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Abstract

The partition function of a dilute Bose gas with repulsive interaction, fixed number of particles and in the presen
condensate is computed up to first order in the interactions. An equilibrium condition appears for the fraction of par
the condensate and the chemical potential of the particles. We show that for a dilute gas the Bose–Einstein transition
second order. Moreover, the thermodynamical quantities obtained may look different from those in the literature, bec
chemical potential enters in a nontrivial way in the quasi particle spectrum.To cite this article: S. Rica, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Thermodynamique d’un gaz de Bose dilué en présence d’un condensat. La fonction de partition d’un gaz de Bos
dilué avec des interactions répulsives à nombre de particules fixé en présence d’un condensat est calculée au pre
du paramètre d’interactions. Une condition d’équilibre apparaît pour la fraction de particules condensées et pour le
chimique des particules. On montre que pour un gaz dilué la transition de Bose–Einstein n’est pas de second ordre
les quantités thermodynamiques qui apparaîssent dans cette approche sont différentes de celles présentes dans
sur le sujet du fait d’une dépendance non triviale du potentiel chimique avec le spectre des quasiparticules.Pour citer cet
article : S. Rica, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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According to Landau quasiparticle theory [1], the momentum density of the normal fluid, moving with a speedv relative to
the superfluid part, is

jn = 1

(2πh̄)3

∫
d3p

p

eβ(ε(p)−v·p)− 1
. (1)

This relation could be expanded aroundv = 0 (if |v| � min ε(p)p ), leading tojn = mρnv + O(v2). mρn is called the norma
matter density. After (1) one has that the number density of the normal component in a superfluid at temperatureT is (hereafter
we shall use the word density for a number density, that is, the number of particles per unit volume)

ρn = 1

3mkBT

1

(2πh̄)3

∫
d3pp2 eβε(p)

(eβε(p) − 1)2
. (2)

In (2) ε(p) is the excitation spectrum (that is, the energy of a quasiparticle as a function of its momentump). Let ρ be the total
fluid density. As usual, one defines the superfluid density byρs ≡ ρ − ρn. In the case of helium, the normal density vanishe
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T = 0 K (ρs = ρ) and grows asT increases. Actually, the formula forρn (2) has sense only ifρn � ρ (ρs � 0). Using the roton
shape part, Landau estimated the critical temperature where the normal density becomes the total fluid density. As
this critical temperature is not exact in real liquid helium because the interactions between the quasiparticles were om

Atomic vapours that undergo a Bose–Einstein transition are described in the framework of the Bogoliubov theo
weakly interacting Bose gas [2]. For such a dilute system one finds an analytic expression for the spectrum:

ε(p)= 1

2m

√
p4 + 2f h̄2ρ0p

2, (3)

wherem is the particle mass,f the scattering length, 2πh̄ the Planck constant andρ0 is the number density of particles in th
condensate (see later for a precise definition). In this case the normal density depends on the energy spectrum, th
itself on the density of the condensate. Although there is no simple relation between the normal density and the co
one, we shall set the superfluid density equal to the condensate one:ρ0 = ρ − ρn to illustrate the solutions of Eq. (2). A rapi

evaluation says thatρ0 = 0 atT = TBE = 2π
ζ(3/2)2/3

h̄2

mkB
ρ2/3, and suggests that there is no change in the critical temper

as soon as we turn-on interactions. However, as was shown by Huang, Lee, Luttinger and Yang in a series of papers
condensate densityρ0 posses a subcritical behavior aroundTBE, indicating that transition is not of second order.

Naturally, in our reasoning we have added the relationρ0 = ρ − ρn mixing two quantities that have no direct connectio
ρn defined by Landau is a hydrodynamical variable andρ0 is a thermodynamical variable with a very precise definition in
framework of the Bogoliubov theory [2]. Therefore, we shall leave out Landau’s definition (2) and consider the Bog
theory for a weakly interacting gas as a starting point. Although subcriticality does not disappear, the Bose distribution
dramatically.

Let us consider a system withN interacting non-relativistic bosons in a volumeΩ . Leta†
α(aα) be the creation (annihilation

operators for the state of momentumpα . Naturally they obey the commutation rule:aαa
†
β − a

†
βaα = δαβ . The Hamiltonian is

H =
∑
p

p2

2m
a

†
pap + 4πf h̄2

2mΩ

∑
α,β,ν,ω

a†
αa

†
βaνaωδ(pα + pβ − pν − pω), (4)

whereΩ is the total volume and theδ-function is Kronecker discrete function, equal to zero if its argument is not zero an
otherwise.

Following the principles outlined by Bogoliubov, at zero temperature the interaction part of the energy is split into
involving the condensate and a part not involving this condensate. If there is condensation in the state of zero mo
the operators of index zero becomec-numbers:a0 = Ψ0Ω

1/2, a†
0 = Ψ̄0Ω

1/2, whereΨ0 is the ground state wavefunctio
practically a complex constant here,Ψ̄0 being its complex conjugate. The condensate number density appears to beρ0 ≡
|Ψ0|2 = |a0|2/Ω .

The sum
∑
α...ω may be decomposed in five terms, depending on the way the condensate wavefunction ent

those terms: first, the one with four zero wavenumbers:2πh̄2f
mΩ |a0|4. The terms with three zero wavenumbers do not e

because of theδ-function. The terms such that two wavenumbers are zero contribute with2πh̄2f
mΩ

∑′
p(a

2
0a

†
pa

†
−p + ā2

0apa−p +
4|a0|2a†

pap); here
∑′
p excludes thep = 0 term. This term is precisely the one kept by Bogoliubov, allowing him to descr

perfect gas of quasi-particles with a well defined energy spectrum atT = 0 K. The cubic terms on theap are always negligible
compared to the other interaction terms except near the transition. This is because it has the lowest order ina0, with respect
to any other term involvinga0, and so becomes the most important term involvinga0 as the superfluid density tends to ze
However, outside this neighborhood of the transition, this term may be neglected. In a regular perturbation scheme,
of the third term would require us to go to the second order inf 2 (because any combination cubic in creation annihilat
operators brings no first order contribution), although we shall deal with terms of at most first order inf . Finally, we have the
terms such that all four wavenumberspα...ω differ from zero. One could expect that those are of higher order, but, after a
inspection, one sees that the particular terms wherepα = pν , pβ = pω andpα = pω with pβ = pν contributes up to a firs
order. Other terms introduce quantum correlations which we neglect. The final sum can be written

4πf h̄2

mΩ

( ′∑
α

a†
αaα

)( ′∑
β

a
†
βaβ

)
= 4πf h̄2

mΩ
(N − n0)

2,

wheren0 is by definition the total number of particles with zero momentum, i.e.,n0 = |a0|2 = |Ψ0|2Ω = ρ0Ω .
Finally, the Hamilton operator that we are going to use can be written as:

H =
∑
p

p2

2m
a

†
pap + 2πh̄2f

mΩ

[
2(N − n0)

2 + n2
0
]+ 2πh̄2f

m

∑
p

′(
Ψ 2

0 a
†
pa

†
−p + Ψ̄ 2

0 apa−p + 4|Ψ0|2a†
pap

)
. (5)
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We shall compute the partition functionZN = Tr(e−H/(kBT )), for a given total number of particlesN in a box of volume
Ω . Following now the same general method as outlined in Huang’s book [7] we decompose the trace into a sum ov
with n0 particles in the condensate (depending only onn0) and sums over states with non-zero momentum. Therefore one

ZN =
N∑

n0=0

e−((2πh̄2f )/(mkBTΩ))[2(N−n0)
2+n2

0] Tr′
(
e−H ′/(kBT )),

where

H ′ =
∑
p

′[( p2

2m
+ 8πh̄2f

m
|Ψ0|2

)
a

†
pap + 2πh̄2f

m

(
Ψ 2

0 a
†
pa

†
−p + Ψ̄ 2

0 apa−p
)]
.

The trace Tr′(e−H ′/(kBT )) is sum over states whereN − n0 =N ′ =∑′
p a

†
pap is fixed. This trace could be performed direc

adding a Lagrange multiplierµ(N ′ −∑′
p a

†
pap). In a sense, this trace represents the partition function of a fictitious

interacting gas in equilibrium. Let us call this partition functionZ′
N
(n0,µ). Therefore the full partition function could b

written as

ZN =
N∑

n0=0

ZN(n0,µ)=
N∑

n0=0

e−((2πh̄2f )/(mkBTΩ))[2(N−n0)
2+n2

0]Z′
N(n0,µ).

Huang’s method uses the following inequality forZN :

Max
[
ZN(n0,µ)

]
<ZN < (N + 1)Max

[
ZN(n0,µ)

]
,

where Max[ZN(n0,µ)] is the global maximum ofZN(n0,µ)= e−((2πh̄2f )/(mkBTΩ))[2(N−n0)
2+n2

0]Z′
N(n0,µ) in n0 ∈ [0,N]

andµ ∈ . Let n̄0 andµ̄ be the maximal values. The preceding inequality says that

1

N
lnZN(n̄0, µ̄) <

1

N
lnZN <

1

N
lnZN(n̄0, µ̄)+ 1

N
ln(N + 1),

therefore asN → ∞ one has the following limit for the partition function

1

N
lnZN → 1

N
lnZN(n̄0, µ̄).

Let us now computeZ′
N
(n0,µ). As we said, we use the grand canonical ensemble with a Lagrange multiplierµ(N ′ −∑′

p a
†
pap). Therefore we should compute the trace

Z′
N(n0,µ)= e−µ(N−n0)/(kBT ) Trexp

( −1

kBT

∑
p

′[( p2

2m
+ 4

2πh̄2f

m
|Ψ0|2 −µ

)
a

†
pap

+ 2πh̄2f

m

(
Ψ 2

0 a
†
pa

†
−p + Ψ̄ 2

0 apa−p
)])

.

The trace computation is made possible by transforming the operator in the exponential into its diagonal form u
Bogoliubov transformation:

ap = upbp + vpb
†
−p,

a
†
p = ūpb

†
p + v̄pb−p, (6)

1 = |up |2 − |vp |2,
where the third relation follows from the commutation relation[ap,a†

p] = 1. Imposing the condition that the resultin

Hamiltonian is diagonal inb†
pbp one has that

vp

ū−p
=

−Tp ±
√
T 2
p − 4g2|Ψ0|4

2gΨ̄ 2
0

,

whereg = 2πh̄2f /m andTp = p2/(2m)+ 4g|Ψ0|2 −µ. Finally, the operator in the exponential in its diagonal form is∑
p

′(
T 2
p − 4g2|Ψ0|4)1/2b†

pbp.
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(
p,µ, |Ψ0|2)≡

√(
p2

2m
+ 4g|Ψ0|2 −µ

)2
− 4g2|Ψ0|4 (7)

one has in the end that

lnZ′
N(n0,µ)= −µ(N − n0)

kBT
−Ω

∫
dDp

(2πh̄)D
ln
(
1− e−εB(p,µ,|Ψ0|2)/kBT ). (8)

We need now to find the maxima of

ZN(n0,µ)= e−((2πh̄2f )/(mkBTΩ))[2(N−n0)
2+n2

0]

× exp
[−µ(N − n0)

kBT
−Ω

∫
dDp

(2πh̄)D
ln
(
1− e−εB(p,µ,|Ψ0|2)/kBT )] (9)

through the conditions

∂ZN(n0,µ)

∂µ
= ∂ZN(n0,µ)

∂n0
= 0,

giving

ρ′ = N − n0

Ω
= −

∫
dDp

(2πh̄)D
1

eεB(p,µ,|Ψ0|2)/kBT − 1

∂εB(p,µ, |Ψ0|2)
∂µ

. (10)

Although this equation means that we obtain a perfect gas of quasi-particles in thermodynamical equilibrium with a wel
number of excitations, the total number of quasi-particles is not the usual Bose–Einstein factor. The second condition
εB(p,µ, |Ψ0|2) depends explicitely onn0 becausen0 = |Ψ0|2Ω) implies:

µ+ 2πh̄2f

m
(4ρ − 6ρ0)−Ω

∫
dDp

(2πh̄)D
1

eεB(p,µ,ρ0)/(kBT ) − 1

∂εB

∂n0
= 0. (11)

From (7) ∂εB/∂µ = −Tp/εB and ∂εB/∂n0 = (4gTp − 8g2ρ0)/εB , and putting those derivatives into (10) and (11) o
transforms (10), (11) into:

ρ − ρ0 =
∫

dDp

(2πh̄)D
1

eεB(p,µ,|Ψ0|2)/kBT − 1

Tp

εB(p,µ, |Ψ0|2) , (12)

µ− 2
2πh̄2f

m
ρ0 = −8

(
2πh̄2f

m

)2
ρ0

∫
dDp

(2πh̄)D
1

eεB(p,µ,ρ0)/(kBT ) − 1

1

εB
. (13)

Eqs. (12) and (13) solve, in principle, the problem. These equations differ from the ones in [8] by changingµ →
µ+ 2(2πh̄2f /m)ρ0.

One may study numerically the solutions of (12) and (13), after a correct reduction to dimensionless quantiti
reduction depends on the thermodynamical process. In [8] we have considered an isothermal process and we ex
P − V diagram arriving to the conclusion that the transition is not of second order. In that case it was useful to use the

de Broglie wavelengthλ =
√

2πh̄2/(mkBT ) as unit length. Densities are made dimensionless byρ̃ = ρλD , ρ̃0 = ρ0λ
D and

ρ̃′ = ρ̃ − ρ̃0 = ρ′λD , and the interaction parameterα = f λ2−D .
Here we shall consider a constant densityρ. In this case it is useful to define a characteristic temperature depending

particle density: the transition temperature of an ideal Bose gas in 3D is a good candidate

TBE = 2π

ζ(3/2)2/3
h̄2

mkB
ρ2/3.

Let us define the dimensionless interaction parameterα = ζ(3/2)2/3fρ1/3, y = (µ/(kBTBE) − 2αρ0/ρ), t = T/TBE and
ξ = ρ0/ρ, then Eqs. (12) and (13) become

1 = ξ + t3/2
4√

πζ(3/2)

∞∫
0

1

eε̂(x,y,t,ξ )− 1

(
x2 − y/t + 2αξ/t

)
ε̂(x, y, t, ξ)

x2 dx, (14)

y = −8α2ξ t1/2
4√

πζ(3/2)

∞∫
1

eε̂(x,y,t,ξ )− 1

x2 dx

ε̂(x, y, t, ξ)
, (15)
0
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Fig. 1. Condensate fraction:ρ0/ρ and superfluid fraction:ρs/ρ, as functions of the dimensionless temperaturet ≡ T /TBE.

whereε̂(x, y, t, ξ) =√
(x2 − y/t + 2αξ/t)2 − 4α2ξ2/t2.

We have solved numerically (see Fig. 1 forα = 0.1) these coupled equations in terms of the functionsy(ξ) andt (ξ) instead
of y(t) andξ(t) because condensate density is a multivalued function of temperature. Solutions are found by iterating

yn+1 = −8α2ξ t
1/2
n

4√
πζ(3/2)

∞∫
0

1

eε̂(x,yn,tn,ξ) − 1

x2 dx

ε̂(x, yn, tn, ξ)

and

tn+1 =
(

1− ξ

(4/(
√
πζ(3/2)))

∫∞
0 (1/(eε̂(x,yn,tn,ξ) − 1))((x2 − yn/tn + 2αξ/tn)/ε̂(x, yn, tn, ξ))x2 dx

)2/3

,

that converges easily to a fixed point.
Coming from high temperature region we observe that the condensate density jumps from zero value to a finite

temperatureT c > TBE depending only onα. This is because the curveρ0/ρ versust possesses a turning point characteristic
a subcritical behavior.

Finally, let us go back to the Landau’s expression for the normal density. The momentum of the quasiparticle
excitations moving with a speedv with respect to the condensate is

jn = Tr

(∑
p

′
pa†
pap

e−(H−∑p
′v·pa†

pap)/(kBT )

ZN

)
= kBT

∂ lnZN
∂v

,

where the second equality holds because energy and momentum commutes andZN is the traceZN(n0,µ,v) =
Tr(e−(H−∑p

′v·pa†
pap)/(kBT )). This trace and the thermodynamical stability are considered by Pomeau in this volume [

leading result is that the partition function (9) remains as stated but changing the Bogoliubov spectrum (7):εB(p,µ, |Ψ0|2)→
εB(p,µ, |Ψ0|2)− v · p. Moreover, Landau’s formulas for the flux of mass and the normal density (2) remain unchang
takeεB(p,µ, |Ψ0|2) as the energy spectrum. The superfluid densityρs ≡ ρ − ρn differs quantitatively from the condensa
density and does not enter the equations of state (12) and (13). It depends explicitly on the temperature, condensate d
chemical potential in a passive way. In terms of the normalization used in (14) and (15) one obtains:

ρs

ρ
= 1− 8t3/2

3
√
πζ(3/2)

∞∫
0

x4 eε̂(x,y,t,ξ )

(eε̂(x,y,t,ξ )− 1)2
dx.

In Fig. 1 it the superfluid fractionρs/ρ is added as a function of temperature. Although the condensate density jump
zero to a finite value at the returning pointTc, the superfluid density posses a negative fictitious value atTc . As said previously
Landau’s formula makes sense only ifρs � 0 and this happens only below a temperatureTs such thatTBE < Ts < Tc . In
conclusion, the appearence of a Bose–Einstein thermodynamical phase does not means that a superfluid state, in th
the fluid could realize a flow without dissipation, appears at the same temperature. Going back to Landau’s seminal
perhaps, superfluidity is not directly related to Bose–Einstein condensation, at least in the limit of a dilute gasfρ1/3 → 0.
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