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Abstract

The spatial resolution of magnetic resonance imaging can be greatly enhanced by replacing the coil antenna (or cav
scanning force microscope. We describe how this mechanical detection can be applied to the measurement of both the trans
and longitudinal relaxation inside a micron-size volume. The measurement procedure and analysis is detailed for th
paramagnetic and ferromagnetic spin systems.To cite this article: O. Klein, V.V. Naletov, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Mesure de la relaxation par microscopie à résonance magnétique détectée mécaniquement. La résolution spatiale
d’un imageur à résonance magnétique peut être fortement améliorée en remplaçant l’antenne à bobine (ou cavi
microscope à force atomique. Nous décrivons comment cette détection mécanique peut être appliquée à l’étude de la rel
transversale et longitudinale dans deséchantillons microscopiques.Le protocole de mesure et d’analyse est décrit pour de
spins paramagnétiques et ferromagnétiques.Pour citer cet article : O. Klein, V.V. Naletov, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The Nobel prize of medicine was awarded in 2003 to the two physicists Paul Lauterbur [1] and Peter Mansfield
their discoveries in 1973 concerning magnetic resonance imaging (MRI). Foreseeing the benefits of placing the sam
inhomogeneous magnetic field was indeed very counter intuitive. One beautiful experiment that suffered from being di
prior to their work, is the first mechanical detection of nuclear paramagnetic resonance (NMR) by Evans in 1955
that time, Evans [3] was looking for new ways of measuring thestatic component of the nuclear susceptibility. Inspired b
the Faraday balance, he proposed to place the sample in a magnetic field gradient to generate a force on it. The
of his apparatus was found to be comparable to a coil detection. In its concluding remarks, he noted that his new t
“however, (was) unlikely to have any practical importance, since an inhomogeneous field is necessary and ther
(spectral) resolution is excessively low”. Further development on the mechanical method, were obtained by Alzetta
1967 [4,5]. They reported the detection of electron paramagnetic resonance (EPR) in diphenylpicrylhydrazil (DPPH).
sample was placed in a homogeneous field and the torque was measured.

These ideas were revisited more recently by Sidles [6] in thelight of the progress made both on MRI and on atomic fo
microscopy (AFM). Having a detector sensitive to the magnetic field gradient [7] should allow high spatial resolutio
extremely inhomogeneous field. He proposedto use a micro-fabricated cantilever to mechanically detect the resonance with

* Corresponding author.
E-mail addresses: olivier.klein@cea.fr (O. Klein), vnaletov@cea.fr (V.V. Naletov).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.02.002
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nanometer scale spatial resolution. The new technique is referred to as magnetic resonance force microscopy (MRFM
first magnetic resonance force signal was detected by Rugar et al. in 1992 while exciting EPR in a 30ng crystal of diphenylpicry
hydrazil [9]. Two years later, Rugar et al. reported the mechanical detection of1H (protons) NMR in 12ng of ammonium nitrat
[10]. These two experiments demonstrated that AFM cantilevers can be a substantial improvement over the coil detec

After a short introduction to MRFM with a comparison between force and coil detection, we describe how this tec
can be applied to the measurements of the dissipative term that enters in the equation of motion for the magnetizati
It is shown that measurements of both the transverse and longitudinal spin dynamics can be obtained for paramag
ferromagnetic spins systems.

2. Principle of the mechanical detection of magnetic resonance

More precisely, MRFMs are inspired by the magnetic force microscope, a variant of the AFM. A micron-size per
magnet is affixed at the free end of a clamped cantilever and placed in the stray field of the sample. The induction at the t
location,B = Bext + BM , is the superposition of an homogeneous external field,Bext (applied along thez-axis), and the
inhomogeneous dipolar field,BM , produced by the sample magnetizationM . The resulting point load on the tip induces
elastic deformation of the cantilever. For a uniform magnetizationM throughout the volume of the permanent magnet (e.g
the strength of the external field is well above its saturation field), the force and torque acting on the tip takes respec
form:

F =
∮

Stip

B(M · n)dS, (1a)

N =
∫

Vtip

(M × B)dV, (1b)

with Vtip the volume of the tip andStip its surface of unit normaln. Changes in the deformation are monitored when
magnetic resonance is electromagnetically excited in the sample. The Larmor resonanceω0 usually occurs at a frequenc
that is several orders of magnitude higher than the fundamental flexural mode of the cantilever. The motional mass of the
at ω0 then is very large and the mechanical probe is insensitive to the precession of the transverse component of th
magnetization,Mt . The mechanical deformation is only produced by the correlative decrease of the longitudinal com
(i.e., along the precession axis)Ms − Mz, Ms being the static magnetization at thermal equilibrium.

In the standard configuration, the axis of freedom of the cantilever is oriented parallel to the static field (z direction). If we
define thex-axis as the direction along the length of the cantilever, thenFz andNy are the two components of the force a
torque producing a deformation in thez direction. The quantity measured is the pitch angle,α, at the free end of the cantileve
For a simple beam cantilever of lengthl, α can be expressed through the formula:

α = l2

2EI
Fz + l

3EI
Ny, (2)

with E andI respectively the Young modulus and thequadratic moment of the cantilever.
In our experiments, the probe-sample interaction uses some further simplifications. The experiments reported b

performed on a configuration that has axial symmetry. On the symmetry axis, thex-component of the dipolar field (BMz
· x̂)

vanishes and it does not contribute to the torque (Ny = 0). Assuming further that the permanent magnet is a cylinder alig
lengthwise withz (see Fig. 1), then Eq. (1a) integrates into

Fz = AtipM�Bz, (3)

with Atip the area of the generative section and�Bz the field difference across the length of the magnetic bar. If this le
is small compare to the sample probe separation, then the changes in the deformation are proportional to the field gg

produced by theMz(r) profile of the sample.
Our discussion begins with a review of the arguments that sustain the use of a cantilever instead of a coil to detect

resonance in microscopic samples.

3. Sensitivity of the force detection

The relevant quantity here is the signal to noise ratio (SNR). Both a coil and a force detection use the magnetic couplin
the spin system to a linear oscillator. Sidles and Rugar derived a common expression for the sensitivity [7]

SNR ∝ MVslice

√
ωQ/km√

4k T �f
. (4)
B
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Fig. 1. (a) Images of the probe magnet glued onto the cantilever. (b) Model of our setup showing the iso-field lines of the sam
field (z component) for a uniformly magnetizeddisk. The change of the pitch angleα measures the diminution of the sample longitudi
magnetizationMs − Mz . The deformation of the cantilever on the figure is greatly exaggerated: typical value ofα are around 10−6 rad.

The pre-factor is proportional to the number of spins, withM the magnitude of the sample magnetization (Mt for a coil,
Ms − Mz for a cantilever) andVslice is the resonating slice (inversely proportional to the field gradient for paramag
spins). The denominator represents the thermal noise (T the temperature andkB the Boltzman constant) inside the detecti
bandwidth,�f . The probe itself is characterized by a resonance frequency,ω, a quality factor,Q, and a magnetic stiffnesskm.
Low magnetic stiffness for the oscillator means that the probe uses very little storage energy to change the magnetic fi
sample location. The stiffness of a coil is given bykm ≈ Vcoil/2π [7]. A cantilever changes the local field by displacing t
probe magnet to another location andkm = k/g2 [7] with the k the mechanical spring constant. This expression illustrate
interest of using a cantilever for MRI. An increase of the magnetic field gradientg, improves the spatial resolution but does n
deteriorate theSNR. The loss inVslice associated with the increase ofg is compensated by the decrease ofkm.

Using Eq. (4), we review briefly how to modify the oscillator geometry to increase theSNR. All things being equal it is always
advantageous to haveω as large as possible. Coils (or cavities) can easily detect signals at r.f. or microwave frequenc
they are used as detector of the dynamic susceptibility (i.e., around the Larmor frequency). In contrast commercial cantilev
are at present limited to the low end of the r.f. spectrum. There has been, so far, only reports about the static susceptibility
using a force detection. Going to largeω for a cantilever requires mainly to reduce its mass. Independent studies about
mechanical properties [11] of carbon nanotubes quote frequencies as large as 2 GHz [12], although detecting such m
is still difficult [12]. It is useful to note that, in some cases, the measurement of the static susceptibility is more import
will give examples of such cases when we discuss ferromagnetic resonance.

Eq. (4) clearly states thatkm should be minimized. For a coil, that implies reducing its volume. There is actually an opt
for the SNR when the coil fits the given sample size. It corresponds to the highest filling factor. However, from a fabricatio
point of view, it is difficult to create windings below the micron scale [13]. For a 60 µm inner diameter planar microco
km ≈ 10−10 cm3. In comparison, the spring constantk of a cantilever depends as the cube of the ratio thickness over leng
the beam. Some of the thinest cantilevers micro-fabricated [15] (0.17 µm thick) have a spring constant which is of the
k ≈ 10−4 N/m in zero field. For tip sample separation of the order of 1 µm, the gradient of field produced is of the o
g ≈ 105 T/m, which leads tokm ≈ 10−15 cm3: a substantial improvement over coil detection.

We note that theSNR ratio also depends on the quality factor,Q, of the oscillator. External parameters (e.g., the tempera
or the pressure) can influence greatly the value ofQ. The Q of a coil decreases when its size is reduced because bot
inductanceL and the electrical conductanceσ of the windings decrease. For example, the planar microcoils mentioned
have aQ ≈ 1 [16]. The use of a superconducting material improves somewhat the result, but then the damping b
dominated by the penetration of magnetic flux vortices inside the coil [17]. TheQ of a cantilever also decreases with size
depends on the thickness but it is reasonably independent of the length or width of the cantilever [15]. Taking again
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of the 0.17 µm thick single crystal silicon cantilever, theQ is about 104 at room temperature. This suggests that the phys
process responsible for the damping in cantilevers are among the smallest for these kinds of length scale [18].

The last important point concerns the detector noise. Eq. (4) assumes that theSNR is set by the thermal fluctuations o
the probe oscillator and not by the amplification electronics after. This is indeed true for a mechanical detection. Bot
beam deflection scheme, or a fiber optic interferometer add an amplifier noise that is several orders of magnitude lowe
intrinsic thermal noise of a soft cantilever. But these types of amplifier are difficult to build at higher frequencies. They
involve sophisticated equipment based on a maser or parametric amplifier [19].

Overall a dimensional analysis [18] shows that cantilevers are better detectors compare to coils when it comes t
size below the micron scale. The smallest cantilevers available [15] have already the sensitivity to detect single spins
stringent conditions: vacuum, large field and sub-Kelvin temperatures. But new difficulties arise when the coupling betw
the spins systems and the probe increases to the level of a single spin detection. Going to a very large gradient
soft cantilever means approaching a fluctuating (e.g., Brownian motion [20]) permanent magnet close to the sample
the probe sample separation to a few hundred nanometers. Although single spinsensitivity might be achievable in the case
diluted paramagnetic spin systems [21,22], important challenges remain ahead before reaching true atomic resolution. In
the spatial resolution limit of MRFM is still unclear [23]. Progress on the matter will probably depend on the understanding
the relaxation process associated with the approach of a permanent magnet near the sample surface.

In the following, we describe how to measure these parameters for paramagnetic and ferrromagnetic spin systems.

4. Studies of paramagnetic spin systems

4.1. NMR force detection setup

The setup that used in this section corresponds to a sample on cantilever approach [24] (see Fig. 2). The experimen
performed at room temperature inside a vacuum cell (10−2 torr). The instrument fits between the poles of an iron c
electromagnet which produces a static magnetic fieldBext ≈ 0.9 T alongz. To the uniform field we add a second inhomogene
field, Bcyl, with axial symmetry produced by a magnetized iron cylinder 8 mm in length and 1.9 mm in diameter. The

Fig. 2. Image of a commercial Si3N4 (amorphous) cantilever: a 7 µm thick single-crystal of (NH4)2SO4 sample is glued on the cantilever
end with epoxy. The loaded cantilever has a resonance frequency of 1.4 kHz, a spring constant of 0.008 N/m and a quality factor of 4000 in
vacuum. From the images in Fig. 2, the sample dimensions are 100× 50× 7 µm3 with the smallest length (actually the thickness) orien
along the axial field, which corresponds toN ≈ 1015 protons.
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centered 0.70 mm below the sample. The polarization field along the axis isB0 = Bext + Bcyl ≈ 1.3T and the instantaneou
magnetic force acting on the sample is given by a variant of Eq. (1a):

F(t) =
∫
Vs

Mz(r, t)
∂Bcyl

∂z
dV, (5)

with Mz the z component of the bulk magnetization andVs the volume of the sample. For small sample size, we make
approximation that the field gradientg = ∂Bcyl/∂z ≈ 470 T/m is constant overVs . We define a new length variableζ = B0(r)/g

constant on surfaces (paraboloids) of constant polarization field so that nuclear spins that are located at the sameζ value always
share similar time variation of their bulk magnetization.

Our test compound is a (NH4)2SO4 crystal cleaved to a platelet aspect ratio and glued with epoxy on the end of
cantilever as can been seen in Fig. 2.

4.2. The c.w. measurement sequence

Mz is modulated atωc , the frequency of the fundamental flexure mode ofthe cantilever. The modulation is generated
a continuous-wave (c.w.) sequence that consists of periodic adiabatic fast passages [25]. The radio-frequency (r.f.) source of
Voltage Controlled Oscillator (VCO) is amplified up to 7 W and fed into an impedance matched resonating circuit (Qrf � 100)
tuned to a fixed frequency, 54.7 MHz. A small coil (3 turns, 0.8 mm in diameter) is in series with the tank circu
sample is 0.5 mm away from this antenna. The nuclear spin are irradiated for a few seconds by a linearly polarized
Bx = 2B1 cos{∫ t

0 ω(t ′)dt ′} with ω(t) = Ω sin(ωct) + ω0, a sine-wave modulation of the r.f. frequency around the pro
Larmor frequencyω0 = γgζ0, whereγ /2π = 4.258 kHz/G is the nuclear gyromagnetic ratio (see Fig. 3). The surfac
constantζ = ζ0 is called the resonant sheet. We consider that the sinusoidal frequency modulation is started at timet = 0. In
a transformation to a rotating coordinate system (i, j, k) with an instantaneous angular velocityω(t)k, the effective magnetic
field is:

Be(ζ, t) = B1i +
{
gζ − ω(t)

γ

}
k. (6)

Fig. 3. (a) Vibration amplitude of the cantilever measured by the lock-in for a (NH4)2SO4 crystal containing 1015 protons at 300 K in
Bext = 0.9425 T. The trace corresponds to a single shot experiment with no averaging. (b) Details of the start and end of the c.w. seque
The crystal is irradiated for 3 s by a r.f. field ofB1 = 10 G (upper panel). The bottom panel shows the frequency waveform applied to the
aroundω0/2π = 54.7 MHz. The amplitude of the frequency modulation isΩ/2π = 150 kHz.
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We defineθ as the polar angle made by the effective field with the external field. Provided that we are in the adiabatic
the spin system remains at all times in a state of internal equilibrium andM is parallel toBe as required by Curie’s law. Th
longitudinal magnetization isMz(ζ, t) = |M|cosθ , where

cosθ = g ζ − ω(t)/γ√
{g ζ − ω(t)/γ }2 + B2

1

. (7)

A decay ofM = |M| during the motion [25] is due to the full spin-lattice relaxation (one component is the spin-lattice relaxation
in the rotating frame). An extra defocusing originates from the lack of adiabaticity of the modulation. For our compou
relaxation rate is slow compare to the modulation frequency. At timet = 0, B1 is assumed to be turned on adiabatically with
sample initially in thermal equilibrium. In this case the normM reflects the state of the longitudinal magnetization immedia
before the force measurement. During the c.w. sequence, the oscillatory movement ofMz(t) comes from the cosθ factor. We
expand cosθ ≈ a0 + a1 sin(ωct) with a1 the first harmonic Fourier component [26] (higher harmonics have a negligible e
on the motion of the cantilever). Because of the large field inhomogeneities, the amplitude of oscillation depends on the locatio
inside the sample. The resonant sheet, which is the paraboloid of constantζ0, corresponds to the surface of maximum amplitu
of oscillation. The spatial dependence ofa1(ζ ) is the sensitivity profile. We callΓ the half width at half maximum of this bell
shaped curve.Γ has the units of a distance and it defines the thickness of the slice probed. The amplitude ofΓ depends on
both Ω andB1. The induced vibration is synchronously amplified by a lock-in technique. The signal grows exponent
the asymptotic amplitude

A0 = 1√
2

Qg

k

∫
V s

M0a1(ζ )dζ. (8)

Thus the peak amplitude of vibration achieved by the cantilever in Fig. 3 is proportional to thelongitudinal magnetic momen
inside the probed slice at the beginning of the c.w. sequence.

4.3. Spin-spin relaxation measurement

To study the transverse magnetization decay of1H [27] we use a sequence of 3 pulses. Aπ/2 pulse is applied to the spi
system, so that the magnetization atζ0 is rotated to the transverse plane. After a fixed delayτa , aπ pulse is applied to form a
spin echo. Shortly after, aπ/2 pulse takes an instant snap-shot of the transverse magnetization by rotating it alongk and the
frozen component is measured with the c.w. sequence described above. Varying the time delayτb between the last two pulse
reconstructs the transient shape of the spin echo.

With increasing spacingτa between pulses, the size of the spin echo signal decreases due to spin–spin relaxatio
the same sequence as above, Fig. 5 is a plot of the lock-in peak measured as a function of the time 2τa . We plot the data on a
x2–log(y) scale and we find that the decrease follows a Gaussian relaxation exp{−(t/T2)2} with T2 = 39±1 µs. The transvers
relaxationT2 is found to be consistent with conventional NMR detection on a macroscopic sample [28]. With the inferT2,
we fit the shape of the echo in Fig. 4 taking into account the dipolar linewidth of the protons in our compound [28]
spatial dependencea1(ζ ). The solid line in Fig. 4 is the best fit obtained for a sample thickness of 6.5 µm which is in
agreement with the value obtained on the image.

4.4. Spin-lattice relaxation measurement

We now measure the longitudinal magnetization recovery after a saturation comb [29]. The saturation comb is com
threeπ/2 pulses spaced by 100 µs. The c.w. sequence is applied at a variable delay (13 ms< t < 20 s) after the comb. In orde
to obtain an intrinsic measurement of the relaxation, it is important to ensure that the sensitivity profilea1(ζ ) is exclusively
included inside the sample section, otherwise a partial re-polarization of the magnetization occurs during the mea
cycle [27]. For our settings,ζ0 is set exactly at the middle of the sample andΓ = 2.4 µm is smaller than the sample thickne
As before, the value plotted is the lock-in output averaged over a 1s time interval around its maximum. We do not de
signal whent = 13 ms. On Fig. 6, we clearly observe two relaxation times in the recovery process. We fit the results
double exponentials{1 − exp(−t/T1s)} + (1 − s){1 − exp(−t/T1l )} which givess = 49± 2%, T1s = 0.35± 0.03 s and
T1l = 5.4 ± 0.5 s. The later value corresponds to theT1 reported in the literature for this compound [30]. The short relaxation,
however, might be due to water contamination inside the crystal during its contact with air. These same two relaxation
also measured by conventional NMR in powder samples with particles of dimensions smaller than 50 µm [24].
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Fig. 4. Measurement of the transient shape of the spin-echo:
a π/2–τa–π pulse sequence is used to form a spin echo. The
transverse magnetization is measured with the combination of aπ/2
pulse and the c.w. sequence. The amplitude of the force signal is
shown as a function ofτa + τb with a fixedτa = 17 µs. A r.f. field
of B1 = 15 G is used for the pulses. The solid line is a fit of the spin
echo shape in our compound for a sample thickness of 6.5 µm.

Fig. 5. Spin-spin relaxation time measurement: normalized heig
of the spin echo are displayed on a square-logarithmic scale as
function of τa + τb with τa = τb . The straight line is a fit with
exp{−(2τa/T2)2} whereT2 = 39± 1 µs.

Fig. 6. Measurement of the longitudinal magnetization recovery: the
logarithmic of the normalized amplitude of the force signal is shown
as a function of the interval between a saturation comb and the c.w.
sequence. The solid line is a fit with a double exponential recovery
which yieldsT1s = 0.35± 0.03 s andT1l = 5.4± 0.5 s. Each point
is the average of 32 c.w. sequences.

Fig. 7. Force signal as a function ofBext: a saturation comb is
applied 0.6 s (closed circles) and 16 s (open circles) before the
sequence. The solid line is the expected profile for a parallelepiped
sample of 7 µm thickness within both the free spin and adiaba
approximations. The inset showsthe spatial dependence of th
sensitivity profile of these settings (the transfer function).

4.5. One dimensional imaging of relaxation contrast

One corollary issue concerns the spatial distribution of each spin species inside the sample section. To per
measurement, we record the amplitude of the lock-in signal as a function ofBext for two delayst between the saturatin
comb and the c.w. sequence. By sweepingBext, we displace the surfaceζ0 to a different height in the sample. The force sig
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is then proportional to the density of spin around this location. In order to obtain a local measurement, we reduce the
Γ of the slice probed by decreasing bothΩ andB1 for the c.w. sequence. The inset of Fig. 7 shows the spatial depend
of the sensitivity profilea1(ζ ) for our settings whereΓ , the half width at half maximum, is 1.9 µm. By using the satura
comb, we can vary the weights of one spin species compared to the other. Qualitatively, the measurement protocol give
weight to the spin species with short relaxation when the comb is close to the c.w. sequence. We plot in Fig. 7 the
results for botht = 0.6 s (closed circles) andt = 16 s (open circles). A rapid glance at the data seems to indicate tha
profile of the two sequences are different and we obtain a more rounded profile for the closed circles data suggestin
water contamination occurs at the surface. The measurements, however, collected close to the edge of the sample
by repolarization processes that modify the shape of the lock-in signal. The solid line is a calculation of the expected p
a parallelepiped sample of dimensions 100× 50× 7 µm3 within both the free spin and adiabatic approximations. In spit
the idealized model, thet = 16 s data (open circles) are well described by the calculated profile except for the high field
The shoulder at largeBext corresponds to the surface of the sample that hasbeen glued with epoxy to the cantilever. We did n
attempt to fit this part of the data. We assume that the observed step is a signal from the protons in the epoxy.

In conclusion, the experiment above demonstrates that the force detection can achieve the micrometer scale spatia
at room temperature and in a 1 T field. Improvements are expected by going to higher field and/or lower temperatures
micron resolutions have been reported with electronic spins [21].

5. Spin ordered systems

In the case of ferromagnets, the story is different. Collective modes are excited and the sensitive slice is no
proportional to the ratio of the linewidth over the field gradient [31]. Furthermore, the longitudinal relaxation timeT1 of
ferromagnets cannot be measured by either a standard pulsed decay scheme or a saturation experiment (a mea
h2

sat= 1/{γ 2T1T2}), because a premature ‘sticking’ of the transverse magnetization occurs beyond the so-called Suhl t
[32]. We propose to use a different approach, which is described below.

In a spin ordered state, the spatial fluctuations of the motion (rather than the thermal fluctuations) are the disturba
may alter the experimentally determined value of the relaxation rate. At the microscopic scale (dimensions smaller
exchange length), the norm of|M| is a constant of the motion and the dissipative term takes the phenomenological Gilbe
[33]. The Gilbert damping coefficient,G, is the fundamental parameter that characterizes the spin dynamics at this micro
scale. At the macroscopic scale, we measure the dynamics of a spatially averaged quantity,�M . Microscopic relaxation channe
are masked by spatial de-coherence of the motion that may lead to an apparent faster decay rate of�M . Spatial fluctuations o
the motion usuallyoccurs on structural inhomogeneities inside thesample like defects, surface roughness or corners,. . . and
these extrinsic effects participate in the broadening of the absorption line.

A direct way of accessingG is to measure the dynamics of the longitudinal componentMz [34,35]. In contrast to the
transverse magnetization, proportional to the number of magnons in the coherent motion, the diminution of the lon
componentMs − �Mz is proportional to the total number of magnons excited, including the degenerate magnons that c
the uniform motion. In other words,�Mz approaches equilibrium at the intrinsic spin thermalization rateT1, proportional toG
in the small motion limit [36].

In this section, we show how ferromagnetic resonance force microscopy (fMRFM) can be used to measure the
ferromagnetic relaxation rates inside a micron-size sample. We will present our results obtained at room temperature
sample of yttrium iron garnet. The sample is a disk [37] of diameterD = 160 µm and thicknessS = 4.75 µm perpendicularly
magnetized in a static field,Hext, of a few kilo Oersted and excited by microwave fields between 5 and 13.5 GHz.
the permanent magnet [38] is glued at the extremity of the cantilever and then aligned with the axis of the disk. F
shows a side and top view of the probe magnet attached on the cantilever. It is a cylinder ofRtip = 9 ± 0.5 µm in radius and
Ltip = 32± 3 µm in length. The distance between the sample and the probe is fixed at� = 100 µm so that their coupling i
in the weak interaction regime [31]. The spatial average of the transverse component of the magnetization,�Mt , is measured
independently by a standard setup. The power reflected off a half-wavelength resonator is detected by a microwa
diode, carefully calibrated so that the signal is square law over the measured range. The diode signal is then proportio
microwave power absorbedPabs∝ χ ′′, the imaginary part of the microwave susceptibility. For a magnetization that follow

Bloch’s equation of movement, this quantity varies withHext in the same manner as�Mt
2.

In FMR studies, the conventional way of evaluating the damping coefficient is to measure the width of the absorp
at low incident power (Pin = 5 µW in our case). The shape of the resonance is obtained by scanning the magnetic fieHext
through the region of resonance when the microwave frequency is maintained constant at the eigen frequency of
critically coupled microstrip resonator (f0 = 10.47 GHz). For �Mz, a substantial gain in sensitivity can be achieved by modu
ing the magnetization at the fundamental flexure mode of the cantilever,ωc. In this section, we use source modulation, wh
corresponds to a modulation in amplitude of the incident microwave,H1{1 + ε/2cos(ωs t) − ε/2}x̂, with ωs the modulation



O. Klein, V.V. Naletov / C. R. Physique 5 (2004) 325–335 333

n

st

he

ance
ower, the
t with the

en

nd stray
ly

en the
ing
rate these

in
r various

of all
ited to the
9]. The

e-

gnons
Fig. 8. Line shape of the main resonance absorption line observed simultaneously along the longitudinal and transverse direction at the eige
frequency of the microstrip resonator, 10.47 GHz. Thesolid line is a fit with a Lorentzian of width 1.57 Oe.

frequency,H1 thecircularly polarized amplitude of the microwave field andε the fraction of modulation. This approach is be
suited for low power studies (much below the Suhl threshold), as one can take advantage of the full amplitude (ε = 1) without
inducing line shape distortion. Fig. 8 displays the measurement of bothMs − �Mz (Ms is the saturation magnetization at t

temperature of the experiment) and�Mt
2 as a function ofHext on a semi-logarithmic scale. We observe an intense reson

peak at 5324.5 Oe, the fundamental mode, and all the higher harmonics [37] are outside the figure range. At this p
shape of the main resonance is identical for both the transverse and longitudinal signal and the main peaks can be fi
same Lorentzian function of width�H = 1.57 Oe.

For Lorentzian shape, the phenomenological equation of motion of the magnetic moment is the Bloch–Bloemberg
form [34]:

d

dt
�Mt

2 = 2
MsPabs

H + 4π(nt − nz)Ms + Hanis
− 2

�Mt
2

T2
, (9a)

d

dt

(
Ms − �Mz

) = Pabs

H + 4π(nt − nz)Ms + Hanis
− Ms − �Mz

T1
, (9b)

whereT2 andT1 denote respectively the transverse and longitudinal relaxation times of the magnetization.H = Hext + Htip is
the applied magnetic field (not including that of the sample), defined as the superposition of the uniform external field a
field of the tip alongz, Hanis is the magneto-crystalline anisotropy field,(nt , nz) are the depolarization factors respective
transverse and longitudinal, andPabs= ω0

∫
Vs

dV My(r)H1 expresses the power absorbed inside the sample volume,Vs . The
transverse component ofH tip (nul at the center) is neglected. Although this formalism gives a simple relationship betwe
transverse relaxation rate and the homogeneous line width�Hh = 2/(γ T2), it does not include the inhomogeneous broaden
nor does it distinguish between the different relaxation channels. Other experiments are then necessary to sepa
contributions.

5.1. Transverse relaxation measurement

Separation between homogeneous and inhomogeneous broadening can be obtained by performing new experiments
which the amplitude of the longitudinal and transverse component of the magnetization are independently observed fo
modulation frequencies around 1/T2 (see Fig. 9(b)). In this fashion, Flechter et al. [35] could extract the relaxation time
processes other than via the degenerate magnon manifold. Our longitudinal probe uses a narrow band detector lim
audio frequency range (ωc/2π ≈ 3 kHz). We propose to use a scheme inspired by anharmonic modulation experiments [3
h.f. amplitude is fully modulated at an arbitrary frequencyωs while the synthesizer is frequency modulated atωf = ωs + ωc .
It should be noted that the later approach is equivalent to a modulation of the polarization field.

Fig. 9(c) shows the result for both the transverse and longitudinal signals. The decrease of�Mz and �Mt with increasing
modulation frequencyωs determines the homogeneous part of the broadening�Hh. Concentrating first on the measur
ments obtained with a de-tuned circuit (without radiation damping), a fit of 9.8 GHz data gives�Hh = 0.7 ± 0.05 Oe or
T2 = 2/(γ �Hh) = 162± 10 ns. This quantity includes the two-magnon scattering which accounts for 0.2 Oe [40], i.e., a spin-
spin relaxation time ofTs = 570 ns. The result is in agreement with Hurben and Patton [41] calculation of the two-ma
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Fig. 9. (a) Theoretical and (b) experimental distortion of the anharmonic absorption line (longitudinal and transverse) for different modulati
frequencies between 0.1 and 10 MHz in stepsof 1 MHz. The amplitude of the frequency modulation corresponds to 10% of the line widt
(c) Diminution of the absorption amplitude withincreasing modulation frequency. The width of the 9.8 GHz bell curve gives the trans
relaxation time,T2 = 162 ns. The 10.47 GHz data are normalized to the width to illustrate the effects of radiation damping.

contribution for a normally magnetized disk of finite aspect ratio. The contribution is small because the resonance freq
the main mode lies at the lowest point of the spin wave spectrum so that the degenerate magnon manifold has shrunk
a point [42].

5.2. Spin-lattice relaxation measurement

To assessT1 directly, we propose to use our quantitative measurements of�Mz [43], the spatial average of the longitudin
magnetization. At resonance,

T1Pabs=
∫
Vs

dV
{
Ms − Mz(r)

}{
H(r) − 4πnz(r)Ms

}
, (10)

which can be interpreted by saying that the energy that is transferred to the lattice in the timeT1 is equal to the diminution
of magnetic energy stored in the sample. The important point is that it affords a direct method of measuring the sp
relaxation rate at a fixed frequency. For small precession angle,θ � 1, the above formula can be more readily rewritten in
form T1 ≈ (Ms − �Mz)/(γ

2H2
1 T2Ms). We findT1 = 95± 10 ns [43]. The value is approximately equal toT2/2 which confirms

that, for our geometry, the energy flows directly into lattice motions and the decay into non-uniform magnetic modes is s
Taking into account the frequency dependence ofT1, the obtained result compares well with theT1 = 137 ns measured b
Flechter et al. [35] at 6.2 GHz, but part of this agreement is somewhat coincidental since it depends on the sample qu

6. Conclusion

From both an analytical and experimental point of view, magnetic resonance force microscope is a measurement me
that provides a substantial improvement in sensitivity compare to a conventional inductive technique. As shown in thi
the fact that it measures the longitudinal component of the magnetization does not prevent a complete characteriza
relaxation times inside the spin systems. Moreover, in the case of ferromagnet, it gives a direct access to spin-lattice relaxat
a quantity which is proportional to the intrinsic Gilbert coefficient.
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