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Abstract

The pionneering work of Ikeda initiatetie investigation in Optics of dynamicaystems described by nonlinear delayed
differential equations (NLDDES). Our group has developed in optoelectronics similar dynamical systems intended for practical
implementation of chaos-based encryption demonstratoffer®it set-ups have been implemented making use of various
optical variables, such as the wavelength, the intensity, the optical path difference or the optical phase, each of them exhibiting
different advantages (chaos complexity, encryption speed, masking efficiency, encryption key size). A general architecture of
NLDDE chaos generators and some of their related dynamical properties are reported, as well as the implementation in practical
encryption systems using chaotic dynamics. Security issues, performance, and future developments of those systems are also
addressedTlo citethisarticle: L. Larger et al., C. R. Physique 5 (2004).
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Résumé

Dynamiques non linéaires a retard d’'lkeda appliquées a un systéme de transmission optique sécurisé par chaos.

Les travaux précurseurs d’'lkeda ont marqué le début de I'exploration en optique des systemes dynamiques décrits par des
équations différentielles non linéaires a retard (EDNLR). Notre groupe s’est inspiré de ces travaux pour mettre au point
en optoélectronique des démonstrateurs de systémes cryptographiques par chaos. Plusieurs montages expérimentaux ont éte
mis au point a partir de variables dynamiques physiques différentes, comme la longueur d’onde, l'intensité, la différence de
chemin optique, ou encore la phase optique, chacune d’elles présentant des propriétés particulieres (la complexité du chaos, la
vitesse de codage, I'efficacité de masquage, ou encore la taille de la clé de cryptage). Une architecture générale de réalisation
d’EDNLR est présentée, ainsi que son principe d'implémentation dans un systeme complet de cryptographie par chaos pour
les télécommunications optiques. Les problemes de sécurité, les performances, et les développements a venir de ce type de
systémes sont évoqudur citer cet article: L. Larger et al., C. R. Physique 5 (2004).
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1. Introduction

Nonlinear delay differential dynamics have known a growing interest in the last 25 years in Optics, through numerous
theoretical, numerical, and experimental investigations [1-4]. These dynamics were explored at the early beginning mainly for
fundamental interests [5,6]. Such an interest is due to, among other reasons, an amazing feature: these dynamical systems exhibit
extremely complex chaotic behaviour (with arbitrarily high attractor dimension), although their mathematical description can
be as simple as a scalar first order differential equation:

d
y(t)+r‘d—f(t)=/3'f[y(t—t1e)]- (1)

A rapid analysis of Eq. (1) highlights some of the most important properties of such dynamics. The left-hand side is typical
of a stable linear first order dynamics, with a characteristic responsertiitgerole is only to limit the fastest oscillations time
scale. The right-hand side contains a nonlinear funcfiphapplied to the delayed dynamical variable — tg); the nonlinear
function is practically bounded for physical reasons. The delay forces the natural dynamic phase space to be infinite dimensional:
instead of a single initial condition(zg) as usually required for a first order differential equation to determine a solution
uniquely, an infinite number of values is needed to define the necessary funstionaber the time intervalzg — tr; g]. The
importance of the role of the nonlinear transformation in the high complexity chaotic behavior [6] is determined by two main
factors (see Fig. 1):

— its strength, through the amplide of the magnification factgs (usually considered as the bifurcation parameter); this
parameter can be considered as a weight of the nonlinear delayed feedback terms in the dynamical process, thus influencing
the amplitudeAy of the dynamical variable; the role @fis typically the stretching operation usually of concern in chaotic
dynamics;

— the number of extrema of[-] concerned by the fluctuation intervaly; in that interval, f[-] can be approximated by
a polynomial function of ordeV, whereN could be a measure of the actual nonlinear function complexity concerned
by a given dynamical regime; the role of the extrema is typically the folding operation, which is also required in chaotic
dynamics, together with the stretching operation;Xo& 2 (the equivalent polynomial function is a parabola), one could
find many similar behaviors in the solutions of Eq. (1), with respect to the well known logistic map [9].

Both of these, the nonlinear transformation (magnified by a fag¢tdyounded, and at least with one extremum), and the
delay (usually much greater thai are the key elements in the generation of a high dimensional chaotic process. They play a
major role for the security when encryption using chaos is of concern. A major advantage of Optics, is their easy experimental
implementation.

Independently of the interest in time delay dynamics itetlain 1979 in Optics, a particail application of nonlinear
dynamic appeared in the early 1990s [7,8c$re communications using chaotic wirens. The feasibility was demonstrated
using electronic circuits, which were used for the generation of chaotic dynamics modeled by ‘standard’ nonlinear ordinary
differential equations. Although the demonstration was successful, these electronic set-ups were plagued by a low dynamical
complexity, which consisted in a weakness in terms of encryption efficiency. Due to their extreme intrinsic complexity, as
well as their attractive feature in view of modern high speed optical telecommunications, delay systems in Optics became very
interesting candidates for exploring eyation using chaos [10—17]. This article rewis the research activities on chaos based
communications developed by our group, making use of the particular Ikeda—type nonlinear delay dynamics to generate chaos.

After a first analysis of the physical principles and some of the mechanisms involved in the precursor setup of the lkeda
ring cavity, a general architecture is deduced for generating experimentally nonlinear delay differential dynamics. Using these
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Fig. 1. Important properties of the nonlinear ftino acting on the delayed variable in Eq. (1).
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chaos generators, a particular concept for implementing a dbesed encryption system is reported. lllustrations are given
through different optoelectronic setups and experimental characterizations, in terms of nonlinear dynamics, and also in terms of
chaotic secure communication. Security issues and futureaaweints of the Ikeda setups for chaotic secure communication

are developed in the last section.

2. From thelkedaring cavity to chaos-based communication
2.1. The lkeda setup, its dynamics and complexity
The brain experiment imagined by Kensuke lkeda in 1979 is depicted in Fig. 2(a). It consists in:

— An input laser beam with constant optical intendigy this quantity is an important parameter for the tuning of a given
dynamical regime observed at the system output. The coherence of the laser light ensures the existence of interferences
between the input light beam, and the one fed back by the cavity after one round trip.

— Aring cavity comprising two partial reflecting mirrors, one for the input and one for the output. The lendtie cavity
determines a round trip time of the light beam, which defines the dglay L /c (wherec is the velocity of light). Intensity
and/or phase modulation observed at the cavity output is thus fed back to the cavity input with ggdelay

— A 2-level atomic cell, in which light—-matter interaction occurs. In a simplified model, only the Kerr effect is considered.
Under these conditions, the phase of the light beam propagating through the cell is changed proportionally to its intensity
Iin (1). This phase change is expressedag 21in (¢) [ /1, wherel is the medium lengthy, is the laser wavelength, ang
is the Kerr refractive index coefficient. Notice also that the dynamics of this light—matter interaction is extremely fast since
it is determined by the level lifetime of the atomic cell, thus leading to dynamical fluctuations much faster than the round
trip time 7.

— At the atomic cell input, a two-wave interference occurs between the constant intensity cavity input beam, and the intra-
cavity feedback beam, whose phase is determined bythgrevious intensity interference through the Kerr effect in the
atomic cell.

The dynamics of the cavity output intensikyz, Ip) can then be described by the nonlinear delay differential equation in
Eq. (1), in which the nonlinear function corresponds to the transformation law of the input phase into an output intensity (the
intensity of a two-wave interference figure, typically the?saurve shown in Fig. 1).

According to this description, the phigal setup appears as an oscillatoiithwa feedback loop comprising a strong
nonlinearity (8 f(x)), and a delay ). This delay is large compared to the characteristic response tijnef the limiting
dynamics. A block diagram can then be used to generalize thitatisn principle, as épicted in Fig. 2(b). The linear tuning
is representative of the optical phase change rate with respect to the optical intensity through the Kerr effect. The nonlinear
transformationf (x) is physically generated by the interference after the optical feedback at the cavity input. The cavity length
determines the delayg, and the dynamics limitation is fixed by the atomic cell level lifetime

A first and simple approach to the oscillattynamics in the case of large delayg (> T ~ 0) usually involves the adiabatic
approximation. It consists in neglecting the derivative term in Eqg. (1). The continuous time dynamics is then expressed as
discrete time dynamics, for which the time evolution is a sequence of discrete values of the dynamical yaablthe time
interval tg. Labelling eachrg—time interval with an integet, the dynamics are reduced to a 1D-mapping1 =8 - f (yn)

(wheref is similar to the plot in Fig. 1). The oscillator feedback is then equivalent to an iteration process, returning the vertical
axis valuey, ;1 onto the horizontal axis. This operation can be represented graphically with the first bisector straightline, which
intersects the nonlinear function at the steady states values (defined as the solutipas®f (ys)). The stability of these

steady states can be determined by a first order analysis, leading to the following result: the steady state is stable if the absolute
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Fig. 2. The Ikeda ring cavity: (a) the expexent; (b) a block diagram interpretation.
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Fig. 4. Lyapunov exponents and dimension calculation from thealkisghamical model: (a) Lyapunov spectrum in the chaotic regime with
B =205,® =21 andrg /T = 60; (b) Lyapunov dimension calculation in te, @)-plane.

value of the slopef’(ys)| is lower than 1, otherwise it is unstable. Increasing the feedbackayéin the slope of the linear

tuning element in Fig. 2(b)) changes the number of the steady states, as well as the slope, at these positions. This is the reason
why B is usually considered as a bifurcation @aueter of the system. For low values@fa single steady state exists and is
necessarily stable. When increasihigthe steady states loses their stability and periodic regimes are observed. For sufficiently
large values of8, high complexity chaotic regimes are observed. They are the regimes of interest for chaos encryption (see
the bifurcation diagram in Fig. 3(a)). Between the low and Ighalues, a period doubling route to chaos is observed when
increasings, in a way similar to that of the well-known logistic map (Fig. 3(b)) [9].

When comparing the two first bifurcation diagrams, it da qualitatively noticed that éhmultiple extrema nonlinear
function allows a broad range of values for the bifurcation parameter, and high complexity chaotic dynamics are obtained. On
the other hand, the parabola has a very limited range of chaotic regime due to the single extremum. This property is related
both to the unbounded character of the parabola and to the single extremum character. The case of a delay dynamical system
involving a bounded nonlinear functiavith a single extremum has been intensivelydsed in the literature; itis referred as the
Mackey—Glass model in Medicine, which describes hematological disorder [18]. It was shown that a limited complexity only
can be obtained for high values of the bifurcation paramgtemlike the Ikeda model, which differs by the single extremum
nature of the nonlinear functionf(y) = y/(1 + ylo)). This result confirms that the Ikeda model with its multiple extrema
nonlinear function is a good candidate for chaos generation dedicated to encryption.

The actual dynamics complexity of the lkeda model is even better when considering a non-zero responsé tiene
dynamics is thus no longer a discrete mapping, it has to fluctuate continuously in time according to Eq. (1). An experimental
bifurcation diagram of such a continuotisne delay dynamics is represented in .F&{c). The qualitative profile of the
bifurcation diagram is not dramatically changed compared to the discrete time case (Fig. 3(a)), however the dynamics
complexity is strongly improved. The phase space dimension of the dynamical system is indeed increased from 1 to infinity. The
definition and the measure of the actual complexity of such neatidelayed systems is not yet a solved problem. However,
there exists a computation method intended to evaluate this complexity in terms of the finite attractor dimension [5]. When
applied to the Ikeda dynamics [6], this method gives the Lyapunov spectrum of a given chaotic regime in a reconstructed
phase space of finite dimension. Such a spectrum is represented in Fig. 4(a) for parameter values related to a real experimental
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situation. The spectrum plots the Lyapunov exponents arranged in decreasing order. Each exponent is representative of an
expanding (if it is positive) or contracting (if it is negative) direction along the chaotic trajectory in the reconstructed phase
space. From this spectrum, one can calculate a Lyapunov dimension, which is conjectured to be equal to the information
dimension of the chaotic regime [19]. For the example represented in Fig. 4(a), the numerous positive exponents lead to a
Lyapunov dimension as high as 470, thus indicating a high complexity for the chaotic regime. A 3D Lyapunov dimension
calculation is also given in Fig. 4(b) for the same dynamics, in(the) parameter plane. It shows the wide parameter range

for which high complexity chaos can be obtained (dimensions greater than 50, even fof sraklés).

The Lyapunov dimension is an interesting parameter to consider in terms of chaos complexity. However, its linear
dependence with the ratig; /7 ([6]) reveals a default of relevance, since the increase of the delay does not implies an increase
of the number of parameters needed to define the dynamics (only the value of the delay is modified); a larger delay increases
the required number of initial conditiomeeded to determine a givaolution of the dynamics, thus measuring the ‘memory
size’ of the delayed dynamics. The Lyapunov dimension, however, also increases linearly with the feedbAcdh garcase
of a multiple extrema nonlinear function. Thsguation, in the contrary of the delaymEndence, represents an actual increase
of complexity. The exact shape of the additional extrema contributing to the dynamics, is indeed required to determine exactly
the dynamics corresponding to a largerTo distinguish this fundamental difference between the delay dependence and the
feedback gain dependence, the Lyapunov entropy appears to be a much better indicator than the Lyapunov dimension. The
entropy saturates with the increase of the delagvala certain value, whereas it increases linearly itlas long as thegs
increase implies an increase of the number of extrema participating to the chaotic dynamic (and hence the number of folding
dynamical processes); typically the entropy also saturatgs with the Mackey—Glass dynamics, which involves a single
extremum nonlinear function, even for high valuegof

For the previous fundamental reasons, lkeda-based dynamics dedicated to chaos encryption must involve a nonlinear
function f(y) with a high number of extrema, as far as security aspects are related to chaos complexity. Such a situation is
effectively met with the Ikeda dynamics for highvalues (typically> 5).

2.2. Encoding and decoding technique

The complex chaotic regimes required for chaos communication are generated using nonlinear delay dynamics as described
in the previous section. In order to present the encoding and decoding technique typically used in our experiments, we will
use first an open loop chain representation as depicted in Fig. 5(left). The different elements required for a nonlinear delayed
dynamics are gathered into a single block labelled as NLDDP, standing for nonlinear delayed dynamical process.

When the NLDDP output is fed back to its input as done at théter side, we obtain the ntinear delayed oscillator
that generates the chaotic waveform (see Fig. 5(right)). To mix a messagevithin the chaotic carrier, we add it inside the
oscillation loop. The message thus particgsato the chaotic oscillatiomith an influence depending on its relative weight with
respect to the chaos. The relative amplitude of the message with respect to that of the chaos determines the so—called masking
efficiency. A high masking efficiency corresponds to a well hidden message inside the chaos, and at the same time a weakly
perturbed chaos. The sum (chaesnessage) is fed back to the input of the NLDDij also serves as the transmitted signal.

Notice that there exists practically several encoding configurations by simply changing the message mixing point [20] with
respect to the different elemisnconstituting the NLDDP. For sake of simplicignly the additive dynamical variable case is
explained and illustrated in Fig. 5.

On the receiver side, the NLDDP is reproduced physically, but in an open loop configuration. Its input corresponds to the
received signal i.e. the message masked by the chaos. According to the analogy between the emitter and receiver architectures,
the output of the receiver NLDDP replicates the same chaotiefeam as that in the emitter. This is sometimes also called
‘chaos synchronization’, although ‘chaos replication’ eefs better the phenomenon, since the open loop receiver cannot
generate any chaotic waveform without its input signal. Subtracting the replicated chaos from the received signal allows one to
recover the information message.

Nonlinear Large Impulse Gain or

Process Delay Response Linear Tuning Emitter Receiver
—> f ['] B T —»| h (t) . Transmission
haaaid |—> NLDDP Line NLDDP' J
—_— NonLinear Delayed
— . Message m(f) Decoded
—»|NLDDP — Dynamical Process to be eicoded Message m'(t)

Fig. 5. Encoding and decoding. tteopen loop system approach defining a global imear delayed dynamical process, right: message
encryption and extraction schemes.
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To demonstrate the decodinttpe input / output transfer function of the BIDP is written here in the time domain using
an integral representation of the dynamics, instead of the differential one as in Eq. (1). This involves the impulse kg¢sponse
of the corresponding linear differential operator. In the case of a first order differential process(ddds) corresponds to
h(t) = e t/Tu(r), whereu(r) is the Heaviside function. For a realistic higher order linear dynamical processakes a more
complicated form. The integral representation allows one to express the instantaneous dynamicalyariabke result of a
convolution product of its delayed nonlinear transformatigm(r — tx )] with the impulse responggr) of the linear feedback
filtering process. The transmitted encrypted sigrtal is then written as follows:

1
s(t) = Blhg * f(so—x)] +m)=p / h(t —0) f[x(6 — tg)]dO +m(1) = y(1) + m(). (2
t0
The chaotic signal generated at the receiver can be similarly written as:

1
' (@) =pB'[hy * f/(sg_,;e)] = ﬂ//h/(t —0)f'[s(6 —x)] 6. 3)
fo

For perfect matching conditions between the emitter and receiver elemeats’( f = f/, 8 = ' andtg = T;e)' itis easy
to see from Egs. (2) and (3) that the receiver is able to replieaactly the chaotic oscillatns of the emitter. The message
m(t) is obtained straightforwardly when subtracting the generated chl@gsfrom the received one(z). In more realistic
situations, any parameter mismatchvbetn the emitter and receiver leads to an unavoidable decoding noise, which limits the
decoding quality of the extracted messager a given minimum reqeed decoding qualityone finds a corresponding maximum
threshold of the masking efficiency at the emitter (relative amplitudes of the message and of the chaotic carrier).

Experimental realizations of the previously defined chaos generator architecture, and encoding—decoding schemes, will be
described in the next section.

3. Optoelectronics set-ups, experimental results

The main drawback for an experimental implementation of the lkeda ring cavity for encryption by chaos, is the low tuning
efficiency of the interference condition due to the Kerr effectasye variation of the interferee condition would require high
optical energy levels, which are not usually met in optical telecommunication systems. Following the same idea to perform the
nonlinear function through a tunabletérference condition, we have:

fIyl =sir(xA/n), (@)

wherey represents the dynamical variable used to change théergace condition, which can be either related to the optical
path differenceA, or to the laser wavelength In the Ikeda setup, the dynamical variable\iel) = (ng +n2I)L, and it varies
linearly with an optical intensity through the Kerr refractive index coefficientin the wavelength chaos generator depicted in
Fig. 6, the interference is varied using small wavelength variatio@$= 1g + §A (7).

A DBR double electrode wavelength tunable semiconductor laser is used in order to adjust the laser wavelength within
a few nm aroundi.g = 1.55 um, according téx = S, ipgr. As depicted in Fig. 6, a 6 cm-long calcite slah £ 1 cm)

I (t) N\?Vnalj\:leﬁi:ghi“ )\'(t) il& ‘ID% s wavelength detector
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Fig. 6. Emitter—encoder and receiver—deer using a wavelength chaos generator.
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Fig. 7. Encoded and decoded signals with wavelenb#os. Upper: time traces, lower: corresponding spectra.

placed between two crossed polarizers is used as a birefringent interferometer, whose output interference is scanned according
to the laser wavelength. Notice that any other spectral filtering (e.g. a more complex multiple wave interference filter like
a Fabry-Pérot) can be used to perform the nonlinear transformation, as long as the filter profile exhibits extrema within the
wavelength tuning range of the laser. The 1.5 nm continuous range allows one to scan more than 12 extrema of a nonlinear
function as depicted in Fig. 1HE resulting intensity is detesl by a photodiode, from which théeetrical signais delayed by

T = 512 ps with an electronic delay line. After amplification and filtg with an electronic first order low pass filter of cut-off
frequencyf. = 1/2wt = 18 kHz, the resulting signal serves as the input aurfer the laser wavelgth tuning. Anelectronic

adder allows one to hide a small amplitude messagato the large amplitude chaotic feedback currgnt The output signal

consists of a chaotically wavelength modulated laser beamingaaksmall message, which is transmitted to the receiver. The
decoder consists in two branches. One is dedicated to a linear wavelength detection (e.g. a spectral filter operating within its
linear part), thus providing at the output of a photodiode an electronic signal proportional to the chaotic fluctuations hiding the
message. The other branch replicates the same NLDDP as imitterethus reproducing these chaotic fluctuations without

the message. A subtraction is used to extract the message.

Due to the unavoidable mismatch between the emitter and receiver parameters, a chaotic decoding noise is observed at the
receiver. The fine parameter tuning is important, firstly@oaver the message, and secgnd improve the quality of the
recovered signal. Matching the delay at the emitter and receiver is well known to be a very sensitive operation, since in
some cases, only a 0.1% relative error on the parameter adjustment at the receiver can induce a decoding error large enough
to make the message recovery impossible. Typical analogue encoded and decoded sine waveforms are reported in Fig. 7. The
transmitted signal (left traces) has noise-like temporal fluanat{upper), and a nice flat spectrum (lower) that does not reveal
the hidden message frequency (whose position is indicated by the cursor). The decoded message (right traces) shows clearly
the original sine waveform in the time domain, with a slight noise superimposed to it. The corresponding spectrum shows a
signal-to-noise ratio of about 20 dB in the decoding process.

Due to technological and physicadasons, the wavelength setup does notr@feattractive potentidor the multi-Gbit/s
optical communications. The wavelength tuning speed is indeed limited to less than 150 MHz, and the large wavelength
fluctuations would also cause transmission quality degradation due to dispersion effects. Thus, other experimental situations
have been explored following the same pijihes, but seeking for faster dynamical processes. The idea is still based on an lkeda-
type dynamics for the chaos generation, and the same encoding and decoding scheme as in Fig. 5(b). Instead of using wavelength
modulation, a faster process based on electro—optic effects was chosen to modulate the optical path differEqcé4).

The most straightforward way to modulate electro-optically an optical interference is to choose a component widely used
in ultra fast fiber telecommunication systems, the electrtiicdpgach—Zehnder modulator. Such integrated optics components
in lithium niobate (LINbG) are commercially available for bit rate up to 40 Gb/s. Those devices are usually operating in
a weak nonlinear operation, since the applied voltage is typically intended to encode bits 0 and 1 through the switching
between destructive and constructimerference conditions. The correspondivgtage switching amplitude is calledy;
it can be practically as low as a few \olts for integrated optics components. However, operating with a larger voltage swing
enables one to scan practically at least 2 to 3 extrema of the interference transfer function, thus performing a highly nonlinear
transformation suitable for high complexity dynamics in a time delay system. An intensity chaos generator can be constructed
similarly to the wavelength chaos generator. The setup is actually known for more than 20 years and has been used as an
electro-optic demonstrator for the lkeda ring cavity instabilities [21]. We revisited the setup as depicted in Fig. 8 for the
demonstration of chaos encoding and decoding of optical information for ultra-high bit rate fiber transmission systems. Previous
unsuccessful attempts [22] or performance limited realizations [23] with a similar electro-optic setup brought us to the following
setup modification: the message is added optically to the chaotic carrier at the output of the Mach—Zehnder modulator. This
characteristic has important consequences:
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Fig. 8. Multi-Gbits/s intensity chaos encoder and decoder.

(i) Note that the optical chaotic carrier produced by the Mach—Zehnder interferometer features an RF spectrum much larger
than the 6 GHz-electrical RF spectrum observed for the voltage at the Mach—Zehnder input electrode. This is explained
by the multiple extrema nonlearity actually scanned in large amplitudeaotic regime. This spreading can be easily
observed directly on the optical spectrum, and is measured to be greater than 30 GHz. This allows several 10 Gb/s masking
capability for the setup in Fig. 8.

(i) The message bandwidth is intrinsically independent of the chaos generator bandwidth due to the all-optical mixing in
the fiber coupler. In order to mask properly the message, the chaotic carrier spectrum has however to be at least as wide
as the message spectrum, which defines a limit on the actual efficient message encoding speed, depending on the chaos
bandwidth.

(iif) Under these conditions and assumiagnitter/receiver matching is achieveate encoding/decodg bandwidh capability
of the system is limited by the photodiodes bandwidth,Pahd PD_, and of the power combiner bandwidth only, meaning
that the encryption bandwidth can be much larger than that of the electro-optic modulator used. This is a great advantage in
view of high speed encryption systems. Also notice that subtraction between the detected-'ohesmage’ signak(¢))
and the receiver generated chaotic signal is performed experimentally through an adequate biasing of the Mach-Zehnder,
such that the receiver nonlinear functiooriesponds to the opposite of that in theitten. The subtraction is obtained at
the power combiner output (electric adder).

According to the previous remarks, the modeling of the intensity chaos encoder and decoder is slightly modified with respect
to Egs. (2) and (3). The emitter and receiver equations should, in this case, be changed into:

x(t) = Blhg x [ f(xo—rp) +am(®)]} = Blh*51(1), ®)

wheres(t) = f[x(t — tg)] + am(?) is the transmitted signal from the emitter. Aetreceiver side, the locally generated chaos,
without the message is

S’y = [y =] with y'@)=p'[n *s510). (6)

Decoding is performed by adding electronically) ands’(z), and for a proper tuning of the Mach—Zehnder bias so that
f'[1 = C — f[-]. Since the detectoBD_ andPD_ are not DC sensitive, the output signal is directly proportional to the
messagen(t).

The main feature of the device compared with the wavelength chaos generator and the lkeda model, consists in the large
bandpass nature of the dynamical process. Usually in most of the ultra wide band communication systems, the low frequencies
are filtered out by the electronic feedback, thus yielding a bandpass dynamical behavior. The process involved in the nonlinear
feedback is therefore fundamentally different, as well as the dynamical trajectories that can be observed on the bifurcation
diagram in Fig. 9(c) (to compare with Fig. 3(c)). The fundamental properties of such bandpass nonlinear delayed dynamics
are not widely known yet, although they should reveal very interesting phenomena. From our encryption point of view, first
numerical calculations tend to show that for an equal bandwidth, the bandpass systems exhibit greater Lyapunov dimension
than the low pass ones. The chaos encryption system in Fig. 8 also takes advantage of this situation.
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Fig. 9. Dynamical properties of the intensity chaos setup: (a) RF rspedcif the chaotic optical carrier spread by the nonlinear function and
filtered by a 10 GHz photodiode; (b) optical spectrum for increasivgl&ser power, from 1 mW to 7 mW with 1 mW step; (c) experimental
bifurcation diagram recorded with a 5 GHz oscilloscope.
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Fig. 10. Bit Error Rate (BER) test withinary pseudo randommequence (Iength7} 1) at 3 Gb/s: (a) eye diagram for the direct transmission
without chaos encryption (BER 10~12); (b) eye diagram for the direct detectiory lan eavesdropper of the chaos encoded message
(BER > 10‘2); (c) eye diagram of the recoveredscorresponding to Bit Error Rate of ¢ 1079; and (d) RF spectra of the original binary
message (black), and the encoded one (spectral masking, grey trace).

Typical experimental encoding and decoding results at 3 Gb/s are depicted in Fig. 10. The message is obtained through a
direct laser diode modulation with & 2 1 binary pseudo random sequence. The masking efficiency is determined by adjusting
the relative message to chaos optical power, thus varying the parametéq. (5). Fore > 1.7, it was found that the chaotic
carrier was not strong enough to preventesairopping from direct detection of the teamitted signal, leading to a measurable
BER (in the order of 102). Fig. 10 was obtained with = 1.4, thus preventing bit recovery from direct detection, but also
leading to an acceptable BER for the authorized receivesafd 9. To the best of our knowledge, this setup currently achieves
the best results in terms of masking efficiency, decoding quality, and bit rate.

As already explained, security is here viewed as a compromise to be done between the masking efficiency and the BER i.e.,
the decoding quality (or BER quality). Howeya&leeper investigations are still negdto have a better understanding of the
correct confidentiality level that can be expected from this chaos-based encryption scheme. The next section is intended to give
directions to solve this problem.

4. Security issuesand future developments

The points we already explored concerning the problem of confidentiality are divided into two classes. On the one hand,
we investigated new physical situations to implement the chaos encryption principles described earlier; this concerns the
combination of coherence modulation principles together with a time delayed electro-optic chaos generator, and it also concerns
the exploration of new chaos generator architectures. On the other hand, we explored the possibility of extracting from the
transmitted signal — the one available to an eavesdropper —etaynuinism attached to the asgeneration process. If the
determinism of the chaos generator can thus be recovered, the eavesdropper would be able to construct his own decoder and
recover the message.
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Fig. 11. Chaotic encoding with coherence motiola (a): experimental setup, (b): originahd recevered sine waveform, (c): transmitted
intensity fluctuations and chaotic coherencedulated carrier, (d) spectrum of the transmittatemsity encoding the sine waveform, (e):
spectrum of the recovered sine signal.

4.1. Encoding chaotic architectures with enhanced security

Coherence modulation has been found to be a possible way to add a second security level at the physical layer of the
transmission system, complementary to the chaos encoding principle. This unusual optical modulation technique has been
known for a long time, but is not used in conventional fiber telecommunication systems. A typical coherence modulation
transmitter consists of (see Fig. 11(a)):

— A broadband optical emitter, such asupser luminescent diode, or amplifiegataneous emissioimstead of highly
coherent laser light.

— An unbalanced electro-optic interferometer e.g., a Mach—Zehnder modulator, whose static optical path difference (OPD)
is greater than the light source coherence length. Due to this, no detectable intensity modulation occurs in the presence of
an electro-optic modulation|taough a phase modulation is present in the tnaitted light beam. Virtually, the broadband
source can be viewed as a set of incoherent wavepackets, whose spatial extension is of the order of the source coherence
length. An unbalanced interferometer divides the input wavepackets into two at the output, the latter being separated by a
distance greater than the coherence length (thus preventing from any detectable interference).

The coherence demodulator consists of a second unbalanesféiometer, whose static OPD is adjusted to that of the
modulator: the OPD acts as an encoding key, without which demodulation cannot be performed. The demodulator interferometer
duplicates a second time the two input wavepackets, leading at its output to four wavepackets, two of them being separated by
twice the OPD, but the two others are superimposed, giving rise to an interference between them. If an electro-optic voltage
is applied to the modulator, the interference at the demoaluiatscanned according to the modulator voltage amplitude with
respect to the half wave voltage electro-optic device.

Combining the modulator and the demodatah a single emitter with an electro-tipfeedback and a time delay as shown in
Fig. 11 yields a chaotically coherenbaulated light beam at the moadibr output. The emitter anéceiver setup is depicted in
Fig. 11(a) [24], and the corresponding encoding and decoding signals and spectra are shown in Fig. 11(b)—(e). Besides the dual
security level proposed by the coherence modulation combined with the chaotic encoding, the main advantages of the setup are:

— its extremely good matching capability between the emitteraceiver components, thus léagd to an excellent decoding
quality (typical signal-to-noise better than 40 dB);

— its all-optical subtractiorcapability to extract the message, due to theirisic physical properties of the coherence
demodulation principles;

— its multiplexing capability due taoherence modulation properties (differ@hannels corresponding to different static
OPDs).
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Fig. 12. High dimensional, high speed, pbachaos: (a) experimental setup; (b) RF spectrum of the electronic feedback signal.

Unfortunately, a high bandwidth requires the use of nonconventional optical components for telecommunication, such as
high power broadband optical source, and high speed unbalanced integrated Mach—Zehnder modulators.

The advantage of this approach is itghiflexibility for testing newchaotic processes involving nonlinear delay systems
derived from the general scheme in Fig. 2(b). Such an approach is reported in [25], when two feedback loops comprising two
different time delays and two different nonlinear functions anesidered. The aim is to enhance the chaotic carrier complexity,
thus making more difficult any kind of time series analysis that might be use by an eavesdropper. Using a standard Lyapunov
dimension algorithm adapted for the hiple nonlinear delayed feedback loop, we @ibed greater atictor dimensions as
compared to the single feedback loop.

The Ikeda-type nonlinear dynamical system represents the simplest version for nonlinear delayed dynamics: its model
corresponds to a scalar first order delay efifintial equation. Vectorial models andra complex, but still deterministic,
dynamics could offer a higher degree of security. This issue has motivated recent investigations [26] on fiber cavity based
optoelectronic oscillators, as depicted in Fig. 12(a). At first sight, the setup seems very similar to Ikeda setup, since it consists
of an all-optical (fiber) ring cavity, and the phase modulation (electro-optically) is changed at each cavity round trip of the beam.
However, the physical phenomena ruling the dynamical behavior exhibit a great difference: the phase modulation is performed
at the input of the cavity, and not inside.

In order to observe inabilities in this oscillatorthe typical time scale fluctuations needs to be faster than the cavity round
trip time i.e., the cut-off frequency of the phase modulator has to be higher than the cavity free spectral range.

The mathematical model can be written in the same way as éwiopis nonlinear delay oscillator. The dynamical process is
supposed to be ruled by the impulse response of the electronic feedback, convolved by the detected optical intensity fluctuation
p3(t) at the input of the electronic feedback (the photodiode).

P4, Pa,,
(1) = Blhx p3l (1), Whereps(t)=ppo[x+(l—x)y 0 =2 Jyk(l—x) 0 Sm[‘ﬂ4,R+¢L_¢(f)]:|~ (7)

The last expression fgrz(¢) reflects the interference observed at port 3 of the fiber coupler. The two interfering beams are
formed by the cavity input light with a modulated phase) and a constant powery, and the delayed cavity feedback having
apowerps, = pat —tg)and a phase4TR = @4(t — TR). The latter two quantities are ruled by a 2D-mapping describing the
sequence of interferences inside the fiber cavity, thus distinguishing this chaotic phase dynamics as from lkeda dynamics:

P4, ba., .
pa) = ppo| L=k tyk— £ 42 [ykA—0)— sin(¢, — ¢(1) +¢a,, ) |-

T kY Da,, COd¢r — (1) + ¢4, ]
oa(t) = (1) + 7 —arcta T m}wgmm — ¢(r§ o }
TR R
The numerical results obtained with this dynamical modeMs a very good qualitative agreement with the experimental
observations.

Besides enhancing security through gredigramical complexity, we also started to@stigate the confidentiality of chaos
based encryption systems using a cryptanalytic approach.

®)

4.2. Cryptanalysis directions

Following the cryptanalysis approach, we assume that the system architecture is known (for example determined by a scalar
nonlinear delay differential dynamics as in Eq. (1)), and:ithmarameter settings used to generate the chaotic oscillations are
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unknown to the eavesdropper. One way for the eavesdropper to intervene is to perform an exhaustive search of all the exact
values(p;);—1ta:- This task is done within a volume of the parameter space; this volume corresponds to all the achievable
chaotic regimes:

V= / d" p;. 9
Chaos
A finite precision(§p;) is practically attached to each parameger that precision being determined by the minimum

parameter matching allowing a sufficient decoding qualityisTapproach leads to an equivalent number of necessary bits
quantifying the key space size:

[1idpi

For experimental systems, this calculation leads to a key size between 20 and 25 bits, which is relatively small as compared
with the several hundreds bits key size used in algorithm based encryption techniques. However, this rough approach gives only
a minimum equivalent key size, which is not realistic due to the physical nature of chaos. A more realistic approach should
consider the following:

N = log, v (10)

— The physical signal has to be analyzed in the analogue world, since we are dealing with very fast analogue signals, which
are difficult to process numerically (a multi GHz signal sampling is required, thus also introducing noise in the data).

— The nonlinear function, as already stated, can be chosendrbuge set of posslties, which is not considered by the
previous cryptanalytic approach, since this function is assumed to be fixed. Considering a system governed by Eq. (7) and
(8) would significantly increase the complexity of the required computation.

— The assumption of scalar nonlinear delay dynamics does not match the most recent ultra fast chaos generators now used
in effective experimental deomstrators. Multiple delays dmultiple feedbackoops should be consided, which makes
also the analysis much more difficult.

To the best of our knowledge, no efficient cryptanalysis method has been found yet, but only a few papers have reported
such analyses. Among these papers, successful results were obtained under quite restricted situations, such as low dimensional
dynamics [27], or low nonlinear process authorizing linear approaches [28].

However, an interesting direction should be investigated more deeply, using nonlinear time series analysis techniques in
order to recover the dynamics determinism [29]. These analysis tools have been used to investigate single extremum nonlinear
delay dynamics so far. They begin to be used to break mukipieema systems, as well as fmultiple delay and multiple
nonlinear function delay dynamics, but so far those methods have failed (although they were successfully used to break low
complexity systems with a single extremum).

5. Conclusions

A generalized nonlinear delayed differential dynamics based on the Ikeda ring cavity principle has been described,
together with its application to secure communications using a chaotic carrier for optical telecommunications. Practical
implementations and performance of the whole encryption system have been reported through different experimental situations
involving different dynamical variables (wavelength, intensity, coherence modulation, optical phase) and different performances
(encoding speed, decodirguality, masking capabilitylynamics complexity). Td architecture baseon an electro-optical
nonlinearity performed by LiNb@integrated optics components succeeded in demonstrating a record encryption speed for a
digital pseudo random sequence at 3 Gb/s. Improvements are in progress in view of several 10 s of Gb/s. Enhanced architectures
for chaos generation have also been proposed, in order to impoavelexity and confidatiality. One of the open problems that
remains partly unsolved is the evaluation of the security level, which is extremely high in the various cases discussed previously.
This problem has been addressed, giving directions for solving that important issue.
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