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Abstract

The use of multiple bases moving with respect to each other in quantum dynamics is discussed. This procedure is forma
equivalent to the use of interaction pictures, but it leads to an intuitively simpler interpretation of the calculations.
analogy is shown between the rotating frames of classical NMR theory and the use of moving (rotating) base
corresponding quantum presentation, for the traditional basic NMR experiment and for two problems involving Berry’s phase
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Résumé

Bases mobiles comme alternative aux « représentations d’interaction ». L’usage de bases multiples, mobiles les u
par rapport aux autres, est discuté en dynamique quantique. Cette technique est formellement équivalente à celle des im
d’interactions, mais elle mène à des interpretations intuitives plus simples des calculs. Une forte analogie est montré
référentiels tournants de la théorie classique de la RMN et l’usage de bases mobiles (tournantes) dans la présentation
correspondante, pour l’expérience de basetraditionnelle de la RMN et dans deux problèmes impliquant la phase de Berry.Pour
citer cet article : J. Jeener, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Since its first experimental observations, in molecular beam experiments as well as in more condensed matter
Magnetic Resonance (NMR) appeared as distinctly different from most other types of spectroscopy because the use
coherent irradiation in the spectrometers, combined with long relaxation times, requires an interpretation of the expe
results in terms of explicit spin dynamics (usually quantum dynamics), in contrast to the notion of transition probability which is
appropriate for most other standard spectroscopic techniques [1]. Fortunately, the usual difficulty in using intuition and
sense as guides in quantum dynamics is strongly alleviated by the complete analogy between the classical and quant
of isolated spins in the presence of classical magnetic fields: the classical motion is easily visualized and calculated b
of rotating frames of coordinates, and ‘interaction pictures’ offer a similar simplification of the quantum calculation.

In the classical procedure, the state of the spins is always described by the same time dependent magnetization ve
distribution function) whatever the frame of coordinates used in the discussion, and the same holds true for all other
vectors like applied magnetic fields. When seen from a suitable frame rotating at the spectrometer reference frequency
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notions of coherent spectroscopy like the phase of a resonant excitation and the ‘rotating frame components’ of
magnetization (as measured by the acquisition electronics) have a very simple geometrical meaning. Of course, t
of time derivative of a vector (or distribution function) depends upon the frame of coordinates used, and this offers the w
possibility to simplify and clarify the equations of motion for the state of the spins by a suitable choice of moving frame

Usually, a similar simplification is obtained inquantum mechanical calculations by the use of ‘interaction pictures’, bu
none of the standard quantum mechanical procedures (Schrödinger, Heisenberg or interaction pictures, active or pa
point) offers the same simple intuitive appeal as the classical moving frame scheme. For instance, going from the Sc
picture to an interaction picture implies a transformation of the ket or density operator which describes the spins, the
between laboratory frame and rotating frame components of the magnetization is far from transparent,. . . . These inconvenience
originate in the tacit choice of standard quantum mechanics to define time derivatives of quantum objects always wit
to the basis (in ket space) in which a problem is originally formulated. As a result, this basis appears as intrinsically im
However, absolute immobility is not a valid concept in quantum theory any more than in classical theory. All this m
tempting to try and formulate a presentation of quantum dynamics in which reference bases moving with respect to e
can be used at will, while keeping the same abstract quantum objects to describe the spin system and the observa
This does not imply any change in the basic principles of quantum mechanics, but requires some additional care in wo
notation. For instance, it is more important than ever to make an explicit distinction between the notions of date and
(i.e., time interval or delay) which are traditionally called ‘time’ and denoted by the same symbolt . In the present paper, th
notationt is used exclusively for dates, and durations are denotedτ (with the exception of dt and differences of dates). Th
notion of immobility (i.e.,‘not depending upon the date’) of a quantum object is not intrinsic any more but is relative to a bas
which must be specified. The same holds true for any comparison of a quantum object taken at different dates, as oc
evaluation of time derivatives.

In the present paper, I begin with a brief presentation of such a ‘multiple moving bases’ scheme for quantum dynami
suitable for standard NMR theory, hence limited to non-relativistic problems and state spaces of finite dimension. No
is made here towards more generality. At the end, I show that this scheme provides the same intuitive convenience at
of the discussion as the rotating frames of classical NMR theory, for dealing with the motion of a free spin under th
of a classical magnetic field. Section 5 deals with the traditional basic NMR experiment (constant magnetic field wit
resonantrf irradiation) and Section 6 deals with problems involving Berry’s phase (first a spin interacting with a magnet
of constant intensity and slowly changing orientation, finally a more general case). These two last sections also sho
deal with some of the practical problems that arise when using moving bases.

2. Bases and representations

2.1. Single date

The only deviation from the traditional notation needed here is that all quantum objects (kets, bras, operators) carry
This will be illustrated by a brief recall of some basic elements of quantum engineering. A basisb in ket space is a collectio
of kets{|bj (t)〉} which, at every datet , satisfies the orthonormality condition〈

bj (t)|bk(t)
〉 = δj,k (1)

and the closure relation∑
j

∣∣bj (t)
〉〈
bj (t)

∣∣ = 1op, (2)

where 1op denotes the unit or identity operator (note that this operator is defined for the state space, without reference to
specific basis or date). Using Eq. (2), any ket|ψ(t)〉, and any operatorA(t) involving a single date, can be ‘represented’
terms of this basis as

∣∣ψ(t)
〉 = 1op

∣∣ψ(t)
〉 = ∑

j

∣∣bj (t)
〉〈
bj (t)|ψ(t)

〉
, and

A(t) = 1opA(t)1op =
∑
j,k

∣∣bk(t)
〉〈
bj (t)

∣∣〈bk(t)|A(t)|bj (t)
〉
, (3)

where the date dependent complex numbers〈bj (t)|ψ(t)〉 and〈bk(t)|A(t)|bj (t)〉 can be evaluated with the aid of any suitab
basis.
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If a second basis is involved, denoted{|cj (t)〉}, the relation between the two bases at any datet is described by the single-da
unitary operatorW[c,b](t), where the relevant bases are indicated by subscripts between square brackets,

W[c,b](t) =
∑
j

∣∣cj (t)
〉〈
bj (t)

∣∣, (4)

such that|ck(t)〉 = W[c,b](t)|bk(t)〉. This operator has the expected properties(
W[c,b](t)

)† = (
W[c,b](t)

)−1 = W[b,c](t) and W[b,b](t) = 1op. (5)

If more than two bases are involved, Eq. (4) implies that

W[d,c](t)W[c,b](t) = W[d,b](t). (6)

Whenever a single date is involved, the scalar product of two kets,|α(t)〉 and|β(t)〉 is easily evaluated using any basis{|ai (t)〉}
in terms of which the kets are known,〈

α(t)|β(t)
〉 = 〈

α(t)|1op|β(t)
〉 = ∑

j

〈
α(t)|aj (t)

〉〈
aj (t)|β(t)

〉
, (7)

and the result is independent of the basis chosen. The same traditional technique applies for the evaluation of〈α(t)|A(t)|β(t)〉
and Tr{A(t)} for any operatorA(t) involving a single date. A linear combination of two kets defined at the same date also
to a well defined object, independent of any choice of basis.

2.2. Multiple dates

Having dropped the convenient (but misleading) fiction that one basis is immobile, we cannot any longer use this p
basis as a device to “transport a quantum object from one date to another date while keeping the object constant”. O
this creates a problem if one undertakes to define a linear combination or a scalar product involving kets defined at
dates. I propose to consider that such operations are meaningless, and to solve the problems which seem to arise by
that changing the date is an important quantum operation in itself, which is easy to incorporate in standard quantum en
When this is done, the typography of the equations becomes much more transparent and systematic as far as date
are concerned.

First, I introduce a tool which replaces the standard fiction of immobility of the reference basis. A ket|ψ(t)〉 will be
calledimmobile with respect to basis b if all its projections on this basis are independent of the datet , i.e., 〈bj (t0)|ψ(t0)〉 =
〈bj (t1)|ψ(t1)〉 for anyj , hence∣∣ψ(t1)

〉 = ∑
j

∣∣bj (t1)
〉〈
bj (t1)|ψ(t1)

〉 = ∑
j

∣∣bj (t1)
〉〈
bj (t0)|ψ(t0)

〉 = U[b](t1, t0)
∣∣ψ(t0)

〉
, (8)

where the unitary date displacement operator associated with basisb,

U[b](t1, t0) =
∑
j

∣∣bj (t1)
〉〈
bj (t0)

∣∣, (9)

has all the usual properties of evolution operators, including the group property for connected date pairs

U[b](t2, t0) = U[b](t2, t1)U[b](t1, t0) (10)

and the relations

U[b](t, t) = 1op and
(
U[b](t1, t0)

)† = (
U[b](t1, t0)

)−1 = U[b](t0, t1). (11)

The same discussion that led to Eq. (8) is easily extended to show that, if the single date operatorA(t) is immobile in basisb,
then all its matrix elements in that basis are date independent, hence

A(t1) = Ub(t1, t0)A(t0)Ub(t0, t1). (12)

A simple example is that basis kets and bras are immobile as seen from their own basis, hence Eqs. (8), (9) and (1∣∣cj (t1)
〉 = U[c](t1, t0)

∣∣cj (t0)
〉

and
〈
bj (t1)

∣∣ = 〈
bj (t0)

∣∣U[b](t0, t1). (13)

These relations can be inserted in Eq. (4) to derive the useful transformation rules

U[c](t1, t0) = W[c,b](t1)U[b](t1, t0)W[b,c](t0), W[c,b](t1) = U[c](t1, t0)W[c,b](t0)U[b](t0, t1). (14)
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Consider now the particular case of a basisf which is immobile with respect to basisg, hence|gj (t1)〉 = U[f ](t1, t0)|gj (t0)〉.
Combining this with the definition (9) ofU[f ](t1, t0) and the closure relation for basisg, one obtainsU[f ](t1, t0) = U[g](t1, t0).
Bases which are immobile with respect to one another have exactly the same characteristic evolution operator. T
immediately toW[f,g](t1) = U[f ](t1, t0)W[f,g](t0)U[f ](t0, t1), theW operator relating two bases immobile with respec
each other is also immobile in these bases (see Eq. (12)).

As mentioned already at the beginning of the present section, dropping the fiction of an immobile reference basis
obvious that, in many cases, comparisons or combinations of quantum objects are meaningful only if certain rules ar
by the dates at which the objects are defined. For example, two kets can be equal or enter a linear combination only
both defined at the same date, the same holds for the scalar product〈α(t)|β(t)〉 of the kets|α(t)〉 and|β(t)〉, but a construction
like |cj (t1)〉〈cj (t0)| is perfectly legitimate although it involves two different dates. All these rules concerning dates ca
summarized in a simple way by first associatingdate tags with the various quantum objects in the following way: kets ca
their date tag on the left and none on the right, bras carry their date tag on the right and none on the left, single date
like A(t) carry their date tagt on both sides (operators like 1op, that do not change with the date, behave in the same wa
their date tag can be chosen freely), date changing operators likeU[b](t1, t0) carry a date tagt1 on the left and a date tagt0 on
the right (as indicated by the typography), andc-number quantities (which always commute with any quantum object and
be date dependent) carry no date tag and behave as transparent as far as date tags are concerned. Note that the ndate
tag introduced in this way is quite different from the ordinary notion of date. With date tags attached, the rules are tha
multiplicative contact in the typography, the date tags mustbe the same on either side, or be absent on either side (c-numbers
are ignored in the discussion), (ii) two quantum objects can be equal or be combined linearly only if both carry the sa
tag (or no date tag) on the right and also the same date tag (or no date tag) on the left, possibly with different situation
and left. It is easy to check that the various equations in this paper manifestly follow these rules. In the standard prese
quantum dynamics, the equations can also be rewritten to comply manifestly with the date tag rules by using Eq. (11), and
inserting trivial date displacement operators for the ‘immobile’ reference basis.

3. Time derivatives as seen from different bases

The definition of the time derivative of a vector in classical mechanics requires the specification of the frame of refe
which the derivative is evaluated. For analog reasons, the time derivative of a quantum object must be defined with
to a quantum mechanical basis. Two equivalent such definitions will now be presented, one in which the time deriv
the quantum object is expressed in terms of time derivatives of its representation in the reference basis (i.e., scalar p
matrix elements which arec-numbers, hence bear no date tag and behave as ordinary functions of the date), and anoth
which date tag incompatibilities are resolved by using the characteristic evolution operator of the reference basis.

As a first example, the time derivative of a ket|α(t)〉 with respect to the basis{|bi (t)〉} can be seen in two ways: (i) thej -th
component〈bj (t)|(∂|α(t)〉/∂t)[b] of the derivative in basisb is the time derivative∂〈bj (t)|α(t)〉/∂t of thej -th component of
|α(t)〉 in basisb, hence one has, after multiplication of the two expressions above by|bj (t)〉 on the left, summation over allj ,
and use of the closure relation (2)∑

j

∣∣bj (t)
〉〈
bj (t)

∣∣( ∂|α(t)〉
∂t

)
[b]

=
(

∂|α(t)〉
∂t

)
[b]

=
∑
j

∣∣bj (t)
〉∂〈bj (t)|α(t)〉

∂t
, (15)

and (ii) over an infinitesimal duration�t , the increment�t(∂|α(t)〉/∂t)[b] of |α(t)〉 is the difference between the actu
|α(t + �t)〉 and the result of displacing|α(t)〉 from t to t + �t locked to basisb, namelyU[b](t + �t, t)|α(t)〉, hence(

∂|α(t)〉
∂t

)
[b]

= lim
�t→0

|α(t + �t)〉 − U[b](t + �t, t)|α(t)〉
�t

. (16)

By inserting the closure relation for basisb at datet + �t to the left of |α(t + �t)〉 in the above equation, and replaci
U[b](t + �t, t) by its definition (9), it becomes clear that the two definitions (i) and (ii) agree.

Following these lines, equivalent explicit definitions, of types (i) and (ii) above, can be given for the time derivati
given basis of the other usual quantum objects: bra〈β(t)|, single date operatorA(t), unitary date changing evolution operat
U(t1, t0). For instance, type (ii) definitions are given by(

∂〈β(t)|
∂t

)
[b]

= lim
�t→0

〈β(t + �t)| − 〈β(t)|U[b](t, t + �t)

�t
, (17)

(
∂A(t)|

∂t

)
= lim

�t→0

A(t + �t) − U[b](t + �t, t)A(t)U[b](t, t + �t)

�t
, (18)
[b]
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(
∂U(t1, t0)

∂t1

)
[b]

= lim
�t→0

U(t1 + �t, t0) − U[b](t1 + �t, t1)U(t1, t0)

�t
, (19)

(
∂U(t1, t0)

∂t0

)
[b]

= lim
�t→0

U(t1, t0 + �t) − U(t1, t0)U[b](t0, t0 + �t)

�t
. (20)

This procedure is easily extended to higher order time derivatives (using the same basis repeatedly) and to Liouv
objects (superbras, superkets, superoperators), but this will not be done here.

When time derivatives are known, useful expressions are provided by limited Taylor series expansions in powers o
time intervals. Assume, for instance, that the operatorA(t) and its low order time derivatives in basisb are known at datet0. In
the traditional formalism, in which the only basis used is basisb, treated as immobile, the Taylor expansion would be wri
asA(t0 + τ) = A(t0) + τ(∂A(t0)/∂t0)[b] + (τ2/2!)(∂2A(t0)/∂t20)[b] + · · ·. However, this expression obviously does not ob
the date tags rule: the l.h.s. is at datet0 + τ whereas the r.h.s. is at datet0 (and no limit process is involved which would ma
τ go to zero). Repeating the discussion which led to Eq. (12), the Taylor expansion can be written in a satisfactory wa

A(t0 + τ) = U[b](t0 + τ, t0)

{
A(t0) + τ

(
∂A(t0)

∂t0

)
[b]

+ τ2

2!
(

∂2A(t0)

∂t20

)
[b]

+ · · ·
}
U[b](t0, t0 + τ). (21)

As a preparation for the discussion of the relation between time derivatives evaluated in different bases, it is conv
introduce, for any pair of basesb andc, the operatorD[c,b](t) defined by

− 1

ih̄
D[c,b](t) = lim

�t→0

U[b](t + �t, t) − U[c](t + �t, t)

�t
. (22)

The limit in the r.h.s. of this expression is reminiscent of the usual definition of a time derivative. However, a close exam
shows that it doesnot involve any comparison (i.e., difference) of quantum objects with different sets of date tags, he
reference basis is required to transport objects from one date to another (see the discussion between Eqs. (15) and (
any basis can be chosen to evaluate the limit and the results provide equivalent expressions forD[c,b](t). Before proceeding
with such calculations, it is useful to note that the simple structure of Eq. (22) immediately implies the following relatio

D[b,b](t) = 0, D[c,b](t) = −D[b,c](t) and D[d,b](t) = D[d,c](t) + D[c,b](t). (23)

The r.h.s. of Eq. (22) can now be evaluated with reference to basisb by the following steps: (i) use Eq. (14) to expre
U[c](t + �t, t) in terms ofU[b](t + �t, t); (ii) replaceW[c,b](t + �t) introduced in the previous step by its first order Tay
expansion (21) aroundt , namelyU[b](t +�t, t){W[c,b](t)+�t(∂W[c,b](t)/∂t)[b]+O((�t)2)}U[b](t, t +�t), where O((�t)2)

stands for ‘of order(�t)2 ’; (iii) use Eqs. (5), (6), (10) and (11) for simplifications to obtain

− 1

ih̄
D[c,b](t) = lim

�t→0

{
− U[b](t + �t, t)

(
∂W[c,b](t)

∂t

)
[b]

W[b,c](t) − U[b](t + �t, t)O((�t)2)W[b,c](t)
�t

}

= −
(

∂W[c,b](t)
∂t

)
[b]

W[b,c](t). (24)

A similar evaluation using basisc leads to

− 1

ih̄
D[c,b](t) = +

(
∂W[b,c](t)

∂t

)
[c]

W[c,b](t). (25)

Other useful relations are obtained by noting that 1op = W[c,b](t)W[b,c](t) and that the time derivative of 1op is zero in any
basisa, hence

0 =
(

∂W[c,b](t)
∂t

)
[a]

W[b,c](t) + W[c,b](t)
(

∂W[b,c](t)
∂t

)
[a]

. (26)

The operatorD[c,b](t) has the dimension of energy, and is Hermitian becauseW[c,b](t) is unitary. By noting that a basis ke
is always immobile in its own basis, one also shows easily that the operatorD[c,b](t)/h̄ is the generator of the motion of basisc

with respect to basisb, in the sense that the motion of any basis ket|cj (t)〉 is governed by

ih̄

(
∂|ck(t)〉

∂t

)
[b]

= D[c,b](t)
∣∣ck(t)

〉
, (27)

just in the same way that, in the Schrödinger equation,H(t)/h̄ is the generator of the motion of any state|ψ(t)〉 of the relevant
physical system with respect to animmobile basis (denotedb here),

ih̄

(
∂|ψ(t)〉

∂t

)
= H(t)

∣∣ψ(t)
〉
. (28)
[b]
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Eqs. (16) to (20) can now be combined with Eq. (22) to relate the time derivatives in two different bases for various q
objects: (

∂|α(t)〉
∂t

)
[c]

−
(

∂|α(t)〉
∂t

)
[b]

= lim
�t→0

{U[b](t + �t, t) − U[c](t + �t, t)}|α(t)〉
�t

= − 1

ih̄
D[c,b](t)

∣∣α(t)
〉
, (29)

(
∂〈β(t)|

∂t

)
[c]

−
(

∂〈β(t)|
∂t

)
[b]

= lim
�t→0

〈β(t)|{U[b](t, t + �t) − U[c](t, t + �t)}
�t

= + 1

ih̄

〈
β(t)

∣∣D[c,b](t), (30)

(
∂A(t)

∂t

)
[c]

−
(

∂A(t)

∂t

)
[b]

= lim
�t→0

U[b](t + �t, t)A(t)U[b](t, t + �t) − U[c](t + �t, t)A(t)U[c](t, t + �t)

�t

= lim
�t→0

{
U[b](t + �t, t) − U[c](t + �t, t)

�t
A(t)U[b](t, t + �t)

− U[c](t + �t, t)A(t)
U[c](t, t + �t) − U[b](t, t + �t)

�t

}

= − 1

ih̄

[
D[c,b](t),A(t)

]
, (31)(

∂U(t1, t0)

∂t1

)
[c]

−
(

∂U(t1, t0)

∂t1

)
[b]

= lim
�t→0

{U[b](t1 + �t, t1) − U[c](t1 + �t, t1)}U(t1, t0)

�t

= − 1

ih̄
D[c,b](t1)U(t1, t0), (32)(

∂U(t1, t0)

∂t0

)
[c]

−
(

∂U(t1, t0)

∂t0

)
[b]

= lim
�t→0

U(t1, t0){U[b](t0, t0 + �t) − U[c](t0, t0 + �t)}
�t

= + 1

ih̄
U(t1, t0)D[c,b](t0), (33)

whereU(t1, t0) stands for any unitary date displacement operator (‘evolution operator’).

4. Quantum dynamics seen from different bases

In this section, I shall recall some of the standard techniques ofquantum dynamics, as used in NMR, in a multiple mov
bases presentation. In the conventional reference basis, denotedb here, the equation of motion for the density operatorρ(t),
which describes the state of the physical system under discussion, is the usual von Neumann equation of motion

ih̄

(
∂

∂t

)
[b]

ρ(t) = [
H(t),ρ(t)

]
, (34)

where the Hermitian operatorH(t) is the Hamiltonian of the system, i.e., theobservable associated with the total energy (th
quantity which enters in thermodynamical discussions).

The classical Liouville equation analog of Eq. (34) is formulated with time derivatives in an inertial reference frame.
same reasons, the validity of Eq. (34) requires that the basisb, used to evaluate the time derivative, must be an inertial b
This means that there exists an inertial frame of classical coordinates such that each classical observable of this ine
(e.g., the Cartesian components of position, momentum, or angular momentum) is associated with a corresponding quantum
observable which isimmobile in basisb in the sense of Eq. (12). Of course, any practical direct use of Eq. (34) implie
H(t) and all other relevant observables are well known in terms of their action on the basis kets|bj (t)〉 of basisb.

For problems in which the HamiltonianH(t) can be separated in a (usually large and simple) partH0(t) and a (usually
small and possibly complicated) partV (t), it is often useful to go over to a new basisc, such thatD[c,b](t) = H0(t), in which
the generator of the motion is onlyV (t)/h̄ (see Eq. (31))

ih̄

(
∂

∂t

)
[c]

ρ(t) = [{
H(t) − D[c,b](t)

}
, ρ(t)

] = [
V (t), ρ(t)

]
. (35)

With this choice of basisc, H0(t)/h̄ is the generator of the motion of basisc with respect to basisb (see Eq. (27)), hence
is not surprizing that the fast motion (with respect to basisb) due toH0(t) is not felt any more in basisc. The new basisc is
related to the original basisb by an operatorW[c,b](t) such that

ih̄

(
∂

∂t

)
W[c,b](t) = H0(t)W[c,b](t), (36)
[b]
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whereW[c,b](t) is required to be unitary at some initial date, and remains unitary becauseH0(t) is Hermitian. It is important to
note that, in spite of the analogy between Eqs. (34) and (35),V (t) in Eq. (35) isnot the total energy of the system, and that
inclusion of its average value in thermodynamic discussions requires utmost care and may be misleading [4].

The unitary operatorW[c,b](t) used here is essentially the same which is used in the ‘interaction picture’ transformat
the same problem, hence the two procedures are very closely related (see Subsection 5.3 for detailed comparison on a si
example).

Another useful tool is that of series expansions valid for ‘short’ time intervals. Taking Eq. (35) as an example, the fi
is to re-write it as an integral equation starting at datet0,

ρ(t1) = U[c](t1, t0)ρ(t0)U[c](t0, t1) + 1

ih̄

t2=t1∫
t2=t0

dt2 U[c](t1, t2)
[
V (t2), ρ(t2)

]
U[c](t2, t1), (37)

and to iterate this procedure on the last occurrence ofρ(· · ·), leading to

ρ(t1) = U[c](t1, t0)ρ(t0)U[c](t0, t1) + 1

ih̄

t2=t1∫
t2=t0

dt2 U[c](t1, t2)
[
V (t2),U[c](t2, t0)ρ(t0)U[c](t0, t2)

]
U[c](t2, t1)

+
(

1

ih̄

)2
t2=t1∫

t2=t0

dt2

t3=t2∫
t3=t0

dt3 U[c](t1, t2)
[
V (t2),U[c](t2, t3)

× [
V (t3),U[c](t3, t0)ρ(t0)U[c](t0, t3)

]]
U[c](t3, t1) + · · · . (38)

If one uses this expression in the basis in which the time derivative was evaluated originally in Eq. (35), namely basisc, then the
operatorsU[c](·) appear as trivial identity operators (see Eq. (13)) andthe expression just looks like a pedantically decorate
version of its standard counterpart. However, this ‘decoration’ indicates explicitly how to evaluate the expression using an
other basis if this proves more convenient.

5. The basic NMR experiment

The model discussed here consists in a free spin interacting with a classical magnetic field composed of a (large) fieB0(t),
immobile in the laboratory frame, and a (small) quasi-resonantrf field B1(t) perpendicular toB0(t).

5.1. Classical presentation: rotating frame

For a free spin acted upon by the classical magnetic fieldB(t), the equation of motion for the average spin magnetiza
M(t) is(

∂M(t)

∂t

)
lab

= M(t) × γ B(t), (39)

where the time derivative is evaluated in an inertial frame of reference, conventionally called the ‘laboratory framelab).
Assuming that the magnetic fieldB(t) is dominated by a large componentB0(t) immobile in the laboratory frame, it i
convenient to choose theZ direction of that frame parallel to the large field, henceB0(t) = B0Ẑlab(t), where the hat̂
indicates a unit vector.

The discussion of experiments performed with a coherent NMR spectrometer is considerably simplified by the u
auxiliary frame of coordinates (rot) which rotates with respect to the laboratory frame around theẐlab(t) direction, at an angula
velocity ωrot,lab(t) = ωrf Ẑlab(t) such that this rotating frame roughly accompanies the spin in its motion due toB0(t), and
that |ωrf |/2π is exactly the (positive) frequency of the reference oscillator of the spectrometer used to specify the pharf
irradiations and the phase of the detected signals (see Fig. 1):

X̂rot(t) = +X̂lab(t)cos
(
ωrf {t − t∗}) + Ŷ lab(t)sin

(
ωrf {t − t∗}

)
,

Ŷ rot(t) = −X̂lab(t)sin
(
ωrf {t − t∗}) + Ŷ lab(t)cos

(
ωrf {t − t∗}

)
, (40)

Ẑrot(t) = Ẑlab(t),
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Fig. 1. A number of vectors used in the discussion, as seen at the datet by a third observer that is not necessarily immobile with respect to
laboratory or rotating frames. The figure is drawn assuming thatγ andb1(t) are both positive.

in which t∗ is an arbitrary reference date at which both frames coincide. The time derivatives of classical vectors in thelab and
rot frames are related as follows,(

∂M(t)

∂t

)
rot

=
(

∂M(t)

∂t

)
lab

+ M(t) × ωrot,lab(t) =
(

∂M(t)

∂t

)
lab

+ M(t) × ωrf Ẑlab(t). (41)

For the present discussion, the magnetic fieldB(t) will be the sum of the (large) fieldB0(t) mentioned above and a (usua
much smaller) ‘radio frequency’ fieldB1(t), linearly polarized in the direction̂Xlab(t) of the axis of therf coil. The amplitude
b1(t) and the phaseφ(t)1 of this rf field are controlled by the spectrometer electronics, and vary slowly on the time sc
therf period 2π/ωrf . The decomposition ofB1(t) in corotating andcounterrotating parts is the starting point of the tradition
approximation, valid forrf fields much smaller than the constant field, in which thecounterrotating part is usually ignored in
further calculations:

B(t) = B0(t) + B1(t),

where

B0(t) = B0Ẑlab(t) and B1(t) = 2b1(t)cos
[
ωrf {t − t∗} + φ(t)

]
X̂lab(t) = B1corot(t) + B1counter(t), (42)

where

B1corot(t) = b1(t)
(
X̂rot(t)cos

[
φ(t)

] + Ŷ rot(t)sin
[
φ(t)

])
(43)

and

B1counter(t) = b1(t)
(
X̂rot(t)cos

[
2ωrf {t − t∗} + φ(t)

] − Ŷ rot(t)sin
[
2ωrf {t − t∗} + φ(t)

])
. (44)

With this notation, and ignoringB1counter(t), the equation of motion forM(t) becomes(
∂M(t)

∂t

)
rot

= M(t) × ({γ B0 + ωrf }Ẑrot(t) + γ b1(t)
{
X̂rot(t)cos

[
φ(t)

] + Ŷ rot(t)sin
[
φ(t)

]})
. (45)

This describes a rotation ofM(t) at the (small) angular velocity given by the large brace at the right of the vectorial pr
(×) in Eq. (45). In the absence of irradiation or during a simple irradiation with constantb1(t) andφ(t), the motion ofM(t) is
very easy to visualize and to calculate in the rotating frame.

The direct measurement ofM(t) occurs by means of the samerf coil, immobile in thelab frame, which is also used t
generate therf field B1(t). For this, the relevant component ofM(t) is its X component in thelab frame, easily evaluate
from information in any frame asMXlab(t) = M(t) · X̂lab(t). The rf signal induced in the coil is processed by a set of
orthogonal phase sensitive detectors and fed into the acquisition system. The ‘real’ and ‘imaginary’ parts ofthe acquired signa
are directly related to theX andY components ofM(t) in the rot frame, easily evaluated asMXrot(t) = M(t) · X̂rot(t) and
MY rot(t) = M(t) · Ŷ rot(t).

1 See [5] and [6] for a detailed discussion of issues of sign which appearbetween the phases as defined here and the electrical engine
phases in the spectrometer.



J. Jeener / C. R. Physique 5 (2004) 393–406 401

of

og in the
e

ress,

9), this

1)

spin
5.2. Quantum presentation: moving bases

The role of the classical equation of motion (39) in thelab frame will be played here by the von Neumann equation
motion in thelab basis,

ih̄

(
∂ρ(t)

∂t

)
[lab]

= [{−h̄I (t) · γ B(t)
}
, ρ(t)

]
, (46)

with the same time dependent classical magnetic fieldB(t), andγ h̄I (t) standing for the spin magnetic moment. Thelab basis
{|labj (t)〉} is the basis traditionally used to formulate such problems, in which the quantum observablesIX , IY , andIZ are
immobile. For the sake of uniformity, these observables will be denoted (and defined) here as

IXlab(t) = I (t) · X̂lab(t), IY lab(t) = I (t) · Ŷ lab(t), IZlab(t) = I (t) · Ẑlab(t). (47)

The simplification provided by the classical rotating frame formulation (see Eqs. (40)–(45)) has a direct quantum anal
use of a corresponding rotating basis{|rotj (t)〉} such that the operatorDrot,lab(t) = h̄ωrf IZlab(t) essentially compensates th
part−γ h̄B0IZlab of the Hamiltonian caused by the large constant field. In thisrot basis, Eq. (46) takes the form

ih̄

(
∂ρ(t)

∂t

)
[rot]

= [(−h̄IZlab(t){γ B0 + ωrf } − h̄I (t) · γ B1(t)
)
, ρ(t)

]
, (48)

which is easy to manipulate only if the quantum objects are expressed in terms of simple observables immobile in therot basis,
and if the operatorW[rot,lab](t) is known explicitly. This operator is easily obtained from the valueh̄ωrf IZlab(t) chosen for
D[rot,lab](t) and the choice that the two bases coincide at the datet∗, henceW[rot,lab](t∗) = 1op (see Eq. (24)):

W[rot,lab](t) = exp
(−iωrf {t − t∗}IZlab(t)

)
. (49)

The relations between Cartesian components ofI (t) in the two bases can be obtained in various ways: for instance, (i) exp
e.g.,IXrot(t) asI (t) · X̂rot(t), and use Eqs. (40) and (47) to get

IXrot(t) = I (t) · X̂rot(t) = +IXlab(t)cos
(
ωrf {t − t∗}) + IY lab(t)sin

(
ωrf {t − t∗}

)
, (50)

IY rot(t) = I (t) · Ŷ rot(t) = −IXlab(t)sin
(
ωrf {t − t∗}) + IY lab(t)cos

(
ωrf {t − t∗}

)
, (51)

IZrot(t) = I (t) · Ẑrot(t) = IZlab(t), (52)

or (ii) require that, e.g.,IXrot(t) is immobile in basisrot (just likeIXlab(t) is immobile in basislab) with the additional condition
thatIXrot(t∗) = IXlab(t∗) at the datet∗ where both frames coincide (and also both bases). Using Eqs. (12), (14), and (4
leads to the relations

IXrot(t) = W[rot,lab](t)IXlab(t)W[lab,rot](t), IY rot(t) = W[rot,lab](t)IY lab(t)W[lab,rot](t), (53)

IZrot(t) = W[rot,lab](t)IZlab(t)W[lab,rot](t) = IZlab(t). (54)

In the present very simple context, relations (52) and (54) betweenIZrot(t) andIZlab(t) are the same, and relations (50), (5
and (53) are directly equivalent to the useful relations

I+rot(t) = exp
(−iωrf {t − t∗})I+lab(t) and I−rot(t) = exp

(
iωrf {t − t∗})I−lab(t), where

I±lab(t) = IXlab(t) ± iIY lab(t) and I±rot(t) = IXrot(t) ± iIY rot(t), (55)

hence the two approaches (i) and (ii) above are equivalent.
The von Neumann equation of motion (48) cannow be written explicitly under a form suitable for further calculations in the

rot basis (again neglectingB1counter(t)) as

ih̄

(
∂ρ(t)

∂t

)
[rot]

= [(−h̄IZrot(t){γ B0 + ωrf } − γ h̄b1(t)
{
IXrot(t)cos

[
φ(t)

] + IY rot(t)sin
[
φ(t)

]})
, ρ(t)

]
. (56)

Whenρ(t) is known in terms of basic operators immobile in therot basis, the rotating frame components of the average
magnetizationM(t) are easily evaluated as, e.g.,

MXrot(t) = 〈
γ h̄IXrot

〉
(t) = γ h̄Tr

{
IXrot(t)ρ(t)

}
or MXrot(t) + iMY rot(t) = γ h̄Tr

{
I+rot(t)ρ(t)

}
, (57)

and the laboratory frame components as, e.g.,

MXlab(t) + iMY lab(t) = γ h̄Tr
{
I+lab(t)ρ(t)

} = γ h̄exp
(
iωrf {t − t∗})Tr

{
I+rot(t)ρ(t)

}
. (58)
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This quantum rotating basis procedure, from Eq. (56) to Eq. (58), is directly analogous to the classical rotating frame p
of Eq. (45) in the sense that both procedures relate only time derivatives and Cartesian components that are all in therot frame
or all in therot basis.

5.3. Quantum presentation: interaction picture

In the traditional interaction picture procedure followed in this Subsection, only thelab basis and Cartesian components
the lab frame are used, so that basis tags are superfluous in the calculations. However, comparisons between the tw
procedures will be clarified by keeping these basis tags here. The interaction picture version of any single date operatorA(t) is
given byÃ(t) = W†(t)A(t)W(t), whereW(t) is a unitary operator which can be chosen to suit the problem at hand. Wit
notation, if

ih̄

(
∂ρ(t)

∂t

)
[lab]

= [
H(t),ρ(t)

]
, then īh

(
∂ρ̃(t)

∂t

)
[lab]

=
[{

H̃ (t) + ih̄

(
∂W†(t)

∂t

)
[lab]

W(t)

}
, ρ̃(t)

]
. (59)

The starting point here will be the same as for the discussion of the moving bases procedure, namely the von N
equation (46) in thelab basis. If we require that the interaction picture procedure provides the same simplification
equation of motion as the use of therot basis, then the term added tõH(t) in Eq. (59) must be equal to−h̄ωrf IZlab(t), and this

is exactly what happens if we setW†(t) = Wlab,rot(t) as given by Eq. (49). With this choice, the interaction picture versio
single date operators becomes

Ã(t) = W[lab,rot](t)A(t)W[rot,lab](t) and ρ̃(t) = W[lab,rot](t)ρ(t)W[rot,lab](t). (60)

A pictorial description of this transformation may consist, at each datet , to (i) lock the relevant ket, bra or single date opera
to the basis vectors of therot basis, (ii) rotate therot basis so that it coincides with thelab basis, and (iii) define the rotate
objects as the interaction picture version of the original objects.

The von Neumann equation in the interaction picture is (written as required in thelab basis and in terms of Cartesia
components in thelab frame, again neglectingB1counter(t))

ih̄

(
∂ρ̃(t)

∂t

)
[lab]

= [(−h̄IZlab(t){γ B0 + ωrf } − γ h̄b1(t)
{
IXlab(t)cos

[
φ(t)

] + IY lab(t)sin
[
φ(t)

]})
, ρ̃(t)

]
. (61)

When ρ̃(t) is known, the average values of, e.g., thelab frame Cartesian componentsIXlab(t) can be evaluated by startin
from 〈IXlab(t)〉(t) = Tr{IXlab(t)ρ(t)}, inserting 1op = W[rot,lab](t)W[lab,rot](t) twice in the trace and using the invariance
the trace for cyclic permutations and Eq. (60) to obtain〈

IXlab(t)
〉
(t) = Tr

{
IXlab(t)ρ(t)

} = Tr
{
ĨXlab(t)ρ̃(t)

}
, (62)

where ĨXlab(t) still has to be expressed in terms ofIXlab(t) and IY lab(t). In the case ofrot frame components, a simila
procedure can be followed, leading to〈

IXrot(t)
〉
(t) = Tr

{
IXrot(t)ρ(t)

} = Tr
{
ĨXrot(t)ρ̃(t)

} = Tr
{
IXlab(t)ρ̃(t)

}
. (63)

The formal analogy between Eqs. (56) and (61) is complete, with the roles oftilde ˜ andlab in (61) played byno tilde and
rot in (56), hence exactly the same problems of calculation are encountered in solving either equation and evaluatin
values. However, Eq. (61) does not offer the same simple intuitive interpretation as its moving bases counterpart (56)
of the convenient classical rotating frame concepts.

It is easy to check that the exact equivalence discussed above is a general feature of the relation between the tw
procedures, and that the moving basis scheme usually leads to simpler intuitive interpretations of the various equation

6. Problems involving Berry’s phase

The simple model discussed in Subsections 6.1 and 6.2 consists in a free spin interacting with a classical magn
B0(t) of constant intensityB0 = |B0(t)|, slowly changing direction in the laboratory frame. In Subsection 6.3, I show
Berry’s original introduction of the geometrical phase can be reproduced with the use of moving bases.
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6.1. Simple example, classical presentation using rotating frames

A first rotating frame, denotedslo, is used to followB0(t) in its changes indirection with respect to thelab frame. For
this, the angular velocityωslo,lab(t) of the slo frame with respect to thelab frame must be such that the unit vectorB̂0(t) is
immobile in theslo frame, hence (see Eq. (41))

0 =
(

∂B̂0(t)

∂t

)
slo

=
(

∂B̂0(t)

∂t

)
lab

+ B̂0(t) × ωslo,lab(t). (64)

Eq. (64) specifies only the components ofωslo,lab(t) perpendicular tôB0(t) and leaves open the possibility of rotation about
the direction of̂B0(t), i.e., the component ofωslo,lab(t) parallel toB̂0(t). It will prove useful later to choose a value of ze
for this parallel component, such thatωslo,lab(t) appears as a purely nonsecular perturbation in Eq. (66), and this leads to

ωslo,lab(t) = B̂0(t) ×
(

∂B̂0(t)

∂t

)
lab

. (65)

Starting now from the general equation of motion (39) for the average spin magnetizationM(t), with B0(t) playing here the
role of B(t), the equation of motion in theslo frame becomes(

∂M(t)

∂t

)
slo

=
(

∂M(t)

∂t

)
lab

+ M(t) × ωslo,lab(t) = M(t) × (
γ B0(t) + ωslo,lab(t)

)
, (66)

where the angular velocity−γ B0(t) points in a fixed direction in theslo frame and the additional termωslo,lab(t) is
perpendicular toB0(t).

Specific discussions will be clarified by the choice of an inertiallab frame with itsZ axis parallel toB0 at an ‘initial’
datet0, hencêZlab(t0) = B̂0(t0), and by the choice of aslo frame with axes coincident with those of thelab frame at the same
datet0. Fig. 2 illustrates these choices. Analogous choices for thesr frame introduced later also help clarify the correspond
discussions.

Fig. 2. Various vectors as seen by an observer that is immobile with respectto the laboratory frame. The vectors drawn in grey in the cente
the figure show a magnetic fieldB0(t) that rotates smoothly from theZlab direction at datet0, first in theZlabXlab plane until it reaches the
Xlab direction at datet5, then in theXlabYlab plane until it reaches theYlab direction at datet10, and finally in theYlabZlab plane until it comes
back to theZlab direction at datet15 (not shown). The (small) frames of coordinates in theouter part of the figure show the orientation of theslo
frame at each discrete date at whichB0(t) is also shown. The direction of̂Zslo(t) follows that ofB0(t), and the direction of̂Xslo(t) is chosen
such that the angular velocityωslo,lab(t) of theslo frame relative to thelab frame is perpendicular toB0(t). In the simple example shown her
theslo frame executes smooth rotations ofπ/2 with respect to thelab frame, successively about̂Y lab , Ẑlab , andX̂lab. The interesting feature
illustrated by this figure is that, whenB0(t) comes back att15 to its original direction att0, theslo frame has rotated byφ = π/2 about̂Zlab
compared to its original orientation att0. This ‘geometrical phase’φ can be evaluated easily as the solid angle enclosed by the closed m
of B0(t) as seen in thelab frame.
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The perspective of interest here is that of (slow)quasi-adiabatic changes of the orientation ofB0(t) in the lab frame, in
which B0(t) = B0(t + τslo) is a periodic function oft with periodτslo. The condition ofquasi-adiabaticity is

k =
[ |ωslo,lab(t)|

|γ B0(t)|
]

max
� 1. (67)

If the same trajectory is followed by the orientation ofB0(t), but at a slower pace,k decreases by the same factor,τslo increases
proportional to 1/k, andωslo,lab(t) decreases proportional tok.

Further discussions will be clarified by the introduction of a third frame of reference, labeledsr, that rotates with respect t
theslo frame at the (large) angular velocityωsr,slo(t) = −γ B0(t). The equation of motion ofM(t) in thesr frame is(

∂M(t)

∂t

)
sr

=
(

∂M(t)

∂t

)
slo

+ M(t) × ωsr,slo(t) = M(t) × ωslo,lab(t), (68)

whereωslo,lab(t) appears in thesr frame as a (small) vector, perpendicular to the fixed direction ofB0(t), with a motion
that combines its slow evolution in theslo frame with a fast rotation at the constant angular velocityγ B0(t). Under these
conditions, the motion ofM(t) in thesr frame is a fast angular oscillation with a small amplitude of orderk, superimposed on
a very slow angular drift at a rate of order 1/k2 (this last conclusion is easily obtained with the help of the classical ver
of the Magnus expansion). Over one periodτslo of the slow reorientation ofB0(t) in the lab frame, both the fast oscillatio
and the drift cause rotations ofM(t) of orderk in the sr frame. HenceM(t) remains immobile in thesr frame in thequasi-
adiabatic approximation (k → 0), just the same as ifB0(t) was immobile in thelab frame. It follows directly that, still in the
quasi-adiabatic approximation and for durations of the order ofτslo, the motion ofM(t) in the slo frame is a simple rotation
at the constant angular velocity−γ B0(t), also completely ignorant of the slow reorientation ofB0(t) with respect to thelab
frame.

All this may suggest that adiabatic changes in a simple (classical) Hamiltonian do notgenerate experimentally observab
effects besides the trivially expected oscillations with periodτslo. However, measurements are usually performed by instrum
fixed in the lab frame, and the simple example illustrated in Fig. 2 shows that cyclic adiabatic changes in the (cla
Hamiltonian systematically rotate theslo and sr frames with respect to thelab frame by Berry’s geometrical phaseφ [7,8]
for each periodτslo of the slow evolution of the (classical) Hamiltonian. In the simple case of stroboscopic measuremen
successive delaysτslo, this results in a shift of the apparent precession frequency of the spins byφ/τslo.

6.2. Simple example, elementary quantum presentation using moving bases

It is well known that, for the present simple model of a free spin acted upon by a classical magnetic field, the class
quantum predictions for the motion ofM(t) = 〈γ h̄I 〉(t) are exactly the same; hence a quantum treatment of the problem
discussed above will not lead to new conclusions. I shall, however, briefly proceed with such a treatment as a further exam
of the close analogy between the use of moving bases and that of moving frames.

The role of the classical equation of motion (39) in thelab frame will be played here by the von Neumann equation of mo
(46) in thelab basis, withB0(t) playing the role of the classical magnetic field. The simplification provided in the clas
discussion by theslo frame is provided here by the basis{|sloj (t)〉} defined essentially by the requirement that it rotates a
angular velocityωslo,lab(t) given by Eq. (65) with respect to thelab basis, hence

D[slo,lab](t) = ωslo,lab(t) · h̄I (t) =
[
B̂0(t) ×

(
∂B̂0(t)

∂t

)
lab

]
· h̄I (t), (69)

and the von Neumann equation of motion in theslo basis is

ih̄
(

∂ρ(t)

∂t

)
[slo]

= [{−h̄I (t) · (γ B0(t) + ωslo,lab(t)
)}

, ρ(t)
]
. (70)

Complete analogy of notation with the classical discussion of the previous subsection is ensured by the convenien
conditionWslo,lab(t0) = 1op. Eq. (70) can be discussed in the usual way, provided that all observables are expressed
of simple observables that are immobile in theslo basis, here the Cartesian components ofI (t) in theslo frame. With this point
of view, B0(t) appears as immobile for calculations in theslo basis.

The role of thesr frame of the classical discussion is played here by thesr basis defined essentially by the requirement t
it rotates at the angular velocity−γ B0(t) with respect to theslo frame, hence

D[sr,slo](t) = −γ B0(t) · h̄I (t), (71)

and the von Neumann equation of motion in thesr basis is

ih̄

(
∂ρ(t)

∂t

)
= [−h̄I (t) · ωslo,lab(t), ρ(t)

]
, (72)
[sr]
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whereωslo,lab(t) now appears, in thesr basis as a (small) angular velocity that essentially rotates at the high rateγ B0(t) in a
plane perpendicular toB0(t). Approximate solutions of this equation are easily obtained by the Magnus expansion tech
and confirm the conclusion that no evolution takes place in thesr basis or frame, in thequasi-adiabatic limit.

Coming back to theslo basis and, eventually, to thelab basis, it is clear that the only non-trivial observable effects o
quasi-adiabatic change of the direction ofB0(t) in thelab frame are due to the geometrical phaseφ.

In the quantum treatment of the simple model discussed here,φ appears as the angle of rotation of the reference direct
defined by the basisslo with respect to those of the inertial basislab, over a time intervalτslo, in complete analogy with th
corresponding classical discussion. Inspection easily shows thatφ is also the additional phase difference between succe
eigenstates of the HamiltonianH(t) = −γ h̄I · B0(t) caused by the reorientation ofB0(t) over a delayτslo, as usually
emphasized in discussions about Berry’s phase.

6.3. A more general quantum presentation

In this subsection, I show how Berry’s original derivation of the geometrical phase [7] can be presented using movi
along the lines of the two previous subsections.

Let the HamiltonianH(R) depend upon the set of (slowly time dependent) parameters denotedR. This is a laboratory
frame description, which means that the Hamiltonian can be written as a linear combination of operators that are imm
the inertial{|labj (t)〉} basis, with coefficients that depend uponR and are time dependent through the time dependenceR

only. The eigenvalue spectrum ofH(R) is assumed to be nondegenerate over the whole relevant range ofR. The equation of
motion of the density operatorρ(t) in the lab basis is

ih̄

(
dρ(t)

dt

)
[lab]

= [
H(R), ρ(t)

]
. (73)

In analogy with theslo basis of the previous subsection, anh basis will now be constructed, that follows the slow tim
dependence of the Hamiltonian. The basis vectors ofh are the normalized eigenvectors ofH(R), denoted|hj (R, t)〉, in which
an explicit dependence upon the datet allows the presence of a phase factor exp(iαj (t)) that cannot be expressed as a funct
of R,

H(R)
∣∣hj (R, t)

〉 = Ej (R)
∣∣hj (R, t)

〉
, where

∣∣hj (R, t)
〉 = exp

(
iαj (t)

)∣∣hj (R, t0)
〉
. (74)

t0 is a reference date, the phasesαj (t) are real,Ej (R) are the eigenvalues ofH(R), and|hj (R, t0)〉 is a linear combination
of kets that are immobile in thelab basis with coefficients that depend only onR and j . The operatorsW[h,lab](R, t) and
D[h,lab](R, t) used in the change of basis betweenlab andh are given by

W[h,lab](R, t) =
∑
j

∣∣hj (R, t)
〉〈

labj (t)
∣∣ and D[h,lab](R, t) = ih̄

(
dW[h,lab](R, t)

dt

)
[lab]

W[lab,h](R, t), (75)

where the total time derivative d/dt includes the effects of the explicit variablet and of the implicit time dependence ofR. As
an example, we have(

d|hj (R, t)〉
dt

)
[lab]

=
(

∂|hj (R, t)〉
∂t

)
[lab]

+
(

dR

dt

)
· (∇R · ∣∣hj (R, t)

〉)
= i

∂αj (t)

∂t

∣∣hj (R, t)
〉 + (

dR

dt

)
· (∇R · ∣∣hj (R, t)

〉)
. (76)

Using Eq. (31), the equation of motion (73) can be written in theh basis as

ih̄

(
dρ(t)

dt

)
[h]

= [{
H(R) − D[h,lab](R, t)

}
, ρ(t)

]
. (77)

Further distinction between the dynamical and geometrical contributions to the phases will be simplified if the phase
basis kets|hj (R, t)〉 are chosen in such a way thatD[h,lab](R, t) appears as a non-secular perturbation in Eq. (77). For
the diagonal matrix elements ofD[h,lab](R, t), in a basis of eigenkets ofH(R), must all be equal to zero, hence, using E
(74)–(76) and (13),

0 = 1

ih̄

〈
hj (R, t)

∣∣D[h,lab](R, t)
∣∣hj (R, t)

〉 = 〈
hj (R, t)

∣∣(∂|hj (R, t)〉
∂t

)
[lab]

+
(

dR

dt

)
· {〈hj (R, t)

∣∣(∇R · ∣∣hj (R, t)
〉)}

= i
∂αj (t)

∂t
+

(
dR

dt

)
· {〈hj (R, t)

∣∣(∇R · ∣∣hj (R, t)
〉)}

for all j. (78)
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If the pace at whichR evolves in time is changed by a factork, specifically if the functionR(t) is replaced by the function
R(t0 + k{t − t0}), then the adiabatic limit corresponds tok → 0, the operatorD[h,lab](R, t) is a small quantity of orderk, and
the delayτ after whichR returns to its initial value att0 increases as 1/k. Furthermore, whenD[h,lab](R, t) is expressed in
terms of operators that are immobile in basish, it appears as evolving at a slow pace of orderk.

Further discussions of dynamics in the adiabatic limit will be simplified by the use of a third basisfas whose motion with
respect to theh basis is generated byH(R, t), henceD[fas,h](R, t) = H(R, t) and

ih̄

(
dρ(t)

dt

)
[fas]

= [−D[h,lab](R, t), ρ(t)
]
. (79)

When seen in thefas basis,D[h,lab](R, t) still appears as a small operator of orderk, but evolving at fast paces governed by t
differences between the eigenvalues ofH(R). The condition (78) ensures that no component ofD[h,lab](R, t) escapes this fas
time dependence in thefas basis. As a consequence, the motion ofρ(t) in thefas basis is the superposition of a fast oscillati
of amplitude of orderk superimposed on a slow drift at a rate of orderk2. Over the durationτ (of order 1/k) of a closed loop
in parameter space, the total change ofρ(t) with respect to thefas basis is of orderk, hence negligible in the adiabatic lim
k → 0.

Coming back to theh basis, the motion ofρ(t) in the adiabatic limit appears as governed byH(R), completely unaffected
by the slow time evolution ofR. However, at the last step, going from theh basis back to thelab basis, a significant phase effe
shows up, given by Eq. (78) and related to the trajectory ofR in parameter space. Inspection easily shows that this is ex
the geometrical phase introduced by Berry in Eq. (4) of [7], derived here in a slightly different way.
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