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Abstract

In this paper we present an analysis of correlation and spectral density functions involved in autorelaxation an
correlated relaxation in the magnetic resonance of macromolecules. Internal dynamics of the macromolecule are
in terms of two distinct fluctuation processes with different, slow and fast, correlation times. The approach develope
work takes into account the possible coupling between both fluctuating internal processes.To cite this article: L. Vugmeyster
et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Relaxation par corrélation croisée en RMN de macromolécules en présence de dynamiques internes lente et rapide.
Dans cet article, nous présentons une analyse des fonctions de corrélation et de densité spectrale impliquées d
relaxation et la relaxation par corrélation croisée en résonance magnétique des macromolécules. La dynamique int
macromolécule est décrite par deux processus distincts de fluctuations internes respectivement lent et rapide, associés à
temps de corrélation différents. L’approche développée dans ce travail prend en compte un possible couplage entre
types de mouvements internes.Pour citer cet article : L. Vugmeyster et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Mots-clés : RMN ; Relaxation ; Paramètres d’ordre Lipari–Szabo ; Mouvements internes

1. Introduction

Internal dynamics of biological macromolecules such as proteins or nucleic acids span a wide range of time scales.
description of internal motions is essential for a better understanding of their biological function. However, the measur
NMR relaxation rates does not provide information on internal dynamics alone, since the rates are determined by a com
of overall tumbling and internal motions. One therefore has to resort to theoretical models to separate contributio
both types of motions. If rotational diffusion can be assumed to be isotropic, the overall tumbling of a macromolec
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1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.02.004
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Nomenclature

Cuv(t) total cross-correlation function
Cglob(t) correlation function for global motion
C int

uu(t), C int
uv (t) correlation functions for internal motion

Cuu(t) autocorrelation function

C
int,q
uv (t) cross-correlation function associated with the dynamics of the local environment

Dmk(Ψ ) ≡ D
(2)
mk(Ψ ) second-rank Wigner matrix elements

G(Ωu,Ωv, t;Ωu0,Ωv0,0) joint probability density
G(Ωu,Ωv, t |Ωu0,Ωv0,0) conditional transition probability density
Juu(ω) spectral density of autocorrelation, Fourier transform ofCuu(t)

Juv(ω) spectral density of cross-correlation, Fourier transform ofCuv(t)

Ωu solid angle describing the position ofu in the molecular frame
ΩL

u (t) solid angle describing the position ofu in the laboratory frame
Ω̃u solid angle describing the position ofu with respect to the local environment reference frame
Suv cross-correlation order parameter, in general encompassing both fast and slow motions
Suu autocorrelation order parameter, in general encompassing both fast and slow motions

S
f
uu autocorrelation order parameter for fast motion

S̃
f
uu autocorrelation order parameter for fast motion as defined by Clore et al.

Ss
uu autocorrelation order parameter for slow motion

Ss
uv cross-correlation order parameter for slow motion

superscriptq quasi-equilibrium value
superscript eq true equilibrium value
〈θuv〉 average angle between vectorsuq andvq , which is fixed in a rigid fragment
τc isotropic global correlation time

τ
f
u time constant for fast internal motions ofu

τ s
u time constant for slow internal motions ofu

Y2m second order spherical harmonics function
Ψ represents the three Euler angles relating the molecular frame to the laboratory frame
Ψu represents the three Euler angles relating the local environment reference frame ofu to the molecular reference

frame

be described by a single correlation timeτc. If the tumbling motion is anisotropic, however, its description requires t
distinct correlation timesτm (m = 0,1,2). Internal dynamics are often described by invoking one or two local correl
times which may vary along the molecule. Conventional NMR methods provide information on auto-relaxation raR1
andR2) and on cross-relaxation rates (Overhauser effects) involving various nuclei (essentially protons, nitrogen-15,
13 and phosphorus-31 in biomolecules). The most commonly used technique to characterize local internal dynamic
in determining the longitudinal and transverse relaxation ratesR1 and R2 of nitrogen-15 and the steady-state Overhau
enhancement factorη. These experiments provide information on the rigidity of an N–HN bond vector.

In recent years, an increasing number of NMR methods have been described [1,2] that allow one to determin
range of cross-correlated relaxation rates that are due to various dipole–dipole and anisotropic chemical shift intera
particular, cross-correlated relaxation rates of multiple-quantumcoherences provide insight into correlated dynamics of var
interactions, such as cross-correlation between two dipole–dipole interactions (DD/DD), between two chemical shift an
interactions (CSA/CSA), or combinations such as DD/CSA [2–9]. The measurement of such rates appears especially
since they allow one to estimate the degree of correlation between the motions of two CSA tensors or dipole–dipole inte
and therefore of the motions of atoms and chemical bonds. In recent work by Pelupessy et al. [6] it has been shown th
dynamics on a time scale that is slower than overall tumbling contributes to cross correlated relaxation of zero- and
quantum coherences.

The fluctuating orientation of a dipole–dipole interaction (DD) or of a principal component of a CSA tensor c
represented by a vectoru. The dynamics of such a vectoru are usually described in terms of a model-free [10] order param
S2
u [11–15]. The model-free formalism was originally designed to take account of internal motions characterized bya single time

constant, assumed to be much shorter than the correlation timeτc, so that the internal and overall motions may be considere
be statistically independent. Violations of the assumption of the statistical independence between internal and overa
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Eq. (2))

the
has been discussed recently [16,17]. The Lipari–Szabo formalism was extended by Clore et al. [18] to encompass tw
internal time scales, i.e., a very fast internal motion and a much slower one, both of which are still assumed to be sta
independent of overall tumbling. In order to extract information about correlated dynamics from cross-correlated re
rates, it is necessary to have a proper theoretical framework which relates these rates to a set of correlation times that c
both the internal and overall dynamics of the molecule. A first step in this direction has been proposed by Daragan and M
who made an analysis of the relevant correlation functions for various rotational models. Note that the model-free app
also been applied to anisotropic overall motion [20,21], thus extending previous work [22]. The present paper repre
attempt to extend the current theory to the case of cross-correlated relaxation in the presence of two types of interna

processes. The dynamics of each interactionu will be described by three parameters, i.e., two local correlation timesτ
f
u and

τ s
u corresponding to fast and slow internal processes, inaddition to the isotropic global correlation timeτc . The environment

fluctuates on a much slower timescale so that the bond vectorsu andv undergo rapid fluctuations about their respective qu
equilibrium positions. In addition, we shall assume that the fluctuations ofu andv are statistically independent on a timesc
which is short compared to the characteristic time of the environment. In practical applications, e.g., if we consider re
of two-spin coherences involving neighboring N–HN bonds, each vector Nu–HN

u is associated with both a short time const

τ
f
u and a long time constantτ s

u .
The description of internal dynamics that is presented in this paper is only valid for dipole–dipole interactions b

nuclei that are at a fixed distance from each other, and for chemical shift anisotropy interactions described by sec
tensors with components which are independent of internal motions. However, for simplicity, the theory is specialize
paper to the case of axially symmetric tensors. If the interactions of interest are the dipoles Nu–HN

u and Nv–HN
v , the cross-

correlation function corresponds to the correlation between the motions of the bond vectorsu andv. Therefore, the dynamic
of spin interactions may provide direct insight into the dynamics of bond vectors. For the sake of simplicity, we sha
of ‘bond vector dynamics’, keeping in mind that the same formalism is also applicable to long-range DD interactions
C′HN (i.e., between a carbonyl carbon and an amide hydrogen) and to various correlations such as CSA/CSA, CSA
although the principal axes of the relevant tensors are not necessarily parallel to any bond vectors.

We shall analyze the effects on cross-correlated spectral density functions of the simple two-step model for the
dynamics presented above and we shall provide guidance on how to extract the characteristics of correlated fluctua
experimental relaxation rates.

2. Model and basic equations

Considering two bond vectorsu andv that are normalized to unit length, the cross-correlation functionCuv(t) can be written
as

Cuv(t) = 1

5

〈
P2

(
u(t) · v(0)

)〉
, (1)

where〈·〉 indicates the ensemble average over tumbling and internal motions, andP2(x) = 1
2(3x2 − 1). Using the addition

theorem for modified spherical harmonics, we obtain:

Cuv(t) = 1

5

4

5

2∑
m=−2

〈
Y2m

(
ΩL

u (t)
)
Y ∗

2m

(
ΩL

v (0)
)〉
, (2)

whereΩL
u (t) and ΩL

v (0) are the solid angles describing the positions of the two bond vectorsu and v with respect to the
laboratory reference frame. Contributions of overall tumbling and internal motions to the cross-correlation function (
can be separated provided that they are statistically independent [10]. By introducing the solid anglesΩu andΩv to describe
the orientations of the vectorsu andv with respect to a molecular frame

Y2m(ΩL
u ) =

∑
k

Dmk(Ψ )Y2k(Ωu), (3)

whereDmk(Ψ ) ≡ D
(2)
mk

(Ψ ) are second-rank Wigner matrix elements andΨ represents the three Euler angles relating
molecular frame to the laboratory frame [23]. For isotropic global tumbling, Eqs. (2), (3) lead to:

Cuv(t) = Cglob(t)C int
uv(t), (4)

whereCglob(t) is the autocorrelation function of global tumbling:

Cglob(t) = 1

5

∑〈
Dkm

(
Ψ (t)

)
D∗

km

(
Ψ (0)

)〉
, (5)
k
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uv (t) is the cross-correlation function in the molecular frame:

C int
uv(t) = 4π

5

∑
m

〈
Y2m

(
Ωu(t)

)
Y ∗

2m

(
Ωv(0)

)〉
. (6)

For isotropic overall tumbling, one has:

Cglob(t) = 1

5
exp

(
− t

τc

)
. (7)

The calculation of the correlation functions〈Y2m(Ωu(t))Y ∗
2m

(Ωv(0))〉 can be reduced to the average values〈Y2m(Ωu(t))〉
under given initial conditions. We can write the average〈Y2m(Ωu(t)Y ∗

2m
(Ωv(0)〉 in terms of the probability density functio

G(Ωu,Ωv, t;Ωu0,Ωv0,0) which characterizes the joint stochastic process of the motions of the vectorsu(t) andv(t):

〈
Y2m

(
Ωu(t)

)
Y ∗

2m

(
Ωv(0)

)〉 = ∫
dΩu(t)dΩv(t)dΩu(0)dΩv(0)G(Ωu,Ωv, t;Ωu0,Ωv0,0)Y2m(Ωu)Y ∗

2m(Ωv0), (8)

whereG(Ωu,Ωv, t;Ωu0,Ωv0,0) is the joint probability density of the solid anglesΩu andΩv associated with the vectorsu
andv. In terms of the conditional transition probabilityG(Ωu,Ωv, t |Ωu0,Ωv0,0) this can be written:

G(Ωu,Ωv, t;Ωu0,Ωv0,0) = G(Ωu,Ωv, t |Ωu0,Ωv0,0)G(Ωu0,Ωv0), (9)

where G(Ωu0,Ωv0) is the probability density of the initial orientations. Introducing themarginal conditional transition
probability characterizing the stochastic functionΩu(t) alone:

G̃(Ωu|Ωu0,Ωv0) =
∫

dΩvG(Ωu,Ωv|Ωu0,Ωv0), (10)

one obtains:〈
Y2m

(
Ωu(t)

)
Y ∗

2m

(
Ωv(0)

)〉 = ∫
dΩu dΩu0 dΩv0G̃(Ωu|Ωu0,Ωv0)G(Ωu0,Ωv0)Y2m(Ωu)Y ∗

2m(Ωv0) (11)

which implies that:〈
Y2m

(
Ωu(t)

)
Y ∗

2m

(
Ωv(0)

)〉 = 〈〈
Y2m

(
Ωu(t)

)〉
0Y ∗

2m

(
Ωv(0)

)〉
, (12)

where:〈
Y2m

(
Ωu(t)

)〉
0 = 〈

Y2m

(
Ωu(t)

)〉
{Ωu0,Ωv0} =

∫
dΩuG̃(Ωu|Ωu0,Ωv0)Y2m(Ωu). (13)

Recall that the dynamics of the vectors is modelled by a two-step process with fast motions about a quasi-equilibrium vecto
and slow fluctuations of the latter about the true equilibrium. We defineΨu as the set of Euler angles that relate the lo
environment frame of the vectoru to the molecular reference frame. The position ofu with respect to the former frame
denoted by the Euler angles̃Ωu:

Y2m

(
Ωu(t)

) =
∑
k

Dmk

(
Ψu(t)

)
Y2k

(
Ω̃u(t)

)
. (14)

The motion of the vectoru about its quasi-equilibrium position is much faster than the motion of the local environment about t

average conformation, so that it may be assumed thatΨu is essentially constant during the timet ≈ τ
f
u � τ s

u during whichΩ̃u

fluctuates about its quasi-equilibrium value. At longer times,τ
f
u � t ≈ τ s

u , Ψu moves about its equilibrium value. Therefor
the transition probabilityP(Ωu, t |Ωu0,0) = P(Ψu; Ω̃u, t |Ψu0; Ω̃u0,0) may be factorized approximately as:

P(Ψu, Ω̃u, t |Ψu0, Ω̃u0,0) ≈ P(Ψu, t |Ψu0,0)PΨu
(Ω̃u, t |Ω̃u0,0). (15)

Note that in Eq. (15) the transition probability from̃Ωu(0) to Ω̃u(t) depends on the instantaneous orientationΨu(t) of the
environment. Therefore, the average〈Y2m(Ωu(t))〉 is:

〈
Y2m

(
Ωu(t)

)〉 = ∑
k

∫
dΨu0 dΨu dΩ̃u0 dΩ̃uDmk(Ψu)Y2k(Ω̃u)P (Ψu, t |Ψu0,0)PΨu

(Ω̃u, t |Ω̃u0,0)P (Ψu0; Ω̃u0). (16)

Assuming that the initial orientations are independent:

P(Ψu0, Ω̃u0) = P(Ψu0) P (Ω̃u0) (17)



L. Vugmeyster et al. / C. R. Physique 5 (2004) 377–386 381

ion model.

o

the average in Eq. (16) is:

〈
Y2m

(
Ωu(t)

)〉 = ∑
k

∫
dΨu0 dΨuDmk(Ψu)P (Ψu, t |Ψu0,0)P (Ψu0)

〈
Y2k

(
Ω̃u(t)

)〉
Ψu(t)

(18)

with: 〈
Y2k

(
Ω̃u(t)

)〉
Ψu(t)

=
∫

dΩ̃u dΩ̃u0Y2k(Ω̃u)PΨu
(Ω̃u, t |Ω̃u0,0)P (Ω̃u0). (19)

In order to obtain analytical results, one may assume that both processes can be described in terms of a strong collis
Thus, the transition probabilityPΨu

(Ω̃u, t |Ω̃u0,0) is given by:

PΨu(t)(Ω̃u, t |Ω̃u0,0) = P
eq
Ψu(t)

(Ω̃u) + (
δ(Ω̃u − Ω̃u0) − P

eq
Ψu(t)

(Ω̃u)
)
e−t/τ

f
u . (20)

Thus at short times, i.e., fort � τ s
u , one has approximately:

〈
Y2m

(
Ωu(t)

)〉 ≈ ∫ ∑
k

dΨu0Dmk

(
Ψu(0)

)
P(Ψu0)

[〈
Y2k

(
Ω̃u(0)

)〉
e−t/τ

f
u + 〈

Y2k

(
Ω̃u(t)

)〉eq
Ψu(0)

(
1− e−t/τ

f
u

)]
(21)

or: 〈
Y2m

(
Ωu(t)

)〉 ≈ ∑
k

〈
Dmk

(
Ψu(0)

)〉〈
Y2k

(
Ω̃u(0)

)〉
e−t/τ

f
u +

∑
k

〈
Dmk(Ψu(0))

〈
Y2k

(
Ω̃u(t)

)〉eq
Ψu(0)

〉(
1− e−t/τ

f
u

)
. (22)

Defining the quasi-equilibrium average value as:〈
Y2m

(
Ωu(t)

)〉q =
∑
k

〈
Dmk(Ψu(t))

〈
Y2k

(
Ω̃u(t)

)〉eq
Ψu(t)

〉
. (23)

For t � τ s
u one has:〈

Y2m

(
Ωu(t)

)〉q ≈ 〈
Dmk

(
Ψu(0)

)〈
Y2k

(
Ω̃u(t)

)〉eq
Ψu(0)

〉 = 〈
Y2m

(
Ωu(0)

)〉q (24)

which is approximately constant. Therefore:〈
Y2m

(
Ωu(t)

)〉 ≈ 〈
Y2m

(
Ωu(0)

)〉
e−t/τ

f
u + 〈

Y2m

(
Ωu(0)

)〉q(
1− e−t/τ

f
u

)
. (25)

The average〈Y2m(Ωu(t))〉 obeys the following differential equation:

d

dt

〈
Y2m

(
Ωu(t)

)〉 = − 1

τ
f
u

(〈
Y2m

(
Ωu(t)

)〉 − 〈
Y2m

(
Ωu(t)

)〉q)
. (26)

Similarly, for τ
f
u � t , the fast process has reached the quasi-equilibrium state〈Y2k(Ω̃u(t))〉eq

Ψu(t)
, so that one only needs t

consider the slow motions of the environment:〈
Y2m

(
Ωu(t)

)〉 = ∑
k

∫
dΨu0 dΨuDmk(Ψu(t))P (Ψu|Ψu0)P (Ψu0)

〈
Y2k

(
Ω̃u(t)

)〉eq
Ψu(t)

. (27)

If the slow fluctuations ofΨu(t) also obey a strong collision model, Eq. (18) takes the form:

〈
Y2m

(
Ωu(t)

)〉 = ∑
k

∫
dΨu0 dΨu

〈
Y2k(Ω̃u)

〉eq
Ψu(t)

Dmk(Ψu)P (Ψu0)
[
P eq(Ψu) + (

δ(Ψu − Ψu0) − P eq(Ψu)
)
e−t/τ s

u
]

(28)

which gives:

〈
Y2m

(
Ωu(t)

)〉 = ∑
k

∫
dΨu0 dΨuP eq(Ψu)Dmk(Ψu)P (Ψu0)

〈
Y2k

(
Ω̃u(t)

)〉eq
Ψu(t)

(
1− e−t/τ s

u
)

+
∑
k

∫
dΨu0 dΨuδ(Ψu − Ψu0)Dmk(Ψu)P (Ψu0)

〈
Y2k

(
Ω̃u(t)

)〉eq
Ψu(t)

e−t/τ s
u . (29)

Using the fact that at long times〈Y2m(Ωu(t))〉 ≈ 〈Y2m(Ωu(t))〉q , one finally gets:〈
Y2m

(
Ωu(t)

)〉q = 〈
Y2m

(
Ωu(t)

)〉eq(1− e−t/τ s
u
) + 〈

Y2m

(
Ωu(0)

)〉q e−t/τ s
u , (30)
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where 〈Y2m(Ωu)〉eq is the average value ofY2m(Ωu) in the true equilibrium. Thus〈Y2m(Ωu(t))〉q obeys the differentia
equation:

d

dt

〈
Y2m

(
Ωu(t)

)〉q = − 1

τ s
u

(〈
Y2m

(
Ωu(t)

)〉q − 〈
Y2m

(
Ωu(t)

)〉eq)
. (31)

Using Eqs. (12), (26) and (31) one obtains the following equations for the correlation functions:

dC int
uv (t)

dt
= − 1

τ
f
u

(
C int

uv (t) − C
int,q
uv (t)

)
(32)

dC
int,q
uv (t)

dt
= − 1

τ s
u

(
C

int,q
uv (t) − C

int,eq
uv

)
, (33)

whereC
int,q
uv (t) is the correlation function associated with the dynamics of the local environment, andC

int,eq
uv = S2

uv is the
cross-correlation order parameter.

C
int,q
uv (t) = 4π

5

∑
m

∑
kk′

〈
Dmk

(
Ψ s

u (t)
)
D∗

mk′
(
Ψ s

v (0)
)〉〈

Y2k(Ω̃u)
〉eq〈

Y ∗
2k′(Ω̃v)

〉eq
, (34)

S2
uv = 4π

5

∑
m

∑
kk′

〈
Dmk

(
Ψ s

u

)〉eq〈
D∗

mk′
(
Ψ s

v

)〉eq〈
Y2k(Ω̃u)

〉eq〈
Y ∗

2k′(Ω̃v)
〉eq

. (35)

The cross-correlation order parameter of Eq. (35) obeys the usual definition:

S2
uv = lim

t→∞
4π

5

∑
m

∑
kk′

〈
Dmk

(
Ψ s

u (t)
)
D∗

mk′
(
Ψ s

v (0)
)
Y2k

(
Ω̃u(t)

)
Y ∗

2k′
(
Ω̃v(0)

)〉
. (36)

Solving Eqs. (32), and (33), we obtain the final result for the cross-correlation function, Eq. (4), in the presence of glo
and slow internal dynamics:

Cuv(t) = 1

5
e−t/τc

{〈
P2

(
u(0) · v(0)

)〉
e−t/τ

f
u + (

C
int,q
uv (0) − S2

uv

) τ s
u

τ s
u − τ

f
u

(
e−t/τ s

u − e−t/τ
f
u

)
+ S2

uv

(
1− e−t/τ

f
u

)}
. (37)

We define an order parameterS
2(f )
uv for the fast motions as:

S
2(f )
uv =

∑
k

〈
Y2k(Ω̃u)

〉eq〈
Y ∗

2k′(Ω̃v)
〉eq

, (38)

where normalization of the Wigner functions
∑

m Dmk(Ψ
s)D∗

mk′ (Ψ s) = δkk′ has been used. The cross-correlation rates
can be observed in NMR are proportional to the spectral densitiesJuv(ω), which are defined as Fourier transforms ofCuv(t):

Juv(ω) = 2π

5

{
S2
uvτc

1+ ω2τ2
c

+ τ
f ′
u

1+ ω2(τ
f ′
u )2

[〈
P2

(
u(0) · v(0)

)〉 − S2
uv − (

C
int,q
uv (0) − S2

uv

) τ s
u

τ s
u − τ

f
u

]

+ τ s ′
u

1+ ω2(τ s ′
u )2

(
C

int,q
uv (0) − S2

uv

) τ s
u

τ s
u − τ

f
u

}
(39)

with (
τ
f ′
u

)−1 = (
τ
f
u

)−1 + (τc)
−1,

(
τ s ′
u

)−1 = (
τ s
u

)−1 + (τc)
−1. (40)

3. Autocorrelation spectral density

The expression for the order parameterS2
uu follows from Eq. (36) by replacing̃Ωv(0) by Ω̃u(0) andΨ s

u = Ψ s
v :

S2
uu = lim

t→∞
4π

5

∑
m

∑
′

〈
Dmk

(
Ψ s

u (t)
)
D∗

mk′
(
Ψ s

u (0)
)
Y2k

(
Ω̃u(t)

)
Y ∗

2k′
(
Ω̃u(0)

)〉
. (41)
kk
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In this case the initial value of the correlation function for the local environment is equal to the order parameter for
motions (see Eqs. (34) and (38)):(

S
f
uu

)2 ≡ C
int,q
uu (0) =

∑
k

〈
Y2k(Ω̃u)

〉eq〈
Y ∗

2k′(Ω̃u)
〉eq

. (42)

The autocorrelation spectral densityJuu(ω) in the presence of global, fast and slow internal motions is thus:

Juu(ω) = 2π

5

{
S2
uuτc

1+ ω2τ2
c

+ τ
f ′
u

1+ ω2(τ
f ′
u )2

[
1− S2

uu − (
S

2(f )
uu − S2

uu

) τ s
u

τ s
u − τ

f
u

]

+ τ s
u
′

1+ ω2(τ s ′
u )2

(
S

2(f )
uu − S2

uu

) τ s
u

τ s
u − τ

f
u

}
. (43)

Eq. (43) can be written in a form identical to the one obtained by Clore et al. [18]:

Juu(ω) = 2π

5

{
S2
uuτc

1+ ω2τ2
c

+ (1− (S̃
f
uu)2)τ

f
u

′

1+ ω2(τ
f ′
u )2

+ ((S̃
f
uu)

2 − S2
uu)τ s

u
′

1+ (ωτs
u
′)2

}
, (44)

where the extended Lipari–Szabo order parameter(S̃f )2 describing the fast dynamics of the vectoru (which we shall call

(S̃
f
uu)2 for consistency of notation) relates to our definitions in the following manner:(

S̃
f
uu

)2 = αS
2(f )
uu + (1− α)S2

uu; (45)

with:

α = τ s
u

τ s
u − τ

f
u

. (46)

Sinceα > 1 andS
f
uu > Suu, it follows thatS̃f

uu > S
f
uu. Thus, the approach of Clore et al. [18] gives a higher estimate of the

parameter corresponding to fast fluctuations than our theory. The cause of such a discrepancy is that Clore et al. consi
and fast motions as two independent processes. By contrast, Eq. (43) has been derived from a two-step model of the

As mentioned above, at short times on the order ofτ
f
u , the autocorrelation functionC int

uu(t) approaches a quasi-equilibriu

valueC
int,q
uu (t) for some instantaneous orientation of the local environment. Then, on a slower time-scale ofτ s

u , the function

C
int,q
uu (t) approaches its limitS2

uu. In the limit of very smallτf
u → 0, α → 1 and the order parameters for the fast motion

both the extended MF approach and the present theory become equal (S̃
f
uu → S

f
uu). This corresponds to the situation where f

motions are averaged at each time on the characteristic timescale of the slow motion evolution. The present theory

account the fact that at larger values ofτ
f
u this decoupling approximation breaks down. Note that the autocorrelation sp

density does not provide any information about slow dynamics ifτ s
u 
 τc. In this limit, according to Eq. (40),τ s

u
′ ≈ τc and

Eq. (44) reduces to

Juu(ω) = 2π

5

{
(S̃

f
uu)2τc

1+ ω2τ2
c

+ (1− (S̃
f
uu)2)τ

f
u

′

1+ ω2(τ
f
u

′
)2

}
. (47)

4. Limit of vanishing correlations

In the absence of correlations between the vectorsu andv we have, with the use of Eq. (6) and the addition theorem
spherical harmonics:〈

P2
(
u(0) · v(0)

)〉 = C
int,q
uv (0) = S2

uv, (48)

so that Eq. (39) reduces to

Juv(ω) = 2π

5

S2
uvτc

1+ ω2τ2
c

, (49)

independently on the relative magnitudes ofτc, τ
f
u andτ s

u .
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If the fast fluctuations are axially symmetrical with respect to the local environment, we haveY2m(Ω̃u) = Y20(Ω̃u)δm0, and,
therefore, only the componentsDm0(Ψ s

u ) = Y2m(Ψ s
u ) contribute to Eq. (36). SinceDm0 does not depend on the third Eul

angle, the latter could be set to zero and the first two Euler angles represent the solid angleΩs
u describing the orientation of th

bond vectoru with respect to the local axis of the slowly fluctuating environment.
Hence, for fast axially symmetric fluctuations the cross-correlated order parameter can be written, according to Eq. (36

S2
uv = S

f
uuS

f
vv

(
Ss
uv

)2
, (50)

where(Ss
uv)2 is given by

(
Ss
uv

)2 = 4π

5

∑
m

〈
Y2m

(
Ω̃s

u

)〉eq〈
Y ∗

2m

(
Ω̃s

v

)〉eq
. (51)

If the slow fluctuations of the local environment are also axially symmetric with respect to its equilibrium orientatio
can apply the Wigner transformation to Eq. (51) in the same manner as above, again using the addition theorem for
harmonics. This will result in:

S2
uv = S

f
uuS

f
vvSs

uuSs
vvP2

(
ueq · veq) (52)

and therefore

Juv(ω) = 2π

5

S
f
uuS

f
vvS

s
uuSs

vvP2(ueq · veq)τc

1+ ω2τ2
c

, (53)

whereueq andveq are unit vectors that define the average orientations. HereP2(ueq · veq) is a ‘structural factor’ which can b

determined from independent measurements, e.g., from X-ray [24] or from NMR [25], andS
f
uu, S

f
vv , Ss

uu andSs
uu describe the

dynamics on different time scales. Thus if the order parametersS
f
uu, Sf

vv have been determined from independent measurem
(e.g., from autocorrelation spectral densities), the measurement of cross-correlation rates provides information on
parameter of the slowly fluctuating environment, provided that there is no correlation between the vectors.

5. Cross-correlation spectral density for very slow motions of the local environment

For τ s
u 
 τc Eq. (37) reduces to:

Cuv(t) = 1

5
e−t/τc

{
e−t/τ

f
u

[〈
P2

(
u(0) · v(0)

)〉 − C
int,q
uv (0)

] + C
int,q
uv (0)

}
. (54)

The first term in Eq. (54) describes the decay of correlations between the vectorsu andv due to fast fluctuations fort ≈ τ
f
u . At

t 
 τ
f
u the correlation between the vectors is proportional toC

int,q
uv (0), and the decay ofCuv(t) is due to the global motion o

the molecule. The spectral density corresponding to Eq. (54) is equal to

Juv(ω) = 2π

5

{[〈
P2

(
u(0) · v(0)

)〉 − C
int,q
uv (0)

] τ
f
u

′

1+ ω2(τ
f
u

′
)2

+ C
int,q
uv (0)τc

1+ ω2τ2
c

}
, (55)

which for τf
u � τc reduces to

Juv(ω) = 2π

5

C
int,q
uv (0)τc

1+ ω2τ2
c

. (56)

In this regime the spectral density depends on the quasi-static distribution of local orientations and on their correlatio

by C
int,q
uv (0). This can easily be shown for the case of axially symmetric fast fluctuations for which

C
int,q
uv (0) = S

f
uuS

f
vv

〈
P2

(
uq · vq

)〉
, (57)

whereuq , vq are the unit vectors indicating the quasi-equilibrium orientations of the vectorsu andv. Defineθuv as the angle
betweenuq andvq . Then, in the “rigid fragment” limit, i.e., whenθuv is time-independent, one has〈P2(θuv)〉 = P2(〈θuv〉), so
that the corresponding spectral density can be written as:

J
rigid
uv (ω) = 2π

5

S
f
uuS

f
vvP2(cos〈θuv〉)τc

1+ ω2τ2
. (58)
c
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Eq. (58) can be compared with Eq. (53), which is valid in the absenceof correlations. A remarkable feature of the spectral den
in these two distinct regimes is the proportionality ofJuv(ω) to eitherP2(cos〈θuv〉) for rigid fragments or toP2(ueq · veq) in
the absence of correlations. Neither of these proportionalities will however survive in the case of partial correlations. Note
in general the average angle between two vectors given by〈θuv〉 is not equal to the angle between the average positions o
two vectorsueq andveq.

Consider, by way of illustration, the thermal probability distributionG(uq ,vq ) in the form

G
(
uq ,vq

) ∝ exp{−U/kT } (59)

with the energyU given by:

U = Uu

[
1− P2

(
uq · ueq)] + Uv

[
1− P2

(
vq · veq)] + Uuv

[
1− P2

(
cos(θuv − θ0)

)]
. (60)

Here the first and the second terms are responsible for the alignment ofuq andvq along their average directionsueq andveq.
The last term represents the coupling potential which induces correlations betweenuq and vq . It tends to restore the ang
betweenuq andvq to a fixed valueθ0, regardless of the directions ofueq andveq. Therefore, the various terms in Eq. (60) gi
rise to a complicated dependence ofJuv(ω) on θuv , which in general cannot be related to〈θuv〉 in a simple manner.

The limit of vanishing correlations arises if the last term in Eq. (60) is neglected. In this case,Juv(ω) is proportional to
P2(ueq·veq). On the other hand, recall that in the rigid fragment limit,Juv(ω) is proportional to〈P2(uq ·vq)〉 = 〈P2(cosθuv)〉 =
P2(cos〈θuv〉). It is apparent that these simple relationships are lost if all three terms in Eq. (60) are taken into acco
illustrate this point we consider the special case whereUuv 
 Uu,Uv , near the regime of rigid fluctuations, whereθ0 equals
〈θuv〉. The distribution functionG simplifies toG(θuv) ∝ exp{−U [1− P2(cos(θuv − 〈θuv〉))]/kT }. Thus, we have〈

P2
(
uq(0) · vq(0)

)〉 ≡ 〈
P2(cosθuv)

〉 = ∫
1

2

(
3cos2 θuv − 1

)
G(θuv)dθuv. (61)

If the two vectors are rigidly held with respect to each other, i.e., if the slow motions are totally correlated:

G(θuv) = δ
(
θuv − 〈θuv〉), (62)

whereδ(θuv −〈θuv〉) is a Dirac delta function. For small fluctuations near〈θuv〉, G(θuv) is a symmetrical function with respe
to 〈θuv〉, which gives:〈

P2(cosθuv)
〉 = (

2
〈
cos2

(
θuv − 〈θuv〉)〉 − 1

)
P2

(
cos〈θuv〉) + 1

2

(
1− 〈

cos2
(
θuv − 〈θuv〉)〉). (63)

This illustrates the fact that, even in a simple case,〈P2(cosθuv)〉 is not proportional toP2(cos〈θuv〉).
A more quantitative comparison of NMR cross-correlated relaxation rates with the functionJuv(ω) requires specific

microscopic models. However, if slow fluctuations can be assumed to be axially symmetric, the deviations of the
density for a given pair of vectorsu andv from proportionalities toP2(cos〈θuv〉) or P2(ueq · veq) may be ascribed to partia
correlation of bond vector dynamics.

6. Conclusion

We have proposed a framework for the analysis of the dynamics of macromolecules in the presence of internal mot
occur on two different time scales and global isotropic tumbling. The internal dynamics were introduced as a two-step
with fast motions with respect to a quasi-equilibirum conformation of a local environment and slow fluctuations of th
The autocorrelated spectral density is compared to that given by a well-known extension of the model-free treatment by C
et al. [18]. In the present work, it is found that the order parameter of the extended model-free approach, as defined by C
et al., is overestimated. We have analyzedthe cross-correlated spectral densities under the assumption of independence of th
fast time scale fluctuations. Moreover, slow internal motions on a timescale longer than overall tumbling have no effec
on the autocorrelated spectral density (as expected) nor on the cross-correlated spectral density in the rigid fragm
Hence, slow motions on a timescale that is slower than overall tumbling can be observed in NMR cross-correlated r
experiments only if it is partially or totally uncorrelated. This work may provide a way to extract information about slow m
from experimental NMR data.
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