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Abstract

In a dilute Bose gas the interaction between the normal gas and the condensate can be studied both at equilibriu
its relevance to superfluid mechanics. In this article, one reviews first the thermodynamics of the interacting Bose g
low density limit and in the low temperature–finite density case. This is extended to thermodynamics with a velocity di
between the two components, normal and superfluid. It is argued that, if the initial value of the momentum related to this
difference is larger than the one given by thermodynamic stability, a new condensate should form in a finite time with a
close to the that of the normal gas. In the dilute case this occurrence of a new condensate is reminiscent of the conde
the isotropic case at high enough density.To cite this article: Y. Pomeau, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur l’interaction du fluide normal/condensat. Dans un gaz de Bose dilué l’interaction entre gaz normal et condens
étudiée à la fois pour l’équilibre et dans le cas d’un écoulement superfluide. On revoit d’abord la thermodynamique
de Bose dilué et aussi le cas d’un fluide à base température. Les résultats sont étendus à la thermodynamique avec
de vitesse. Si la vitesse relative entre les deux composantes excède la valeur limite de stabilité thermodynamique, u
condensat doit se former avec une vitesse proche de celle du gaz normal. Dans le cas d’un gaz dilué cette appa
nouveau condensat rappelle la condensation dans le cas isotrope à densité suffisante.Pour citer cet article : Y. Pomeau, C. R.
Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Bose gas; Low density limit; Low temperature–finite density limit

Mots-clés : Gaz de Bose ; Gaz de Bose dilué ; Thermodynamique d’un fluide à base température

1. Introduction

The theory of superfluidity remains dominated by the ideas of Landau [1]. They explain both the equilibrium an
equilibrium properties of superfluid liquid Helium 4 by relying on the concept of quasiparticles. In this framework, L
builds up on an analogy with the Debye theory of phonons in solids: the relevant degrees of freedom of a crystal
low temperature are long wave-low energy excitations described by the mechanics of continuous media, elasticity
Landau assumes that in liquid Helium and at low enough temperatures the long wave excitations are somehow des
hydrodynamic theory. This lead him to the concept of the two fluid theory, where the fluid is dynamically divided into a q
coherent part, and the normal fluid made of the thermal excitations. However brilliant is this theory, it is difficult to asse
derive it from first principles without guesses that are sometimes not easy to check in a rigorous way, basically beca
is no expansion parameter in a dense liquid such as superfluid Helium. However, there are two possibilities for an e

E-mail address: yves.pomeau@lps.ens.fr (Y. Pomeau).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.01.011
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with respect to a small parameter. First of all, the Bose–Einstein condensation ofnoninteracting Bosonic systems provides
starting point for an expansion in powers of the density: the infinitely dilute limit is represented by the calculation o
and Einstein, and the next order should account for the various interaction effects. This program was started in two s
independent ways by Bogoliubov and by Lee and Yang in the late 1940s and early 1950s. Some of the results obta
will be discussed later on. Bogoliubov managed to show that the interaction changes the free particles of the Bose
theory into quasiparticles with an energy spectrum of the type assumed by Landau, at least for long waves. Later,
Yang expanded the thermodynamic quantities near the free Bose gas. The main lesson from their work is that Land
doesnot give the correct result when applied to a dilute Bose gas at nonzero temperature. A central assumption of L
that the quasiparticles have a vanishing chemical potential. By rereading him carefully on this point, it is hard to find
justification, besides a formal analogy with Debye theory. A systematic expansion near the infinitely dilute limit sho
such a chemical potential exists and is not zero. Actually this chemical potential is there because the quasiparticles
some mass (meaning that the quasiparticles operators do not commute with the particle operators), so that a chemic
is needed to impose that at equilibrium the normal gas and the condensate exchange mass reversibly. The two compo
to have the same chemical potential to make this exchange compatible with equilibrium, as usual in thermodynamics
it there should be a new constant of the motion (the mass of the condensate for instance) that should be brought
into the thermodynamics. This is obviously wrong and was not assumed by Einstein, who maximized the entropy u
exchange of mass between the two components. Einstein’s calculation only shows that this chemical potential is zer
of the peculiarities of the free Bose gas. Outside of this situation it is generally not zero.

However, as shown in Section 4 below, this chemical potential should tend to zero as the temperature tends
independently of the fact that the system is dilute or not. Somehow this is precisely the limit that was taken by Land
remains therefore correct.

That the condensate and the normal gas exchange mass poses at once the question of stability of superflows: how
be exchanged without exchange of momentum? If momentum can be brought to (or taken out of) an immobile conde
the normal gas, there is no superfluidity at all, since the normal gas is dissipative. However, the microscopic equations
of the full system are such that the interaction between the two components takes place without an exchange of mome
is valid in the frame of reference of an immobile condensate), which justifies the existence of superfluidity. As empha
Landau, the relative velocity between the two components (condensate and normal gas) is a thermodynamical para
associated to a constant of the motion representing (for instance) the arbitrary momentum of the normal gas in the r
of the condensate. However, things are not so simple, because this concerns situations that are homogeneous in
otherwise, a uniform velocity difference is possible at equilibrium, but thermodynamics says nothing whenever the
difference is not uniform in space. This is an important issue in the theory of superfluidity: suppose that we have a ste
of superfluid around an obstacle (a sphere for instance), although the normal gas/fluid is at rest. There the velocity dif
obviously not uniform in space. Therefore, equilibrium thermodynamics is unable to show that such a system is at eq
and remains so forever.

All this was based upon the analysis of the low density limit of a Bosonic system, clearly not applicable to liquid H
that is dense. It shall be indicated, briefly however, in Section 4, how the low temperature limit there can be handled
inspired by the calculation made in the low density limit. At this low temperature limit the thermal excitations are rare
to be noninteracting in a first approximation.

2. Thermodynamics of the dilute Bose gas – a summary

In the dilute gas limit the two body interaction can be considered as a relatively small effect, compared to the kinetic
This holds true for most particles only: particles with a momentum small enough may have an interaction energy and
energy of the same order. Because of that, a regular perturbation method fails to account for the interaction as a relati
effect (practically of first order in the small positive scattering lengthf ). Bogoliubov [2] retains part of these first order term
However, if the density of the thermal gas and of the condensate are comparable (not considered by Bogoliubov, wh
the zero temperature limit), the interaction between two particles in an excited state and between one particle in a
state and the condensate are of the same order of magnitude. The starting point of [3] is the energy operatorH in second
quantization formalism, keeping all relevant contributions at orderf , the positive scattering length of the two body poten
(other contributions are considered thereafter):

H =
∑
p

εH (p)a
†
pap + 2πh̄2f

mΩ

[
2(N − n0)

2 + n2
0
] + 2πh̄2f

m

∑
p �=0

(
Ψ 2

0 a
†
pa

†
−p +Ψ ∗2

0 apa−p + 2|Ψ0|2a†
pa

†
p

)
. (1)
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In (1), a†
p(/ ap) is the creation(/annihilation) operator in the state of momentump, np = a

†
pap the number of particles in thi

state andεH (p) = p2/(2m) is their bare kinetic energy. All particles are identical of massm; N , fixed, is their total (and large
number,Ω is the enclosing volume andn0 is the number of particles in the ground statep = 0 (assumed here to be at rest).
the low density limit, the dimensionless combination,f 3N/Ω is small. This is the formal expansion parameter, but it shall
be used explicitly; it is only assumed thatf is small.

The energy operator written in (1) is not the exact energy. It keeps the same interaction terms as Bogoliubov (likeΨ 2
0 a

†
pa

†
−p)

and the self interaction of the normal gas (proportional to(2πh̄2f/(mΩ))[2(N −n0)
2]). This term was shown by Lee and Yan

[4] to be accurate to first order. A full proof that it yields a valid approximation would require one to go to the next ord
to compute the difference between the ‘exact’ theory and the one presented here, something that requires [5] rathe
algebraic manipulations.

The canonical partition function is the trace (denoted as Tr(· · ·)):
QN = Tr

(
exp

[
− H
kBT

])
. (2)

BecauseH is a known function ofn0 andN and an operator quadratic in the operatorsa
†
p andap , QN can be computed

explicitly. We shall not reproduce this derivation that can be found in [3]. It follows the principles laid down by Lee and
Recently there has been some interest in this question, and exact mathematical results [6] have been obtained for th
function of models similar to ours but not exactly the same because, compared to us, various terms are absent in the
operator. The final result is a set of relations. The first one relates the number density of the normal gas to a chemical poµ:

ρ(µ) = − 1

(2πh̄)3

∫
d3p

1

eεb(p,µ,ρs)/(kBT ) − 1

∂εb(p,µ,ρs)

∂µ
, (3)

where

εb(p,µ,ρs) =
√(

p2

2m
−µ

)2
+ 2ηρs

(
p2

2m
−µ

)
,

ρs = n0/Ω number density of the condensate andη = 4πf h̄2/m. This ‘spectrum’ (that is a relation between the ‘energy’ o
quasiparticle and its momentum) is also found in [6]. It may be called a ‘gap’ spectrum because the energyεb(p,µ,ρs) does
not vanish atp = 0.1 Another relation follows from the condition that the full partition function is stationary under the exch
of mass between condensate and normal gas:

µ+ η(ρ − ρs) = 1

(2πh̄)3

∫
d3p

1

eεb(p,µ,ρs)/(kBT ) − 1

∂εb(p,µ,ρs)

∂ρs
, (4)

ρ = N/Ω = ρs + ρ(µ) being the total number density.
In the dilute gas limit we are concerned with, the number density of the normal gas and of the condensate are clos

value in the perfect gas. Therefore it is legitimate to seeµ as a byproduct of the properties of this perfect gas, that is (and ou
the vicinity of the transition temperature) one can compute it by putting in Eq. (4) the equilibrium value ofρs . Moreover,µ
can be neglected [3] in the integrand on the right-hand side of (4) at the dominant order. Howeverµ must be negative or zero
a positiveµ would give a negativeε2

b
in a range of values ofp.

Before considering the equilibrium motion of the normal gas with respect to the condensate we shall need the vaµ

in the smallf limit as derived from (4). Reference [3] looks at the neighborhood of the transition temperature, wherρs is
also small. In the temperature-density range whereρs is of the same order asρ, by combining Eqs. (3) and (4), and taking in
account thatρ(µ) = ρ − ρs , one obtains:

µ= − η2ρs

(2πh̄)3

∫
d3p

1

(eεb(p,µ,ρs)/(kBT ) − 1)εb(p,µ,ρs)
. (5)

The integral on the right-hand side of (5) is dominated by contributions such thatp2/(2m) is small compared tokBT . As found
a posteriori,µ is of orderf 3/2 for f small. Thereforeε2

b(p,µ,ρs) ≈ (p2/2m)(p2/(2m) + 2ηρs) and:

∫
d3p

(eεb(p,µ,ρs)/(kBT ) − 1)εb(p,µ,ρs)
≈ 4πmkBT

∞∫
0

dp

p2/(2m) + 2ηρs
.

1 That there is a gap at nonzero temperature has been discussed in the literature quite early [7]; see also [8]. There the gap wa
based on uncontrolled assumptions on various correlation functions. The mathematical rigour of the work of Zagrebnov [6] clearly s
such a gap is present at finite temperature. It is of interest too to notice that a nonzero gap yields normal fluctuations [9].
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Thusµ is of orderf 3/2:

µ= − (ηm)3/2ρ
1/2
s kBT

(2πh̄)3
. (6)

In the next section, the thermodynamics when there is a velocity difference between the normal gas and the condens
derived. This requires the understanding of why this velocity difference should be seen as a thermodynamical parame

3. Thermodynamics with a velocity difference between the condensate and the normal gas

Thermodynamics with a velocity difference between the condensate (assumed at rest first) and the normal gas
the following remarks. In the energy operator (1), not every term has been included. Other terms exist, that repres
interactions between the thermal particles or between the thermal particles and the condensate. The general fo
interaction energy is [4]:

Vint = 2πf h̄2

mΩ

∑
α...ω

a†
αa

†
βaνaωδ(pα + pβ − pν − pω),

where δ(·) is for a Kronecker discrete function, equal to one if its argument is zero and to 0 otherwise. Furtherm
momentapα , pβ , etc. are the discrete 3D momenta arising from the quantization of plane wave modes in a rectang
for instance. The sum

∑
α...ω may be decomposed in various terms, depending on the way the condensate wavefunctio

into those terms. If there is condensation in the state of zero momentum, the operatorsap and a
†
p with p = 0 becomec-

numbers [2]:a0 = Ψ0Ω
1/2, a†

0 = Ψ ∗
0 , Ψ0 complex number andΨ ∗

0 its complex conjugate. The terms including this grou
state wavefunction inVint bear either one, two or four zero indices. The ones with four and with two indices are kept in
remains for us to look at the interaction with only one zero wavenumber. This would bring a contribution to the thermod
functions of an order inf higher than the one retained in [3]. But this kind of interaction (contrary to the one taken into ac
in the Bogoliubov renormalization) yields irreversible collision effects accounted for in the kinetic theory [10]. As sho
[11],2 the Boltzmann–Nordheim kinetic theory for Bosons with a condensate splits into an equation for the amplitud
condensate and another one for the momentum distribution of the normal gas. This describes possible exchanges b
two components that are ruled by the square of the matrix element inVint with one momentum equal to zero, saypα = 0 (the
particle in the condensate) and the three others nonzero (particles in an excited state-actually quasiparticles but thi
matter here). The conservation of momentum impliespβ = pν + pω. This has the important consequence that this pro
does conserve the total momentum in the normal gas (although, for instance the mass of the condensate is not
because in such an process, a particle goes from the condensate to the normal gas, which explains that the thermody
must be carried in such a way that the free energy is stationary under that exchange of mass). One could think tha
forward process(pα,pβ) → (pν,pω) is relevant withpα = 0, since it could appear very unlikely that the reverse interac
of two thermal particles of (arbitrary) momentapω andpν yields exactly a particle of zero momentum in the condens
This is not so for Bosons, because of the enhancement by quantum interferences of the process giving back a par
condensate. This shows up clearly in the structure of the Boltzmann–Nordheim kinetic theory with condensate [12],3 [13]: the
kinetic equation for the amplitude of the condensate through the microscopic process just described shows gain and
of the same order. There is also a condition of energy conservation in the collision process. At large momenta the e
the quasiparticles becomes the bare particle energyp2/(2m), so that the energy conservation in the elementary process
p2
α = p2

ν + p2
ω . Together with the conservation of momentum, this yieldspν · pω = 0 (scalar product). At smaller moment

one has to take into account the Bogoliubov renormalization. The condition of energy conservation becomes more
but remains compatible with momentum conservation. The equilibrium state (supposing again that the condensate
will depend on the conserved quantities, as usual. Besides the total mass and energy, the momentum of the normal c
is determined not by some equilibrium condition, but by its initial value, since it is dynamically conserved. According
principles of equilibrium statistical mechanics, the value of this momentum is imposed by adding to the energy op
Lagrange term proportional to this momentum. At the end the average momentum is taken as equal to the prescribe

2 It is fair to say that at the present time, no kinetic theory has been written fully consistent with the rather complex equilibrium pr
of the dilute Bose gas at finite temperature, beyond the Boltzmann–Nordheim kinetic theory (L.W. Nordheim, Proc. Roy. Soc. Lond
119 (1928) 689).

3 This reference and the paper in this journal by Connaughton and Pomeau show how a condensate grows out of a continuous
distribution, via a finite time singular solution of the Boltzmann–Nordheim kinetic equation.
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the invariant. This amounts to computing the thermodynamic sums withH′ = H − u · ∑p pa
†
pap instead ofH, u velocity of

the normal gas with respect to the condensate. The calculations are very similar to the ones summarized before: on
εH (p) = p2/(2m) by εH (p) − u · p everywhere. The new relation between the density of the normal gas andµ is as in (3),
except thatεb(p,µ,ρs) is to be replaced by

ε′
b(p,µ,ρs) =

√(
p2

2m
−µ

)2
+ 2ηρs

(
p2

2m
−µ

)
− p · u.

This follows from the same algebra as done in Section 4 below that is therefore not reproduced here. The calculation
in [3] until (5) which becomes:

µ= − η2ρs

(2πh̄)3

∫
d3p

1

(eε
′
b(p,µ,ρs)/(kBT ) − 1)ε′

b
(p,µ,ρs)

. (7)

As shown in the Section 5 below, there is a limit speed, that is a limit value ofu such that ifu is larger, the quantity denoted a
ε′
b(p,µ,ρs) may become negative for some values ofp, which makes the system thermodynamically unstable.

4. Thermodynamics at low temperature and finite density

This section presents a derivation of the thermodynamical functions of a dense quantum fluid at low temperature.
of the finite density assumption, the various parameters involved cannot be derived exactly from molecular calc
However, the fundamental quantity of this theory is well defined in principle; it is the energy of the quantum groun
as a function of the number densityρ. This energy is proportional to the volume and it is written asΩe(ρ). In the dilute
model just considered,e(ρ) = 2πh̄2fρ2/m. The other idea in this derivation is borrowed from the end section of Land
paper. There, Landau remarks that a long wave excitation corresponds to a wavefunction of the total system th
ground state wave functionΨ0(r1, r2, . . .)eitE0/h̄ times a product of single argument functions

∏N
i=1χ(ri , t). Since the ground

state wavefunction satisfies the permutation symmetries of the many body system (Fermionic or Bosonic), the gro
wavefunction times a product of single particle wave functions satisfies obviously the same permutation symmetrie
generally, a product of the ground state wavefunction times a symmetric function of the argument(r1, r2, . . .) will also satisfy
the required permutation symmetries. Therefore the long wave excitations can be described by Bosonic operators ac
ground state, independently of the fact that this ground state is for Bosons or Fermions.

Now we are ready to write the energy operator for a general long wave perturbation to the ground state. We start
classical (= nonquantum) Lagrangian of the slightly perturbed ground state:

L=
∫

d3r dt

[
h̄2

2m
|∇χ |2 − e(ρ) − i

h̄

2

(
χ̄
∂χ

∂t
− χ

∂χ̄

∂t

)]
. (8)

The first term in the integral represents the kinetic energy contribution, and the second one the potential energy. B
depend on the amplitudeχ(r), that we shall consider for a moment as a classical field, although it is a Bosonic field
difference does not matter in the calculation to be made. In the ground state,χ is just a complex constant, calledχ0, and by
suitable normalization one can manage to have for the ground state number densityρ0 = χ0χ̄0. In the low temperature limit
one expects that the deviation of the density brought by the thermal fluctuations is small compared to the ground stat
This perturbation will changeρ0, a constant, into ar-dependant quantity written as:

ρ(r) = (
χ0 + δχ0 + ϕ(r)

)(
χ̄0 + δχ̄0 + ϕ̄(r)

)
. (9)

We make in this expression a distinction betweenδχ0 that is the change of amplitude (and ultimately in the number of partic
of the ground state and the pertubation brought by the thermal excitations, namely the fieldϕ(r). The two are linked by the
condition that the total number of particles is fixed. This shows up as a condition on the space average ofρ(r). Denoting the
space average by brackets, this condition of conservation of the number of particles can be expressed:

0 = 〈(
ρ(r)− |χ0|2)〉 = χ0δχ̄0 + δχ0χ̄0 + δχ0δχ̄0 + 〈

ϕ(r)ϕ̄(r)
〉
. (10)

Note that in Eq. (10), no space average is written in front of products likeχ0δχ̄0 or δχ0χ̄0 since the quantities inside are ju
constants, not functions ofr . Moreover the average of any quantity linear inϕ(r) and ϕ̄(r) cancel. We want to compute th
change in the energy of the system due to the thermal excitations. As already said, we want to get an expression for t
thermodynamical quantities in the low temperature limit. This means that the amplitude of the thermal fluctuations
which permits us to neglect a number of terms in the calculation to be made now. Besides the contribution of the square
term to the energy, the other part of the energy of the system is the volume integral ofe(ρ(r)), e(ρ) being the same functio
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as in the ground state. Because of the fluctuations are relatively small, we try to estimate〈e(ρ)〉 by assumingρ(r) close to its
ground state value,ρ0, that is thatρ(r) = ρ0 + δρ(r) whereδρ(r) is somehow small, and whereρ0 = N/Ω is well defined,
independent on the actual value of the density|χ0|2. Therefore we expande(ρ) in powers ofδρ(r). Because of the constrain
(10), no term linear inδρ will show up in〈e(ρ)〉. At the next order:

〈
e(ρ) − e(ρ0)

〉 ≈ 1

2

d2e

dρ2

〈
δρ(r)2

〉
. (11)

Many terms disappear when computing this quantity from Eq. (9) at the dominant order (that is for small fluctuations
because they are linear inδϕ(r), or because they involve fluctuations to the fourth power, negligible compared to the dom
ones that are second order:

〈
e(ρ) − e(ρ0)

〉 ≈ 1

2

d2e

dρ2

[
2ρ0ϕ(r)ϕ̄(r)+ χ2

0 ϕ̄(r)ϕ̄(r) + χ̄2
0ϕ(r)ϕ(r)

]
. (12)

Putting all this in the Lagrange function, Eq. (8), doing the usual derivation of the energy operator, and finally subs
for the c-number amplitudesϕ(r) Hermitian operators of creation and annihilation, one gets the following expression f
energy operator in Fourier space:

H =
∑
p

p2

2m
a

†
pap + 1

2

d2e(ρ)

dρ2

∑
p

[
2ρ0a

†
pap + χ2

0a
†
−pa

†
p + χ̄2

0apa−p

]
. (13)

The operatorsap anda†
p are the Bosonic creation and annihilation operators of long wave excitations of the density in th

of momentump. The coefficientρ0d2e(ρ)/dρ2 is the massm times the speed of sound squared:

ρ0
d2e(ρ)

dρ2
= mc2

s .

The expression of the energy operator in (13) is obviously very reminiscent of the one of the same operator for a d
(Eq. (1)). The algebra giving the partition function in the canonical ensemble is very similar to the one exposed for th
case with the important difference, however, that the small parameter here, somewhat hidden, is the temperature.
the expression (13) of the energy operator and the one valid in the low density limit are different, because no energy
associated formally to the variation in the number density of the ground state. This is because the variation of en
to density variations of the ground state and of the excited states cancel at the dominant order. Therefore the n
quasiparticles in the excited state can be freely chosen and the chemical potential associated to the excited particl
Let us emphasize again that this happens only because of the low temperature limit, not because of a general princip

The derivation of the thermodynamics parameters associated to the energy operator (13) is quite straightforward an
directly from a Bogoliubov transformation. Let us sketch the main steps. The Bogoliubov transformation amounts to dia
the part of the energy quadratic ina†

p , ap , a†
−p anda−p . This is done by computing the energy eigenvalue associated t

contributions to the full energy operator associated to the wavenumbersp and−p:

Hp =
(
p2

2m
+mc2

s

)
(a

†
pap + a

†
−pa−p) + d2e(ρ)

dρ2

[
χ2

0a
†
−pa

†
p + χ̄2

0apa−p

]
. (14)

Note that the factor12 in front of the quantities likea†
−p a

†
p has disappeared inHp because it adds the contribution toH with

wavenumberp and−p. In Heisenberg representation, the equation of motion for the operatorsa
†
p , ap , a†

−p anda−p can be
written, in general

ih̄
dA

dt
= [A,Hp], (15)

whereA is anyone of the operatorsa†
p,ap, . . . , although[· , ·] is the usual commutator. This yields for example:

ih̄
da†

p

dt
= [a†

p,Hp] =
(
p2

2m
+mc2

s

)
a

†
p + d2e(ρ)

dρ2
χ2

0a−p. (16)

DiagonalizingHp amounts to find the real eigenvaluesλ such that īhda†
p/dt = λa

†
p. Inserting this into the set of linea

equations of motion yields a four by four determinant and a fourth order algebraic equation forλ:(
−λ +

(
p2

2m
+mc2

s

))(
λ+

(
p2

2m
+mc2

s

))
= m2c4

s . (17)
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The roots of Eq. (17) areλ = ±
√
(p2/(2m) + 2mc2

s )p
2/(2m), the familiar Bogoliubov spectrum (although derived in

different approximation – the low temperature–finite density limit). This last result can be extended to the case whep · u
(scalar product) is added top2/(2m) +mc2

s . Then Eq. (17) becomes(
(λ− p · u)2 −

(
p2

2m
+ 2mc2

s

)
p2

2m

)(
(λ+ p · u)2 −

(
p2

2m
+ 2mc2

s

)
p2

2

)
= 0. (18)

Its roots are

λ = ±
(√(

p2

2m
+ 2mc2

s

)
p2

2m
± u · p

)
.

This is the case relevant when there is an uniform velocity difference,u, between the condensate and the normal fluid. T
expression shows that, as assumed by Landau, the quantityp · u has to be added to the energy of the quasiparticles, so tha
thermodynamic functions are derived from the following expression of the momentum distribution of the quasiparticles

φ(p) = 1

exp((pcs − p · u)/(kBT ))− 1
. (19)

In the above equationp in the productpcs is just the modulus of the momentum, althoughp · u is the scalar product of two
vectors. This expression of the Bose factor is written with the low energy approximation to the Bogoliubov spectrum
we are concerned with the low temperature limit.

Finally it should be noticed that the leftover terms in the energy of the ground state formally diverge there, as in
of the Bogoliubov transformation in the dilute limit [14]. In the latter case, this divergence disappears because it is c
by an opposite divergence in the rest of the energy (specifically in the next order term in the Born approximation to tw
scattering needed to write the interaction energy). In the present situation of a dense fluid, no such explicit calculatio
made, but this divergence is obviously outside of the range of validity of the long wave approximation, since it occurs
wavenumbers.

5. Fluid mechanics of the normal fluid–superfluid interaction: a few remarks

Below some remarks concerning the normal fluid–superfluid interaction are presented. This requires us to unders
the status of the pure superfluid problem. Recently some progress has been made there, relying on detailed studies o
of the Gross–Pitaevskii equations [15]. The first had to do with the stability of a superflow, without any normal fluid.

This problem of stability of a superflow remains a difficult issue: Landau [1] predicted that a superflow becomes u
against the excitation of quasiparticles of momentump whenever its velocityv is larger than the minimum ofε(p)/|p|, ε(p)
energy of the quasiparticle. The Landau criterion has been spectacularly verified in theoretical studies of superflow
normal gas around large obstacles [13]: beyond Landau’s critical speed, dissipation sets in either through the gen
vortices ifε(p)/|p| is minimum atp = 0 or generation of a Cerenkov wake [16] if it is at finitep.

This stability criterion remains almost the same in the framework of the equilibrium statistics: the condition of stab
that a pair of eigenvalues found in the Bogoliubov transformation remain positive. This requires that the eigenvalue

ε′
b(p,µ,ρs) =

√(
p2

2m
+ 2mc2

s −µ

)(
p2

2m
−µ

)
−p · u

is positive for anyp (recall that 2mc2
s = 2ηρs ). A little algebra shows that this happens if and only ifu2 is smaller than the roo

of

m
(
c2
s − u2)2 + 2µu2 = 0.

Becauseµ is small compared tomc2
s (µ is of orderf 3/2 althoughc2

s is of orderf ), this condition of thermodynamic stabilit
is almost the same as the condition of dynamical stability in the sense of Landau.

Nevertheless, this is only part of the story. As already said, even though the extension of the results of [3] to the
nonzero velocity differenceu is not very hard, it works if the velocity difference between the normal gas and the cond
is a thermodynamic parameter in the usual sense, that is, if the state of the system is uniform in space. There is
why a non-uniform velocity difference should be compatible with thermodynamical equilibrium. The situation is som
reminiscent of that in a normal fluid: a uniform velocity is well compatible with equilibrium, just by uniform Galilean boo
the rest state.
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Khalatnikov [17] derived a version of the two fluid equations, including viscous effects. This clearly requires careful h
of the way velocities, normal fluid and superfluid velocity, enter into the momentum distribution of the quasi particl
derivation seems incorrect because of his choice of the local equilibrium momentum distribution. In general, ifφ(p) is the
momentum distribution of the quasiparticles in a certain frame of reference, this distribution becomesφ(p − mv) in a frame
moving with velocityv with respect to the first one. This is a condition of general consistency for any form of mome
distribution. Actually, Khalatnikov, on top of page 117 in [17], gives the following expression forφ(p) (= hisn0(p)):

φ(p) =
[
exp

(
ε(p)+ p · vs −p · vn

kBT

)
− 1

]−1
. (20)

It is inconsistent with the requirement that with no velocity difference between the two components (normal and con
φ(p) should be just the equilibrium distribution with its argument shifted by−mV . This isφeq(p − mV ) with V = vn = vs ,
and

φeq=
[
exp

(
ε(p)

kBT

)
− 1

]−1
.

This is likely because most studies made since Landau tried to derive by a Galilean transformation the expressi
momentum distribution withvs = 0 and an arbitraryvn. When the superfluid component is at rest, Landau gives the (cor
expression of the momentum distribution

φ(p) =
[
exp

(
ε(p)− p · vn

kBT

)
− 1

]−1
. (21)

Let us derive from this the general form of the momentum distribution at equilibrium with both an arbitrary sup
velocity and an arbitrary normal velocity as well, both velocities being uniform. For that purpose one needs first to w
momentum distribution in the frame where the coherent component is at rest. This changes the distribution fromφeq(ε(p)) to
φeq(ε(p)−p · vn). Now we can perform the Galilean boost from the rest frame to a frame moving with velocityvs with respect
to the lab frame. This Galilean boost changes momenta fromp to p − mvs and add−vs to the speedvn in the expression o
φ(p) given in (21). The final result is

φ(p) =
[
exp

(
ε(p −mvs)− (p −mvs) · (vn − vs)

kBT

)
− 1

]−1
, (22)

a formula in agreement with the effect of the Galilean boost ifvn = vs . This expession of the local equlibrium distributio
written in the frame of reference of the laboratory, is the correct one to begin a Hilbert–Enskog derivation of the hydrod
equation.

Another related issue concerns the possible interaction between normal component and coherent state. We have s
independent on any kind of expansion, if the condensate has zero speed, the interactions with the normal gas do no
exchange of momentum between the two components. Of course this does not exclude exchange of momentum in
the velocity of the condensate is not zero, any change of its mass will be also a change of momentum, even if its velo
not change. This gives very tight constraints on the form of the two fluid equations including viscous effects. For instan
not compatible with the two dissipative terms written by Khalatnikov [17], Eq. (9.15), p. 66. He writes the equation of
for the superfluid velocity as

∂vs

∂t
+ ∇

[
µ+ v2

s

2

]
= ∇[

ζ3 div
(
ρs(vn − vs)

) + ζ4 div(vn)
]
. (23)

The terms on the left-hand side are the ones given by Landau on the basis of thermodynamic arguments, although th
the right-hand side are dissipative effects introduced by Khalatnikov (ζ3,4 are phenomenological viscosity coefficients). Neit
should be there, because none satisfies the constraint that, ifvs = 0, there is no exchange of momentum and so no chang
velocity of the condensate. Indeed the terms written by Khalatnikov are expected to be very small, because they d
velocity divergences that are small at small Mach number. However, even so, they should not be there.

6. Final remarks and comments

(i) Consider the following (‘gedanken’ in atomic vapors) experiment: let us start to rotate a bucket full of superfluid a
temperature from rest, the final peripheral velocity being bigger than the critical thermodynamic speed. Suppo
condensate remains at rest, the normal gas will not be able to move at equilibrium at the speed of the external b
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because this would exceed the thermodynamic speed. So it is not clear at first sight what would happen. Mos
new condensate is formed, with a nonzero speed close enough to the speed of the normal gas, by the same me
creation of condensate in a too dense gas via the formation of a singular piece of momentum distribution [12]. In a
bucket, superfluid vortices should be created as well.

(ii) A rather natural question is how to include this thermodynamic limit speed in Landau’s two fluid equations. W
concerns the smallp limit, Landau’s criterion is built in the two fluid equations, if the superfluid is treated as compres
although the study of the generation of vortices requires a microscopic description. The thermodynamic lim
would require probably the introduction of the velocity difference between the two components as a true thermo
parameter, and some free boundary problem would likely show up to represent the constraint on the limit of the
difference.

(iii) Estimates like the one ofµ in Eq. (6) assume that the temperature is not too low, specifically thatkBT � ηρs ,
to allow the expansion of the exponential in (5) near its zero argument. At very low temperatures, one hµ ∼
(η/ρs)

(1/2)m3/2(kBT )2/h̄3
.
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