. Chemical
potentialpg/kgT, =0.017, T/T, = 0.017. Solid line: many-valley Bogoliubov theory. Points: Quantum Monte Carlo calculation.

4.3. Probability distribution of the total momentum

If the temperature is sufficiently low for density fluctuations to be small, the many-valley Bogoliubov theory introduced in
the previous subsection can be used to calculate not only the normal fraction but also the complete probability digttiution

for the total momentun®.
Using the expression (45) of the total momentum operator in the Bogoliubov approximation, the characteristic gagtion

can be written as:

1 iCNmuvg [l hkn
g(0) = Z_T %:Zvo d¢ 0<e|§ 2k k>U0

1

, 64
o 1— e Blel—k(vro—vo)] gicnk 64)

1 1 2
N e 2BNm(vo—vro)® & Nmuo
Z =
vo
wheren; are now the occupation numbers of the Bogoliubov quasi-particle modes of engrgies
Itis apparent in the last factor of (64) that the presenceasn be reinterpreted as a complex shifb@ — vg by an amount
—ikgT¢. If we assume that

lurot — vo — ikpT¢| K¢, (65)
we can simplify (64) in exactly the same way which led to (56):
20~ — 3 e BNm 1= £*) (vrot—v0)?/2 g mNvo (L= £") demNvrotfi® g=mN "k T¢?/2, (66)
T “vo

The distribution functiorp(P) for the momentum can then be calculated by Fourier transform of the characteristic function (66):

p(P) = Hi ) e BmN (A= £"%) (o—vron?/2 o[ P—mvoN (1= £, O)—muratN £ ° 1/ @mN £ %k T) 67)
vo

The structure of (67) is physically transparent and can be summarized as follows:

— each valley contributes as a peak of widﬁ;f’ONka T)Y/2 in accord with (12) as applied to a single valley;

— the peak corresponding to each valley is centered at the malyy (1 — f,f’o) —l—mvrotf,:)’o of the momentum: as expected,
the (single-valley) superfluid fractiofl — f,}”o) moves at the quasi-condensate veloaigy while the normal onef,f’o
moves abrot;
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Fig. 5. Multi-valley Bogoliubov prediction for the probability distributign( P) of the total momentun® for an interacting Bose gas of 1000
particles. Rotation velocityyot = 0. Chemical potentigbg / kg T, = 3.2. TemperatureT /T, = 0.25,0.5, 1, 2, 3 (from top to bottom).

— the occupation probability of each valley is proportional to a Gaussian involving the kinetic energy in the rotating frame of
the (single-valley) superfluid fraction.

So, for temperatures such that:

Ty <T < Tvvo (68)
n ’
the probability distribution of momentum(P) is given by a series of narrow isolated peaks.

The probability distributiorp(P) is plotted in Fig. 5 forrot = 0 and different values of the temperature. At low temperatures
T « Ty, only a single valley is populated and P) shows a single narrow peak arouRd= 0. In this case, the gas is nearly
fully superfluid. For temperatures growing acrdssT, ~ 1, higher valleys start to be populated as well, more peaks become
visible and the width of each of them gets larger. Correspondingly, the superfluid fraction decreases to zero. At sufficiently high
temperature, the isolated peaks merge into a broad, unstructured, distribution. Note that for all temperatures in the figure, the
single-valley normal fractiorf,:”o remains always significantly smaller than unity.

Conventional superfluidity occurs only when the width of the envelope becomes of the order of the spacing between peaks,
so that only the one whose quasi-condensate velagitis closest to the rotation velocityot results effectively populated.
Otherwise, mass transport occurs in the presence of a finite rotation velggitgs a consequence of the redistribution of
population between the different valleys more than of the distortion within a given valley. This behaviour can be clearly observed
in Fig. 6, where the effect of a finitgot on the probability distributionp (P) is shown: although the shape of each single peak
is weakly affected, the envelope function suffers a dramatic distortion.

Let us briefly discuss the validity condition of (65). The validity condition|@ft — vg| < ¢ was already discussed in
Section 4.1. What is left is to compakg T'|¢ | to c¢. The narrowest features p(P) are found to be the peaks corresponding to
single valley normal fractions, of momentum wio[tﬁf’ONka T)Y/2. As g(¢) is the Fourier transform of(P), this results
in a maximal value ot on the order of

1

{max=—5—"">=- (69)
(S ONmkgT)H/2
In the regimekg T > pg, f,}"o is given by thev = 0 limit of (53). We then obtain
kpT 1
BT {max _ S <1 (70)

c W@y
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Fig. 6. Multi-valley Bogoliubov prediction for the probability distributign( P) of the total momentun® for an interacting Bose gas of 1000
particles. Rotation velocityrot/v1 = 0 (solid), Q125 (dashed), .8 (dotted). Chemical potenti@glg/ kg T, = 3.2. Temperaturd’/ T, = 0.5.

since we assumel > £. In the regimekg T <« pg, we use (52) withy = 0 to obtain

kpT he \1/?
BT {max ~ c . (71)
Cc LkBT
The condition (65) then imposes a lower bound on the temperature,
kpT > hc/L. (72)

Sincefic/L is the energy of the lowest Bogoliubov excitation in a single valley, this condition is equivalent to a non-zero
temperature regime in the valley. Note that this condition is automatically satisfied in the multi-valley rEginTe for a
weakly interacting Bose gas.

5. Interacting gas ll: classical field model

The results of the previous section have been obtained on the grounds of a Bogoliubov theory which assumes that the density
fluctuations are weak; this condition requires the temperature to be sufficientlly ey whereTys is given in (34). On the
other hand, for temperatures larger than the chemical potential but still lower than the degeneracy temperature

kpTdeg> kpT > pg, (73)

a classical field model can be applied. In the present section, we shall discuss the predictions of this approach regarding the
superfluidity properties of the gas. The actual existence of a temperature range (73) is guaranteed by the weak interaction
condition (33). In this regime, as one can see in the diagram in Fig. 1, the applicability domains of classical field and Bogoliubov
theories have a non-vanishing overlap and, in particular, give coincident predictions, as we shall see.

5.1. The model and its solution

We generalize to the rotating case the classical field model of [13,20,21]. In this generalization of the model, the complex
field ¥ (z) has a grand canonical thermal equilibrium distributiBp/] proportional to exp-BE[v¥]) where E[y] is the
Gross—Pitaevskii energy functional:

L
72 B
E[y] =fdz[g|azw2+ gwf\“ — ~vrot *3: Y — mwz] (74)
0

restricting to the configurations of the complex field obeying the boundary condition= v (L).
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Expectation values of quantum observables are obtained by replaivith v, @T with ¢* and then averaging over the
thermal distributionP[y/]. At this stage, the reader may argue that a classical field thermal distribution is expected to lead to
divergences in the observables in the absence of an energy cut-off, reminiscent of the black-body catastrophe of 19th century.
A very fortunate consequence of the 1D character of the gas is that the classical field model gives finite predictions for the
observables relevant for this paper, such as the mean density, the mean momentum of the gas, the probability distribution of the
total momentum of the gas, as we shall see. This suppresses the issue of an energy cut-off dependence.

Calculation of expectation values can be performed exactly in the classical field model: the summation over all possible
complex pathg — v (z) can be viewed formally as a Feynman path integral over trajectories of a single quantum patrticle in
2D, z playing the role of a fictitious time, the real and imaginary partg-aforresponding to fictitious coordinatesand y.

Using in the reverse order the Feynman formulation of quantum mechanics, one can map the functional integral over all paths
into a Feynman propagator for a fictitious Hamiltonian of a quantum particle moving in 2D, hamagmnary time. More
details are given in [13,21]. We give here without proof the expression of the fictitious Hamiltonian for a rotating system:

PZ+p3  murot 1 Y 1 2\(.2, .2
Hugrt = —57,— +1 Lz+—hl38(x +y ) —hB| n+ smurot (X +y ) (75)
2M h 2 2
where the fictitious mass is
73
M=—_, (76)
kaT

px, py are the momentum operators of the fictitious particle along and L, = xp, — ypx is the angular momentum
operator of the particle along Note that the fictitious Hamiltonian is not Hermitian fagt # 0, but its anti-Hermitian part
commutes with its Hermitian part, which is indeed rotationally invariant. A numerical diagonalization of the Hermitian part
of H is therefore very simple, as one has to solve a Schrédinger equation for the radial part of the eigenfunctions only. The
corresponding eigenvectors are labeled by two quantum numbers, the angular moimeand the radial quantum number

n eN, andE, ; is the corresponding real eigenvalue.

5.2. Exact expressions for relevant observables

We give the explicit expression for some useful expectation values. The calculation of the mean density in the classical field
model is required to determine the chemical potentidr a given mean total number of particles. The mean density is given

by
W) =% +%),, @
where the ‘quantum expectation value’ of any operadior the fictitious particle is defined as
Tr 0 e L Huor/ )
Trie~ L ot/
The characteristic function for the total momentua= —i# [ ¢ *o,y is
. Tr[efL'Hw/h]
= eICP =, 79
s©={e*) Trie~ LMot/ 1) (79)
where we have introduced the complex velocity
w=vrot — iCkgT (80)

andH,, is obtained by replacingrot With w in H,,;. The mean total momentum of the gas is related to the derivative of the
characteristic function ig = 0:

kaT
h2

d .
(P) = —|£(0) — Nmuvrot — i L(L.)g. (81)

where we used (77) to obtain the mean total number of partiéleBhe first order expansion inot of this expression, when
combined with theyrot — O limit of (4), leads to the exact expression for the standard definition of the normal fréction:
mkpT L (L2)g (vrot = 0)

I =1 pf’lz 72

(82)

4 We used the fact that the chemical potentiataries only to second order it when the mean density is fixed.



I. Carusotto, Y. Castin / C. R. Physique 5 (2004) 107-127 121

Note that this expression makes explicit the fact that one has aly’\%ﬁl, which justifies the name of normal ‘fraction’.

In formula (82) the presence of a non-zero superfluid fraction is related to a non-vanishing expectatio(‘L§a;ue
This allows us to conclude generally that the superfluid fraction tends to zero in the thermodynamical limits aisoco,
exp(—LHy,o/h) becomes proportional to the projector on the ground state of the Hermitian part of the fictitious Hamiltonian.
As this ground state has a vanishing angular momenium @), (Lf)q tends to zero in the thermodynamical limit. For a
non-zerouvrot, ONe gets similarly thatP)/(Nmurot) — 1 in the thermodynamic limit. One sees that the corresponding critical
length scale id ~ ii/8E, wheres E is the energy difference between the first excited state and the ground state of the Hermitian
part of H. As the minimal energy within a given subspace of angular moment is an increasing functign&d is either
E;—1,1=0— Epn=0,1=0 O E;—0,;=1 — Es—0,=0- The lengths corresponding to these two possibilities have been identified in
[13]; they are respectively the correlation length and the coherence length of the bulk. As discussed in [13], the coherence
length is actually always larger than the correlation length. One then sees very generally that superfluidity in the spirit of (4) is
exponentially suppressed when the length of the sample greatly exceeds the bulk coherence length.

The Bogoliubov approach in previous sections of this paper has produced a physical picture in which a superfluid behavior
can still be identified with valleys even when the standard definition (4) gives a normal fraction close to unity. Within the
classical field model we can test this prediction in an exact manner, without relying on the Bogoliubov approximation. It is
useful first to identify the dimensionless parameters on which the classical field model actually depends. Let us express the field
¥ in units of p1/2 (wherep = N/L is the mean density) and the spatial coordinaite units of

2

ph
Lo= . 83
0 mkgT (83)

Note thatL is on the order of the coherence length of the bulk gas, whatever the vajuésdfL3]. One then realizes that
BE[vy], and therefore the state of the gas, depends only ofxfi)the velocityvrot in units ofkg T/ (ph); (ii) L, the lengthL
in units of Lg; and (iii) on a dimensionless paramejecontrolling the interaction strength:

i . L T Lo\2 [Ty \?
1Y ert’ i _:27_[2_’ XEpLOﬁ: _0 — ﬂ , (84)
kT Lo T, kT £ T

where¢ is the healing length such thh@/mg2 = pg, Tys is the temperature upper bound (34) required to have weak density
fluctuations andl, was defined in (61) in the Bogoliubov approach as the temperature lower bound to have several valleys
populated.

For a non-rotating gasyrot = 0, we explore the plane of the two remaining parametérsnd x, by a numerical
diagonalization of the fictitious Hamiltoniar¥g,,,, and H,,. This gives access to the probability distribution ®fwithout
approximation, and allows to see in which parameter range this distribution has several peaks. The result is plotted in Fig. 7. As
expected, the presence of a multi-peaked structure requires a lefaytier than_ g, otherwise the gas is in the Bose-condensed

Urot =
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Fig. 7. From a full numerical solution of the classical field model, domain inyth& plane where the probability distribution gf(P) is
multi-peaked. Only peaks higher than fotimes the maximal value gf(P) were considered, angd and L were varied in steps of one.
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regime. It also requires a large enoughthat is, weak enough density fluctuations. The boundary of the multi-peaked domain
is studied analytically in the next subsection, using a largepansion.

For a rotating gas, we have also performed numerical diagonalizatidis, gfand?,,, which requires in the case &{,,
the diagonalization of a non-Hermitian matrix. We have recovered the phenomenon, obtained within the Bogoliubov approach,
that the peaks of a well resolved multi-peaked structure{@t) are essentially not shifted by the rotation of the vessel, but their
amplitudes depend anet. The mean momentum of the gas in the classical field model is close to the Bogoliubov prediction in
its validity domain, that is for weak density fluctuations, see Fig. 3.

5.3. Asymptotic expressions

Analytical results can be obtained in two extreme cases. First, in the ideal Bose gas casey wh@reThe fictitious
Hamiltonians appearing in (79) are then quadratic in the position and momentum operators and can be diagonalized exactly.
The difference with the usual harmonic oscillator case is that the potential energyterfix2 + y2)/2 is now complex.

But one just has to choose for the ‘oscillation frequen@ythe determination of the square root such thatRe 0.2 In this

case the usual Gaussian wavefunctioexp—ms2 (x2 + y2)/2h] is a perfectly normalizable ‘ground state’, and the usual
repeated action of the creation operators can be used to obtain the ‘excited states’. As a consequence the usual 2D isotropic
harmonic oscillator spectrum is recoverégl, = (2n + /| +1)£2 +imwl wheren is radial quantum number ards the angular
momentum quantum number. The characteristic function can then be calculated exactly as the sum of a geometrical series:

cosh(§2y,q L) — co(murotL /1)

= i 85
80 = CosH2u L) — costmL (kT — ivrop)/h] (85)
where the complex oscillation frequencies are such that
2m 1 2m 1
Q2= 2 (u + Emw2> and Qim =2 (u + Emvrot2> (86)

andw was introduced in (80). The resulting P) is shown in Appendix A to have a single maximum, at leastfgr=0. The
chemical potential was already calculated in the classical field approximation, using the Poisson summation formula, see (25).
Using (81) one also recovers the expression (26) for the mean momentum. So, for the ideal Bose gas in the classical field model,
using the Feynman formula to relate a path integral to the trace of an evolution operator is similar to the use of the Poisson
summation formula!

Second, in the largg limit, where intensity fluctuations of the field become weak, one can obtain asymptotic formulas
for g(¢). In this limit, the coherence lengthg is much larger than the healing lendgthTo simplify the calculation, we take
vrot = 0 in a first stage and we restrict to the case of a ledigtin the order of a few times the coherence length and therefore
much larger tharg [13]: in this case, the energy differencg€s_1 ; — E,—o; are much larger thah/L so that,within each
subspace of fixed angular momentlynone can restrict to the ground state of the Hermitian part of the fictitious Hamiltonian
in the calculation of(¢):

g(%) x Z e L(Eo +mickp T)/r,’ o
leZ

where the normalization factor is obtained freif0) = 1 andEq; is the lowest eigenenergy of the Hermitian partaf, with
angular momenturh(remember thatrot = O here). Using polar coordinates), we write the corresponding wavefunctiop ;
as

dlo
$0,1(x,y) = fl(f)W» (88)
wherer = (x2 + y2)1/2/51/2_ The purely radial wavefunction then solves the Schrodinger equation
1d? -
—553 /1) + U0 fi(r) = Eg 1 f1(r) (89)
2dr
with an effective potential/; including a centrifugal term:
P-4 1 4 (. 2\,
Ui(r)= 2 ToX - (u - 7)r ; (90)

5 This is not possible i/ 22 is real negative, which can occur only for= 0 andu + murot?2/2 > 0. One can then still use the formulas to
come provided that one uses analytic continuation.
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wherez = ph¢, Eo,z = LoEg/h, and where the reduced chemical poteniiak pLou/(kpT) is here close to its bulk value
calculated for large; in [13], sinceL exceeds a fewLq:

3 1
u=x+§xl/2+0(l). (91)

In the largey limit, the ground state is deeply localized in the minimumifr) occurring at a non-zero distanegfrom
the origin, solution ofU’(r;) = 0. One can then expand;(r) in a power series around= r;, include the quadratic part in
(r — )2 in a harmonic oscillator diagonalization, include the cubic, quarticterms with perturbation theory. Treatment of
up to quartic terms with second order perturbation theory turns out to be sufficient here:

uPon  1[uPP
96w? 2880}

Eo =Ui(m) + S+ (92)

wherew; = [U@ (r)]11/2 is the oscillation frequency in the harmonic approximatio/t6-). The position; can be calculated
exactly, sincezrl2 is found to be the root of a cubic equation; when (92) is plugged into (87), one gets a very good approximation
for g(¢) and, by numerical Fourier transform, a very good approximation for the probability distributiBnasf compared to
the full numerical solution, fo > 1, see Fig. 8. A more tractable expression can be obtained by realizing that typical values
of £2 and!? are of ordery1/2,% and by performing a systematic expansion of the cubic equation &ord of (92) in powers of

X
12

(12— )P+ 0(r V), (©3)

~ - 1 2
Eqg;— 1t =const+ =(z —1 —
01— 1¢ + 5@ =D+ 212 By

where const depends gnonly, not on/ or ¢. The second term in the right-hand side of the equation(b@@), the third and
fourth terms are a priori of the same ordefl® In practice the fourth term is typically @ ~1/2) so we neglect if. We then
obtain a Gaussian expressions §6t) and p(P).

15 T T T T

p(P) [1/(ph)]

P [ph]

Fig. 8. Probability distribution of the total momentumin the classical field model, fox = 200, vrot =0 andL/Lg = 20. Symbols: full
numerical solution. Solid line: analytical expression (95). Dashed line: semi-analytical prediction resulting from the; esegifen by the
exact solution o/’ (r;) = 0 (see text). The dashed line and the symbols are almost indistinguishable.

6 This can be obtained by trial and error, but also by the fact that, in the Bogoliubov theory, the narrowest structure in the probability
distribution of P scales a$f,}’)1/2, resulting in a maximal value af scaling as ;L(f,}’)l/z. In the temperature reginig T > 1, which is the
one of the classical field modef;’*? scales as Ix1/2, see (53).

7 After multiplication of (93) by —L/Lg and exponentiation to ge§(¢), one realises thag(¢), considered as a function df,
is approximately a superposition of narrow peaks centered in integer valaas of width « (Lg/L)Y/2, with an envelope of width
xY4(Lo/L)Y/2. As a consequence, for a givens — I is O((Lg/L)1/2), and the fourth term in the RHS of (93) i/ x) = O(x ~/2).
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The previous calculations are immediately generalized to the case of a non-zero velgl:itsy:l@;a m +mvr9t2/2 depends
weakly onvthand can be replaced by the bulk value fgst = 0; one then has to repla¢® by 72 — 2iiretZ in the above
calculation ofEq ;, wheretot, being independent op, is O(1). We then obtain fog (¢):

2(0)=A Ze—i(l—§:+il~)rot)2/2e—ilz/(le/z)’ (94)
leZ

where A is a constant factor such thatO) = 1. Performing the Fourier transform of this expression and using the Poisson
summation formula leads to

p(P) = Be~(P—Lir0?/(2L) 3 e (P=219)%x?/2L) (95)
qeZ

where P = P/(ph). The constant factoB is such that the integral g#(P) over P is equal to unity. Formula (95) is very
suggestlve as itis simply a Gaussian envelope centerBaHEn. ot ON top of a periodic train of Gaussian peaks separated by
27 in P space. Therefore the functign( P) is multi-peaked if the envelope has a width larger thared if each Gaussian of
the train has a width less tham 2
[Y2>27 and (x%%/0)Y?> 2x. (96)

One recovers the conditions (68) using the fact _;f;&\t: x Y2 in the classical field regimegT > pg, see (53).

The asymptotically exact expression (95) is successfully compared with the full numerical solution in Fig. 8. One can
also compare it to the Bogoliubov prediction (67): the two predictions are found to be identical up to higher order terms
(see Appendix C). As a consequence, all the physical discussion following (67) also holds for the classical field model! From
(94) one can also calculate the normal fractjdhfor vrot = 0 by taking the second order derivative of (94) with respect.to
Equivalently one may calculate the variancefofrom (95) and use (12). One gets two equivalent forms:

" 2ns
o1 L Y Pexp-Lenq?/2 1 . 1 Y ez (2rnq)2e @0/ @Len) o
"7 Lo Yyexp-Lenq?/2)  xM2+1 LA+xTY22 v e-@ro?/@Lep

where the reduced effective length is¢ = L(1 + x~1/2)/Lo. The first form immediately shows that® tends to one
exponentially forL > Lg. The second form recovers the formula (11) of [5] in a calculation up to first order #2 where
one replacegyg of [5] by p(1 — x~1/2).

6. Conclusions

We have investigated the superfluid properties of a ring of degenerate and weakly interacting 1D Bose gas at thermal
equilibrium with a rotating vessel at velocityot. Provided the transverse trapping is strong enough, our model is a good
description of a Bose gas confined in a toroidal trap [11].

Using the conventional definition of the superfluid fraction, which relies on the variance of the total momentum of the gas in
the limit vt — 0, we find that the gas has a significant superfluid fraction only in the Bose condensed regime, that is when the
length of the ring does not exceed the coherence length of the bulk gasi?2, p being the mean density andthe thermal
de Broglie wavelength.

To investigate more carefully the regime where the length of the ring exceeds the coherence length, we have considered the
full probability distribution of the total momentur®. We have identified a regime where several peaks appear in this probability
distribution, each peak corresponding to a quasicondensate in a plane wave state with a given winding number, the analog of
supercurrents in superconductors. Each supercurrent state exhibits some superfluid behaviour: in presence ofiggadheero
peaks in the probability distribution d@f are indeed not shifted. This allows us to define a local normal fraction for an individual
supercurrent. Quantitatively, we have found that the probability distributidghsifows several isolated peaks provided that the
length of the ring in units of the coherence length does not exceed the inverse of the local normal fraction.

In this non-Bose-condensed regime, it is obvious that the conventional criterion for superfluidity based on the variance of
P is sensitive to the envelope of the distribution but does not catch its multi-peaked structure. To get it, a direct measurement
of the total currentP is required, which, e.g., could be performed by means of the technique proposed in [22]: in a slow-light
regime, the dielectric susceptibility of the atoms depends on the local value of the matter current so that the phase accumulated
by light after a round-trip around the ring is proportional to the total curfent
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Appendix A. Absence of multiple peaks inp(P) for the ideal gas

The characteristic function for the ideal gas in the classical field regime is:

_ Blek — 1)
gm_l:[—ﬂ(ek—u)—imk' (A1)

In the vrot = 0 case, we can regroup the paitg and rewrite (A.1) as:

3 3 B2 (ex — )
8 —}Z[ng(;) _kl:[oﬂz(sk ST ITTsIER (A2)

The Fourier transfornpy (P) of each termg (¢) is then:
pr(P) = ”?k e Mkl Pl (A.3)

with n; = B(ex — w)/Ak. In particular, p; (P) has the property of being an even function that is decreasing fer0 (let us
call this propertyP). As the characteristic functiog(¢) is the product of theg; (¢), the distribution functionp(P) is the
convolution of thep, (P). As the convolution of two functions with the propef®/gives again a function with the propergy
(a sketch of the proof is given below), we can conclude that the probability distribptiBn for the ideal gas has a single
maximum, which is atP = 0. The possibility of multi-peaked structures is therefore ruled out for the ideal gas in the classical
field regime.

We can prove that the properB is preserved by convolution operations in the following way. gtP) and p2(P) be two
arbitrary functions sharing propery. We have to prove that:

pe(P) =/dP’p1(P’)pz(P —P) (A.4)

(i) is an even function;
(ii) is a monotonically decreasing function fé > 0. Let us compute its derivative fat > 0:

pu(P) = / dP’ p1(P")p5H(P — P')= / dP’ p1(P — P')phH(P')
0

= / dP’ p,(P")[p1(P — P") — p1(P + P)]. (A.5)
0

As |P — P'| < |P + P'| and p; is a decreasing function of the absolute value of its argument, the integrand is negative.
This guarantees that.(P) < 0 for all P > 0.

Appendix B. Derivation of the Bogoliubov Hamiltonian and momentum operator

The Hamiltonian (41) can be obtained either by directly solving the Bogoliubov—de Gennes equations for a moving system,
or, better, by applying Galilean invariance arguments to the well-known case of a system at rest. The eigenstates of a weakly
interacting Bose gas at resp(= 0) are labeled within Bogoliubov theory by the occupation number of the bosonic quasiparticle
modes{n;}. Thanks to translational invariance, these eigenstates are also eigenstates of the momentum: each quasiparticle
carrying a momentumk, the total momentum of the gas is given by:

P[] = hkny. (B.1)
k0
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Omitting for the moment the rotation energyP vrot, the total energy is given by:

Eyool{nk}] = Eplorot =010 =01 — Y _ &l VZ+ > edny. (B.2)
k0 k0

The properties of a moving quasi-condensateg 0 can be obtained from the ones of a quasi-condensate at rest by
transforming the energy and the momentum via a Galilean transformation of velogeity. As discussed in Section 2.1, the
total momentumP’ in the moving frame is in fact given by:

P/[{nk}] = P[{nk}] + Nmuvg = Z hkny + Nmug. (B.3)
k0

Inserting back the rotation termP’vrot, the energyE’ turns out to be:

1
E'[{ni}] = Eygo[ )] + 5 Nmv + (vo — vron P[{ny)]

= Egplurot, vol — ) eVE+ 2[82 + 1k (vo — vrot) |- (B.4)
k20 k0

The eigenstates and eigenenergies obtained in this way exactly correspond to the ones of the Bogoliubov Hamiltonian (41). For
each state, the total momentum (B.3) agrees with (45).

Appendix C. Comparison of Bogoliubov and classical field theory forp(P)

In the regime of weak density fluctuations and a temperatge>> pg we compare the expressions for the total momentum
probability distributionp(P) obtained by Bogoliubov theory, (67) on one side, and by a Igrggpansion of the classical field
model, (95) on the other side. At first glance, (95) looks much simpler and therefore different than (67). However one has the
identity

-1 (2nq — Lirop)?

g~ » . U
F L NP = 2nq) 2 Y2 = L1 (14 4 Y2) (P - Bo)?+ L T (C.1)

where

- Lo 1/2
B Urot-li-227T61X (C.2)
x2+1

ExpandingPq up to first order iny /2 and using the fact that’"® = x ~/2 in the Bogoliubov theory, one finds th&t— P

coincides with the expression in square brackets in (67). The factor in front of this expression, proporti¢m,éil%récovers
L1 + x1/2) within leading order iny /2. The last term in (C.1) coincides with the argument of the first exponential factor
in (67) when expanded up to first order;m1/2.
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