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Abstract

This paper presents a new theoretical approach for the description of quasiadiabatic evolution of thermodynamic ob
The new method extends the projection operator technique by considering time-dependent projectors. A master e
derived in the limit of a slow or adiabatic evolution and is applied to calculate the rate of saturation of dipolar order in a
rotating sample.To cite this article: T. Charpentier et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Saturation dans la limite quasiadiabatique : une approche par un formalisme de projecteurs dépendant du temps.
Nous présentons une nouvelle approche théorique pour décrire l’évolution quasiadiabatique de grandeurs thermody
Cette nouvelle méthode est basée sur la technique des opérateurs de projection mais en considérant des opérateur
du temps. Une équation pilote est établie dans la limite adiabatique. Nous appliquons notre formalisme pour calculer
saturation de l’ordre dipolaire en présence de rotation lente de l’échantillon.Pour citer cet article : T. Charpentier et al., C. R.
Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The thermodynamical spin temperature concept is the framework of a general theory of nuclear magnetism in soli
has been extensively studied in the past [1,2]. Numerous theoretical and experimental studies of the evolution of dipo
under the influence of various external or internal interactions have been carried out. Of particular interest in connec
the present work are studies of the influence of a slow rotation of the sample on the dipolar order [3–5] in high m
field. It was first experimentally observed in [3] that the dipolar order lifetime is shortened by sample rotation accord
phenomenological expression of the form 1/T1D = a + bν2

rot. From a mathematical point of view, as the samples rotates
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dipolar Hamiltonian no longer commutes with itself at different times. Physically, this leads to the saturation of dipola
because spins are incapable of following the motion and undergo specific (two-particle) lagging out of phase. In [4], t
phenomenon was analyzed experimentally but during spin-locking.

Theoretically, to deal with the problem of a slowly (adiabatically) varying Hamiltonian, a formalism has been de
in [5] and the square dependence of the saturation upon the rotation speed was established. Here, we propose a new
general theory based on an extension of the Nakajima–Zwanzig projection technique [6,7].

2. The time-dependent projection techniques

The general purpose of the projection operator technique [2] is to decouple a set of configurations of the spin
described by a set of observables of interest, here denotedAi . The other degrees of freedom are treated as a bat
configurations to which the coupling induces a saturation if coherent motion is considered or a relaxation in the
incoherent motion. Of great importance is the choice of theAi operators from which depends the accuracy and the phy
relevance of the derived equations. The spin temperature theory [1] is of greatest help in making the correct (relevant)
theAi operators which define a projection super-operatorπ̂ as

π̂(t) =
∑
i

|Ai(t)〉〈Ai(t)|
〈Ai(t)|Ai(t)〉 , 〈Ai |Aj 〉 = 〈A+

i
Aj 〉 = Tr{A+

i
Aj }/Tr{1} ∝ δij . (1)

The projection super-operatorˆ̄π(t) = 1− π̂(t) is also introduced. For the sake of simplicity and without loss of generality
we will assume that theAi are independent observables, i.e., they commute[Ai(t),Aj (t)] = 0 at any time, and the Hamiltonia
of system can be expanded asH(t) = ∑

i αiAi(t). These assumptions hold for most of cases encountered in solid-state
experiments.

Let |ρ(t)〉 be the spin density operator of the system under consideration. It obeys the Liouville–Von Neumann equation

d

dt

∣∣ρ(t)
〉 = −i

∣∣[H(t),ρ(t)
]〉 = −iL̂(t)

∣∣ρ(t)
〉
, (2)

whereL̂ is the time-dependent Liouville super-operator. Similarly to the time-independent case, one can check that

π̂(t)L̂(t) = L̂(t)π̂(t) = 0, and ˆ̄π(t)L̂(t) = L̂(t) ˆ̄π(t) = L̂(t). (3)

Multiplying Eq. (2) on the left byπ̂(t) and ˆ̄π(t), and applying Eqs. (3) leads to

π̂(t)
d

dt

∣∣ρ(t)
〉 = −iπ̂ (t)L̂(t)

∣∣ρ(t)
〉 = 0, (4)

ˆ̄π(t)
d

dt

∣∣ρ(t)
〉 = −i ˆ̄π(t)L̂(t)

(
π̂(t) + ˆ̄π(t)

)∣∣ρ(t)
〉 = −iL̂(t) ˆ̄π(t)

∣∣ρ(t)
〉
. (5)

We introduce the super-operators˙̂π(t) = dπ̂ (t)/dt , and ˙̄̂
π(t) = − ˙̂π(t) in order to evaluate the time derivative of th

‘diagonal’ and‘off-diagonal’ parts of the density operator (π̂ |ρ〉 and ˆ̄π |ρ〉, respectively) as follows

d

dt

(
π̂ |ρ〉) = ˙̂π |ρ〉 + π̂

d

dt
|ρ〉 = ˙̂ππ̂ |ρ〉 + ˙̂π ˆ̄π |ρ〉, (6)

d

dt

( ˆ̄π |ρ〉) = ˙̄̂
π |ρ〉 + ˆ̄π d

dt
|ρ〉 = ˙̄̂

π
(
π̂ + ˆ̄π)|ρ〉 − iL̂ ˆ̄π |ρ〉 = − ˙̄̂

ππ̂ |ρ〉 − i
(
L̂− i ˙̂π) ˆ̄π |ρ〉. (7)

Eq. (7) can be formally integrated to

ˆ̄π(t)
∣∣ρ(t)

〉 = Ŝ(t,0) ˆ̄π(0)
∣∣ρ(0)

〉 − t∫
0

Ŝ(t, τ ) ˙̂π(τ)π̂(τ)
∣∣ρ(τ)

〉
dτ, (8)

where

Ŝ(t, τ ) = T̂ exp

{
−i

t∫ (
L̂(u) − i ˙̂π(u)

)
du

}
. (9)
τ
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Assuming that, at timet = 0, ρ is ‘diagonal’ (i.e., ˆ̄π(0)|ρ(0)〉 = 0), and inserting Eq. (8) in Eq. (6), we arrive at the mas
equation

d

dt

(
π̂(t)

∣∣ρ(t)
〉) = ˙̂π(t)π̂(t)

∣∣ρ(t)
〉 − ˙̂π(t)

t∫
0

Ŝ(t, τ ) ˙̂π(τ)π̂(τ)
∣∣ρ(τ)

〉
dτ. (10)

The use of the relation̂̇ππ̂ = − ˆ̄π ˙̄̂
π shows that when multiplying on the left Eq. (10) by〈Ai(t)|, the first term of the right-

hand side cancels. Consequently, this term does not play any role in the evolution of the‘diagonal’ part of the density operato
We shall therefore prefer the following final form of the master equation (making use ofπ̂ ˙̂ππ̂ = 0)

π̂(t)
d

dt

(
π̂ (t)

∣∣ρ(t)
〉) = −π̂ (t) ˙̂π(t)

t∫
0

Ŝ(t, τ ) ˙̂π(τ)π̂(τ)
∣∣ρ(τ)

〉
dτ. (11)

This form is very similar to the time-independent form but with a modified super-propagator and having˙̂π playing the role
of the perturbation, as expected.

3. Evolution of the dipolar spin temperature

We apply now our formalism to calculate the rate of saturation of the dipolar order in a slowly rotating sample at s
ωrot = 2πνrot. The observable of interest is the secular part of the dipolar Hamiltonian, denotedHD(t), as the Zeeman order
not affected by this motion ([IZ,HD(t)] = 0). Consequently, the projection super-operator is

π̂(t) = |1〉〈1|
〈1|1〉 + |HD(t)〉〈HD(t)|

〈HD(t)|HD(t)〉 , (12)

and, as a result, the‘diagonal’ part of the density operator

π̂(t)
∣∣ρ(t)

〉 = |1〉 − βD(t)
∣∣HD(t)

〉
, (13)

whereβD(t) is the dipolar (inverse) spin temperature. The purpose of the present section is to obtain the master eq
βD(t). Starting from Eq. (11), multiplying the left-hand side term by〈HD(t)| gives〈

HD(t)
∣∣ d

dt

(
βD(t)

∣∣HD(t)
〉) = β̇D(t)

〈
HD(t)2

〉 + βD(t)

2

d

dt

〈
HD(t)2

〉
. (14)

Introducing|D〉 = ˙̂π |HD〉,

|D〉 = ˙̂π |HD〉 = |ḢD〉 − 〈HD |ḢD〉
〈HD

2〉 |HD〉, (15)

we obtain

d

dt
βD = βD(t)

2

d

dt

〈
HD(t)2

〉 − t∫
0

M(t, τ)βD(τ)dτ, (16)

where the memory functionM(t, τ) is defined as

M(t, τ) = 1

〈HD(t)2〉
〈
D(t)

∣∣Ŝ(t, τ )
∣∣D(τ)

〉
dτ. (17)

It can be easily checked from Eq. (15) that|D(t)〉 is orthogonal to|HD(t)〉 (i.e., 〈D(t)|HD(t)〉 = 0). Furthermore, one
recognizes the first term of the right-hand side of Eq. (16) as being the adiabatic contribution to the evolution of the dip
temperature. It is therefore useful to introduce a new slow varying spin temperatureβ̃D defined as

βD(t) =
{

HD(0)2

HD(t)2

}1/2
β̃D(t), (18)

which evolves as

d

dt
β̃D = −

t∫
M̃(t, t − τ)β̃D(t − τ)dτ, (19)
0
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where the memory function, within thisadiabatic frame, is

M̃(t, t − τ) = 〈D(t)|Ŝ(t, t − τ)|D(t − τ)〉√
〈HD(t)2〉〈HD(t − τ)2〉

. (20)

Eqs. (19) and (20) are exact and can be applied to any kind of motion of the sample. Simplifications are introduc
next section.

4. Formal calculation of the saturation rate

Considering the nature of the spin system under consideration, some approximations can be made which sim
previous equations into a tractable form. First, we assume that the rotation is sufficiently slow so that the contrib
the term i̇̂π(u) in Eq. (9) can be fully neglected with respect toL̂(u). Secondly, as a function ofτ , M̃(t, t − τ) decreases in
a time which is of the same order of magnitude asT2. This time is much shorter than the period of rotation so that we
neglect the variations of̂L(u) in Eq. (9), as well as differences betweenHD(t) andHD(t − τ), and betweenD(t) andD(t − τ).
Accordingly, for short timeτ (� T2), Eq. (20) can be simplified into

M̃(t, t − τ) = 1

〈HD(t)2〉
〈
D(t)

∣∣exp
{−iL̂(t)τ

}∣∣D(t)
〉
. (21)

As we consider timet much longer thanT2, the upper limit of integration of Eq. (19) can be extended to∞ giving

d

dt
β̃D = −W(t)β̃D(t), (22)

where the saturation rateW(t) is

W(t) = 1

〈HD(t)2〉

∞∫
0

〈
D(t)

∣∣exp
{−iL̂(t)τ

}∣∣D(t)
〉
dτ. (23)

At this stage, we introduce the autocorrelation functionf (t, τ )

f (t, τ ) = 1

〈D(t)2〉
〈
D(t)

∣∣exp
{−iL̂(t)τ

}∣∣D(t)
〉
. (24)

A natural time scale for the dependence off (t, τ ) on the timeτ can be defined by an instantaneous second momentm(t)

m(t) = 〈[D(t),HD(t)][HD(t),D(t)]〉
〈D(t)2〉 . (25)

Usingf (t, τ ) (Eq. (24)) andm(t) (Eq. (25)), the saturation rate (Eq. (23)) can be transformed into

W(t) = A(t)√
m(t)

〈D(t)2〉
〈HD(t)2〉 (26)

whereA(t) is a dimensionless quantity

A(t) =
∞∫

0

f

(
t,

τ√
m(t)

)
dτ. (27)

One can see clearly the advantages of Eq. (26) in the evaluation of the saturation rate: calculation ofm(t), 〈D(t)2〉 and
〈HD(t)2〉 implies lattice sums over groups of three spins; only the evaluation ofA(t), which is dimensionless and of the ord
of unity, requires some assumptions for modellingf (t, τ ). As an example, using a Gaussian model

f (t, τ ) = exp

(
−m(t)τ2

2

)
, (28)

a time-independent value ofA(t) is obtained:A(t) = √
π/2. In order of magnitudem(t) ∼ M2 = 3ω2

loc (M2 is the second

moment of the static spectrum andωloc is the local frequency) and〈D(t)2〉 ∝ ω2
rot〈HD(t)2〉, the order of magnitude of th

saturation rate is

W(t) ∝ ω2
rot

ω
(29)
loc
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in agreement with previous approaches [3–5]. Moreover, after some straightforward calculations (see 6), it turns
our expression of the saturation rate Eq. (26) is identical to Eqs.(31) and (32) of [5]. If both approaches rely on t
approximations (the system can be characterized by a single (dipolar) spin temperature andωrot ·T2 � 1), the formalisms differ
completely. The present one is a natural extension of the Nakijima–Zwanzig [6,7] (time-independent) projection o
techniques, widely applied in nonequilibrium statistical mechanics.

5. Application to a powder sample of adamantane

5.1. Experimental results

Experiments have been performed on a Bruker Avance 300 NMR spectrometer using a commercial Bruker MAS 4
probe and a powder sample of adamantane rotating at the magic angle. Jeener–Broekaert sequence [8] has been
measurements of the dipolar spin temperature at different spinning speeds. Results of the experiments are shown in
seen that each saturation curve can be well fitted using a single exponential decay. As shown in Fig. 1 (bottom), variat
saturation rate upon the spinning speed is in good agreement with Eq. (29).

5.2. Calculation of the saturation rate

From Eqs. (18) and (22), the evolution of dipolar spin temperature is given by

βD(t) = βD(0)

( 〈HD(0)2〉
〈HD(t)2〉

)1/2
exp

{
−

t∫
0

W(u)du

}
. (30)

For a powder sample, Eq. (30) must be averaged over all orientations. This averaging is denoted as〈·〉pc in the remainder
of the text. Using the Gaussian approximation (Eqs. (27) and (28)), and considering the Jeener–Broekaert sequen

Fig. 1. Top: Variation of the dipolar spin temperatureβD(t) in a rotating adamantane powder sample at the magic angle. Solid lines rep
the fits of the experimental data using single exponential decays exp(−Wt). Bottom: variation of the saturation rateW with respect toνrot. In
the non-rotating sample,T1D = 0.48 s andA = 0.00882 s.
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28)) and
preparing the dipolar order, Eq. (30) has been evaluated numerically for adamantane sample rotating at 200 Hz (ca
will be detailed elsewhere). The resulting curve〈βD(t)〉pc (data not shown)

〈
βD(t)

〉
pc =

〈
βD(0)

( 〈HD(0)2〉
〈HD(t)2〉

)1/2
exp

{
−

t∫
0

W(τ)dτ

}〉
pc

, (31)

can be fitted very accurately by a single exponential decay with a saturation rateWnum= 216 Hz. Thus, we expect that Eq. (3
can be approximated as〈

βD(t)
〉
pc ≈

〈
βD(0)

( 〈HD(0)2〉
〈HD(t)2〉

)1/2〉
pc

exp
{−〈W 〉pct

}
. (32)

Using this approximation〈W 〉pc is time-independent and a numerical calculation gives〈W 〉pc = 218 Hz, very close to
Wnum. Experimental value isWexp= 337 Hz, in satisfactory agreement with our calculations, considering the simple mod
the autocorrelation functionf (t, τ ) (Eq. (24)). A more sophisticated model will be presented elsewhere.

6. Conclusion

A new theoretical approach has been proposed for the description of quasiadiabatical saturation phenomena. The
rigorous and general and reproduce the results of Jeener et al. [5] using a quite different mathematical formalism. We
the present method can be applied to many other problems.
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Appendix

The aim of this appendix is to show that Eqs. (22)–(24) give the same result as Eqs. 27J and 28J. Here and below th
in the equation number indicates, that the equation is takenfrom [5]. The dimensionless observable of interestĤ(t), as defined
in Eq.7J, can be connected toHD(t) through

Ĥ(t) = HD(t)

〈HD(t)2〉1/2
, (33)

giving

d

dt
Ĥ(t) = D(t)

〈HD(t)2〉1/2
. (34)

It is evident from Eqs. 27J and 28J that the functionC(t − t1) is C(t0, t − t1), because of its dependence upont0. Within
the expected range of applicability of these equations we should chooset0 = t in C(t0, t − t1) and inĤ(t0) on right-hand side
of Eq. 27J. Now we see thatC(t, t − t1) coincides with ourf (t, t − t1) (Eq. (24)), and with these corrections Eqs. 27J and
coincides with our Eqs. (22)–(24). Of course, the results coincide after introducing of Gaussian approximation (Eq. (
(Eq. 31J) forf (t, t − t1) = C(t, t − t1).
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