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Abstract

The pionneering work of Ikeda initiated the investigation in Optics of dynamicalsystems described by nonlinear delay
differential equations (NLDDEs). Our group has developed in optoelectronics similar dynamical systems intended for
implementation of chaos-based encryption demonstrators. Different set-ups have been implemented making use of var
optical variables, such as the wavelength, the intensity, the optical path difference or the optical phase, each of them
different advantages (chaos complexity, encryption speed, masking efficiency, encryption key size). A general archit
NLDDE chaos generators and some of their related dynamical properties are reported, as well as the implementation i
encryption systems using chaotic dynamics. Security issues, performance, and future developments of those system
addressed.To cite this article: L. Larger et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dynamiques non linéaires à retard d’Ikeda appliquées à un système de transmission optique sécurisé par chaos.
Les travaux précurseurs d’Ikeda ont marqué le début de l’exploration en optique des systèmes dynamiques décri
équations différentielles non linéaires à retard (EDNLR). Notre groupe s’est inspiré de ces travaux pour mettre
en optoélectronique des démonstrateurs de systèmes cryptographiques par chaos. Plusieurs montages expérimen
mis au point à partir de variables dynamiques physiques différentes, comme la longueur d’onde, l’intensité, la diffé
chemin optique, ou encore la phase optique, chacune d’elles présentant des propriétés particulières (la complexité d
vitesse de codage, l’efficacité de masquage, ou encore la taille de la clé de cryptage). Une architecture générale de
d’EDNLR est présentée, ainsi que son principe d’implémentation dans un système complet de cryptographie par ch
les télécommunications optiques. Les problèmes de sécurité, les performances, et les développements à venir de
systèmes sont évoqués.Pour citer cet article : L. Larger et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Nonlinear delay differential dynamics have known a growing interest in the last 25 years in Optics, through nu
theoretical, numerical, and experimental investigations [1–4]. These dynamics were explored at the early beginning m
fundamental interests [5,6]. Such an interest is due to, among other reasons, an amazing feature: these dynamical syst
extremely complex chaotic behaviour (with arbitrarily high attractor dimension), although their mathematical descript
be as simple as a scalar first order differential equation:

y(t) + τ · dy

dt
(t) = β · f [

y(t − τR)
]
. (1)

A rapid analysis of Eq. (1) highlights some of the most important properties of such dynamics. The left-hand side is
of a stable linear first order dynamics, with a characteristic response timeτ ; its role is only to limit the fastest oscillations tim
scale. The right-hand side contains a nonlinear functionf [·] applied to the delayed dynamical variabley(t − τR); the nonlinear
function is practically bounded for physical reasons. The delay forces the natural dynamic phase space to be infinite dim
instead of a single initial conditiony(t0) as usually required for a first order differential equation to determine a sol
uniquely, an infinite number of values is needed to define the necessary functionaly(t) over the time interval[t0 − τR; t0]. The
importance of the role of the nonlinear transformation in the high complexity chaotic behavior [6] is determined by tw
factors (see Fig. 1):

– its strength, through the amplitude of the magnification factorβ (usually considered as the bifurcation parameter);
parameter can be considered as a weight of the nonlinear delayed feedback terms in the dynamical process, thus
the amplitude�y of the dynamical variable; the role ofβ is typically the stretching operation usually of concern in cha
dynamics;

– the number of extrema off [·] concerned by the fluctuation interval�y; in that interval,f [·] can be approximated b
a polynomial function of orderN , whereN could be a measure of the actual nonlinear function complexity conce
by a given dynamical regime; the role of the extrema is typically the folding operation, which is also required in
dynamics, together with the stretching operation; forN = 2 (the equivalent polynomial function is a parabola), one co
find many similar behaviors in the solutions of Eq. (1), with respect to the well known logistic map [9].

Both of these, the nonlinear transformation (magnified by a factorβ, bounded, and at least with one extremum), and
delay (usually much greater thanτ ) are the key elements in the generation of a high dimensional chaotic process. They
major role for the security when encryption using chaos is of concern. A major advantage of Optics, is their easy expe
implementation.

Independently of the interest in time delay dynamics initiated in 1979 in Optics, a particular application of nonlinea
dynamic appeared in the early 1990s [7,8]: secure communications using chaotic waveforms. The feasibility was demonstrate
using electronic circuits, which were used for the generation of chaotic dynamics modeled by ‘standard’ nonlinear
differential equations. Although the demonstration was successful, these electronic set-ups were plagued by a low d
complexity, which consisted in a weakness in terms of encryption efficiency. Due to their extreme intrinsic comple
well as their attractive feature in view of modern high speed optical telecommunications, delay systems in Optics bec
interesting candidates for exploring encryption using chaos [10–17]. This article reviews the research activities on chaos ba
communications developed by our group, making use of the particular Ikeda–type nonlinear delay dynamics to genera

After a first analysis of the physical principles and some of the mechanisms involved in the precursor setup of th
ring cavity, a general architecture is deduced for generating experimentally nonlinear delay differential dynamics. Us

Fig. 1. Important properties of the nonlinear function acting on the delayed variable in Eq. (1).
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chaos generators, a particular concept for implementing a chaos-based encryption system is reported. Illustrations are g
through different optoelectronic setups and experimental characterizations, in terms of nonlinear dynamics, and also i
chaotic secure communication. Security issues and future developments of the Ikeda setups for chaotic secure communica
are developed in the last section.

2. From the Ikeda ring cavity to chaos-based communication

2.1. The Ikeda setup, its dynamics and complexity

The brain experiment imagined by Kensuke Ikeda in 1979 is depicted in Fig. 2(a). It consists in:

– An input laser beam with constant optical intensityI0; this quantity is an important parameter for the tuning of a gi
dynamical regime observed at the system output. The coherence of the laser light ensures the existence of int
between the input light beam, and the one fed back by the cavity after one round trip.

– A ring cavity comprising two partial reflecting mirrors, one for the input and one for the output. The lengthL of the cavity
determines a round trip time of the light beam, which defines the delayτR = L/c (wherec is the velocity of light). Intensity
and/or phase modulation observed at the cavity output is thus fed back to the cavity input with a delayτR .

– A 2-level atomic cell, in which light–matter interaction occurs. In a simplified model, only the Kerr effect is consi
Under these conditions, the phase of the light beam propagating through the cell is changed proportionally to its
Iin(t). This phase change is expressed as 2π n2 Iin(t) l/λ, wherel is the medium length,λ is the laser wavelength, andn2
is the Kerr refractive index coefficient. Notice also that the dynamics of this light–matter interaction is extremely fa
it is determined by the level lifetimeτ of the atomic cell, thus leading to dynamical fluctuations much faster than the r
trip time τR .

– At the atomic cell input, a two-wave interference occurs between the constant intensity cavity input beam, and t
cavity feedback beam, whose phase is determined by theτR -previous intensity interference through the Kerr effect in
atomic cell.

The dynamics of the cavity output intensityI (t, I0) can then be described by the nonlinear delay differential equatio
Eq. (1), in which the nonlinear function corresponds to the transformation law of the input phase into an output inten
intensity of a two-wave interference figure, typically the sin2-curve shown in Fig. 1).

According to this description, the physical setup appears as an oscillator, with a feedback loop comprising a stron
nonlinearity (β f (x)), and a delay (τR ). This delay is large compared to the characteristic response time (τ ) of the limiting
dynamics. A block diagram can then be used to generalize this oscillation principle, as depicted in Fig. 2(b). The linear tunin
is representative of the optical phase change rate with respect to the optical intensity through the Kerr effect. The
transformationf (x) is physically generated by the interference after the optical feedback at the cavity input. The cavity
determines the delayτR , and the dynamics limitation is fixed by the atomic cell level lifetimeτ .

A first and simple approach to the oscillator dynamics in the case of large delays (τR � τ � 0) usually involves the adiabati
approximation. It consists in neglecting the derivative term in Eq. (1). The continuous time dynamics is then expre
discrete time dynamics, for which the time evolution is a sequence of discrete values of the dynamical variabley over the time
interval τR . Labelling eachτR–time interval with an integern, the dynamics are reduced to a 1D-mappingyn+1 = β · f (yn)

(wheref is similar to the plot in Fig. 1). The oscillator feedback is then equivalent to an iteration process, returning the
axis valueyn+1 onto the horizontal axis. This operation can be represented graphically with the first bisector straightline
intersects the nonlinear function at the steady states values (defined as the solutions ofys = β f (ys)). The stability of these
steady states can be determined by a first order analysis, leading to the following result: the steady state is stable if th

Fig. 2. The Ikeda ring cavity: (a) the experiment; (b) a block diagram interpretation.
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Fig. 3. Bifurcation diagrams for (a) the sin2-map; (b) the logistic map; and (c) experimental sin2-delay differential dynamics.

Fig. 4. Lyapunov exponents and dimension calculation from the Ikeda dynamical model: (a) Lyapunov spectrum in the chaotic regime
β = 20.5, Φ = 2.1 andτR/τ = 60; (b) Lyapunov dimension calculation in the(β,Φ)-plane.

value of the slope|f ′(ys)| is lower than 1, otherwise it is unstable. Increasing the feedback gainβ (or the slope of the linea
tuning element in Fig. 2(b)) changes the number of the steady states, as well as the slope, at these positions. This is
why β is usually considered as a bifurcation parameter of the system. For low values ofβ, a single steady state exists and
necessarily stable. When increasingβ, the steady states loses their stability and periodic regimes are observed. For suffi
large values ofβ, high complexity chaotic regimes are observed. They are the regimes of interest for chaos encrypt
the bifurcation diagram in Fig. 3(a)). Between the low and highβ-values, a period doubling route to chaos is observed w
increasingβ, in a way similar to that of the well-known logistic map (Fig. 3(b)) [9].

When comparing the two first bifurcation diagrams, it canbe qualitatively noticed that the multiple extrema nonlinea
function allows a broad range of values for the bifurcation parameter, and high complexity chaotic dynamics are obta
the other hand, the parabola has a very limited range of chaotic regime due to the single extremum. This property
both to the unbounded character of the parabola and to the single extremum character. The case of a delay dynami
involving a bounded nonlinear function with a single extremum has been intensively studied in the literature; it is referred as th
Mackey–Glass model in Medicine, which describes hematological disorder [18]. It was shown that a limited complex
can be obtained for high values of the bifurcation parameterβ, unlike the Ikeda model, which differs by the single extrem
nature of the nonlinear function (f (y) = y/(1 + y10)). This result confirms that the Ikeda model with its multiple extre
nonlinear function is a good candidate for chaos generation dedicated to encryption.

The actual dynamics complexity of the Ikeda model is even better when considering a non–zero response timτ . The
dynamics is thus no longer a discrete mapping, it has to fluctuate continuously in time according to Eq. (1). An expe
bifurcation diagram of such a continuoustime delay dynamics is represented in Fig. 3(c). The qualitative profile of the
bifurcation diagram is not dramatically changed compared to the discrete time case (Fig. 3(a)), however the d
complexity is strongly improved. The phase space dimension of the dynamical system is indeed increased from 1 to infi
definition and the measure of the actual complexity of such nonlinear delayed systems is not yet a solved problem. Howe
there exists a computation method intended to evaluate this complexity in terms of the finite attractor dimension [5
applied to the Ikeda dynamics [6], this method gives the Lyapunov spectrum of a given chaotic regime in a recon
phase space of finite dimension. Such a spectrum is represented in Fig. 4(a) for parameter values related to a real ex
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situation. The spectrum plots the Lyapunov exponents arranged in decreasing order. Each exponent is represent
expanding (if it is positive) or contracting (if it is negative) direction along the chaotic trajectory in the reconstructed
space. From this spectrum, one can calculate a Lyapunov dimension, which is conjectured to be equal to the inf
dimension of the chaotic regime [19]. For the example represented in Fig. 4(a), the numerous positive exponents
Lyapunov dimension as high as 470, thus indicating a high complexity for the chaotic regime. A 3D Lyapunov dim
calculation is also given in Fig. 4(b) for the same dynamics, in the(β,Φ) parameter plane. It shows the wide parameter ra
for which high complexity chaos can be obtained (dimensions greater than 50, even for smallβ-values).

The Lyapunov dimension is an interesting parameter to consider in terms of chaos complexity. However, it
dependence with the ratioτR/τ ([6]) reveals a default of relevance, since the increase of the delay does not implies an in
of the number of parameters needed to define the dynamics (only the value of the delay is modified); a larger delay
the required number of initial conditionsneeded to determine a givensolution of the dynamics, thus measuring the ‘mem
size’ of the delayed dynamics. The Lyapunov dimension, however, also increases linearly with the feedback gainβ in the case
of a multiple extrema nonlinear function. Thissituation, in the contrary of the delay dependence, represents an actual incre
of complexity. The exact shape of the additional extrema contributing to the dynamics, is indeed required to determin
the dynamics corresponding to a largerβ. To distinguish this fundamental difference between the delay dependence a
feedback gain dependence, the Lyapunov entropy appears to be a much better indicator than the Lyapunov dimen
entropy saturates with the increase of the delay above a certain value, whereas it increases linearly withβ, as long as theβ
increase implies an increase of the number of extrema participating to the chaotic dynamic (and hence the number
dynamical processes); typically the entropy also saturates inβ with the Mackey–Glass dynamics, which involves a sin
extremum nonlinear function, even for high values ofβ.

For the previous fundamental reasons, Ikeda-based dynamics dedicated to chaos encryption must involve a
function f (y) with a high number of extrema, as far as security aspects are related to chaos complexity. Such a sit
effectively met with the Ikeda dynamics for highβ-values (typically> 5).

2.2. Encoding and decoding technique

The complex chaotic regimes required for chaos communication are generated using nonlinear delay dynamics as
in the previous section. In order to present the encoding and decoding technique typically used in our experiments
use first an open loop chain representation as depicted in Fig. 5(left). The different elements required for a nonlinea
dynamics are gathered into a single block labelled as NLDDP, standing for nonlinear delayed dynamical process.

When the NLDDP output is fed back to its input as done at the emitter side, we obtain the nonlinear delayed oscillato
that generates the chaotic waveform (see Fig. 5(right)). To mix a messagem(t) within the chaotic carrier, we add it inside th
oscillation loop. The message thus participates to the chaotic oscillation,with an influence depending on its relative weight w
respect to the chaos. The relative amplitude of the message with respect to that of the chaos determines the so–calle
efficiency. A high masking efficiency corresponds to a well hidden message inside the chaos, and at the same time
perturbed chaos. The sum (chaos+ message) is fed back to the input of the NLDDP, and also serves as the transmitted sign
Notice that there exists practically several encoding configurations by simply changing the message mixing point [
respect to the different elements constituting the NLDDP. For sake of simplicity, only the additive dynamical variable case
explained and illustrated in Fig. 5.

On the receiver side, the NLDDP is reproduced physically, but in an open loop configuration. Its input correspond
received signal i.e. the message masked by the chaos. According to the analogy between the emitter and receiver ar
the output of the receiver NLDDP replicates the same chaotic waveform as that in the emitter. This is sometimes also ca
‘chaos synchronization’, although ‘chaos replication’ reflects better the phenomenon, since the open loop receiver c
generate any chaotic waveform without its input signal. Subtracting the replicated chaos from the received signal allow
recover the information message.

Fig. 5. Encoding and decoding. Left: open loop system approach defining a global nonlinear delayed dynamical process, right: mess
encryption and extraction schemes.
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To demonstrate the decoding,the input / output transfer function of the NLDDP is written here in the time domain usin
an integral representation of the dynamics, instead of the differential one as in Eq. (1). This involves the impulse resph(t)

of the corresponding linear differential operator. In the case of a first order differential process, Id+ τ(d/dt) corresponds to
h(t) = e−t/τ u(t), whereu(t) is the Heaviside function. For a realistic higher order linear dynamical process,h(t) takes a more
complicated form. The integral representation allows one to express the instantaneous dynamical variabley(t) as the result of a
convolution product of its delayed nonlinear transformationf [y(t − τR)] with the impulse responseh(t) of the linear feedback
filtering process. The transmitted encrypted signals(t) is then written as follows:

s(t) = β
[
hθ � f (sθ−τR

)
] + m(t) = β

t∫
t0

h(t − θ)f
[
x(θ − τR)

]
dθ + m(t) = y(t) + m(t). (2)

The chaotic signal generated at the receiver can be similarly written as:

y′(t) = β′[h′
θ � f ′(sθ−τ ′

R
)
] = β′

t∫
t0

h′(t − θ)f ′[s(θ − τ ′
R)

]
dθ. (3)

For perfect matching conditions between the emitter and receiver elements (h = h′, f = f ′, β = β′ andτR = τ ′
R ), it is easy

to see from Eqs. (2) and (3) that the receiver is able to replicate exactly the chaotic oscillations of the emitter. The messa
m(t) is obtained straightforwardly when subtracting the generated chaosy′(t) from the received ones(t). In more realistic
situations, any parameter mismatch between the emitter and receiver leads to an unavoidable decoding noise, which lim
decoding quality of the extracted message. For a given minimum required decoding quality, one finds a corresponding maximu
threshold of the masking efficiency at the emitter (relative amplitudes of the message and of the chaotic carrier).

Experimental realizations of the previously defined chaos generator architecture, and encoding–decoding schem
described in the next section.

3. Optoelectronics set-ups, experimental results

The main drawback for an experimental implementation of the Ikeda ring cavity for encryption by chaos, is the low
efficiency of the interference condition due to the Kerr effect. Alarge variation of the interference condition would require hig
optical energy levels, which are not usually met in optical telecommunication systems. Following the same idea to per
nonlinear function through a tunable interference condition, we have:

f [y] = sin2(π�/λ), (4)

wherey represents the dynamical variable used to change the interference condition, which can be either related to the opt
path difference�, or to the laser wavelengthλ. In the Ikeda setup, the dynamical variable is�(I) = (n0 + n2I )L, and it varies
linearly with an optical intensity through the Kerr refractive index coefficientn2. In the wavelength chaos generator depicted
Fig. 6, the interference is varied using small wavelength variations,λ(t) = λ0 + δλ(t).

A DBR double electrode wavelength tunable semiconductor laser is used in order to adjust the laser waveleng
a few nm aroundλ0 = 1.55 µm, according toδλ = SλiDBR. As depicted in Fig. 6, a 6 cm-long calcite slab (� � 1 cm)

Fig. 6. Emitter–encoder and receiver–decoder using a wavelength chaos generator.
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Fig. 7. Encoded and decoded signals with wavelength chaos. Upper: time traces, lower: corresponding spectra.

placed between two crossed polarizers is used as a birefringent interferometer, whose output interference is scanned
to the laser wavelength. Notice that any other spectral filtering (e.g. a more complex multiple wave interference fi
a Fabry-Pérot) can be used to perform the nonlinear transformation, as long as the filter profile exhibits extrema w
wavelength tuning range of the laser. The 1.5 nm continuous range allows one to scan more than 12 extrema of a
function as depicted in Fig. 1. The resulting intensity is detected by a photodiode, from which the electrical signal is delayed by
τR = 512 µs with an electronic delay line. After amplification and filtering with an electronic first order low pass filter of cut-o
frequencyfc = 1/2πτ = 18 kHz, the resulting signal serves as the input current for the laser wavelength tuning. Anelectronic
adder allows one to hide a small amplitude messageim into the large amplitude chaotic feedback currentifb. The output signa
consists of a chaotically wavelength modulated laser beam masking a small message, which is transmitted to the receiver.
decoder consists in two branches. One is dedicated to a linear wavelength detection (e.g. a spectral filter operating
linear part), thus providing at the output of a photodiode an electronic signal proportional to the chaotic fluctuations hi
message. The other branch replicates the same NLDDP as in the emitter, thus reproducing the same chaotic fluctuations withou
the message. A subtraction is used to extract the message.

Due to the unavoidable mismatch between the emitter and receiver parameters, a chaotic decoding noise is obse
receiver. The fine parameter tuning is important, firstly to recover the message, and secondly to improve the quality of the
recovered signal. Matching the delayτR at the emitter and receiver is well known to be a very sensitive operation, sin
some cases, only a 0.1% relative error on the parameter adjustment at the receiver can induce a decoding error lar
to make the message recovery impossible. Typical analogue encoded and decoded sine waveforms are reported in
transmitted signal (left traces) has noise-like temporal fluctuations (upper), and a nice flat spectrum (lower) that does not re
the hidden message frequency (whose position is indicated by the cursor). The decoded message (right traces) sho
the original sine waveform in the time domain, with a slight noise superimposed to it. The corresponding spectrum
signal-to-noise ratio of about 20 dB in the decoding process.

Due to technological and physicalreasons, the wavelength setup does not offer an attractive potential for the multi-Gbit/s
optical communications. The wavelength tuning speed is indeed limited to less than 150 MHz, and the large wa
fluctuations would also cause transmission quality degradation due to dispersion effects. Thus, other experimental
have been explored following the same principles, but seeking for faster dynamical processes. The idea is still based on an
type dynamics for the chaos generation, and the same encoding and decoding scheme as in Fig. 5(b). Instead of using
modulation, a faster process based on electro–optic effects was chosen to modulate the optical path difference� in Eq. (4).

The most straightforward way to modulate electro-optically an optical interference is to choose a component wid
in ultra fast fiber telecommunication systems, the electro-optic Mach–Zehnder modulator. Such integrated optics compon
in lithium niobate (LiNbO3) are commercially available for bit rate up to 40 Gb/s. Those devices are usually opera
a weak nonlinear operation, since the applied voltage is typically intended to encode bits 0 and 1 through the s
between destructive and constructiveinterference conditions. The correspondingvoltage switching amplitude is calledVπ ;
it can be practically as low as a few Volts for integrated optics components. However, operating with a larger voltag
enables one to scan practically at least 2 to 3 extrema of the interference transfer function, thus performing a highly
transformation suitable for high complexity dynamics in a time delay system. An intensity chaos generator can be co
similarly to the wavelength chaos generator. The setup is actually known for more than 20 years and has been u
electro-optic demonstrator for the Ikeda ring cavity instabilities [21]. We revisited the setup as depicted in Fig. 8
demonstration of chaos encoding and decoding of optical information for ultra-high bit rate fiber transmission systems.
unsuccessful attempts [22] or performance limited realizations [23] with a similar electro-optic setup brought us to the fo
setup modification: the message is added optically to the chaotic carrier at the output of the Mach–Zehnder modula
characteristic has important consequences:
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Fig. 8. Multi-Gbits/s intensity chaos encoder and decoder.

(i) Note that the optical chaotic carrier produced by the Mach–Zehnder interferometer features an RF spectrum mu
than the 6 GHz-electrical RF spectrum observed for the voltage at the Mach–Zehnder input electrode. This is e
by the multiple extrema nonlinearity actually scanned in large amplitude chaotic regime. This spreading can be eas
observed directly on the optical spectrum, and is measured to be greater than 30 GHz. This allows several 10 Gb/
capability for the setup in Fig. 8.

(ii) The message bandwidth is intrinsically independent of the chaos generator bandwidth due to the all-optical m
the fiber coupler. In order to mask properly the message, the chaotic carrier spectrum has however to be at lea
as the message spectrum, which defines a limit on the actual efficient message encoding speed, depending on
bandwidth.

(iii) Under these conditions and assumingemitter/receiver matching is achieved,the encoding/decoding bandwidth capability
of the system is limited by the photodiodes bandwidth PD+ and PD−, and of the power combiner bandwidth only, mean
that the encryption bandwidth can be much larger than that of the electro-optic modulator used. This is a great adv
view of high speed encryption systems. Also notice that subtraction between the detected ‘chaos+ message’ signal (se(t))
and the receiver generated chaotic signal is performed experimentally through an adequate biasing of the Mach
such that the receiver nonlinear function corresponds to the opposite of that in the emitter. The subtraction is obtained
the power combiner output (electric adder).

According to the previous remarks, the modeling of the intensity chaos encoder and decoder is slightly modified with
to Eqs. (2) and (3). The emitter and receiver equations should, in this case, be changed into:

x(t) = β
{
hθ �

[
f (xθ−τR

) + αm(θ)
]} = β[h � s](t), (5)

wheres(t) = f [x(t − τR)] + αm(t) is the transmitted signal from the emitter. At the receiver side, the locally generated cha
without the message is

s′(t) = f ′[y′(t − τ ′
R)

]
with y′(t) = β′[h′ � s](t). (6)

Decoding is performed by adding electronicallys(t) ands′(t), and for a proper tuning of the Mach–Zehnder bias so
f ′[·] = C − f [·]. Since the detectorsPD− and PD+ are not DC sensitive, the output signal is directly proportional to
messagem(t).

The main feature of the device compared with the wavelength chaos generator and the Ikeda model, consists in
bandpass nature of the dynamical process. Usually in most of the ultra wide band communication systems, the low fre
are filtered out by the electronic feedback, thus yielding a bandpass dynamical behavior. The process involved in the
feedback is therefore fundamentally different, as well as the dynamical trajectories that can be observed on the b
diagram in Fig. 9(c) (to compare with Fig. 3(c)). The fundamental properties of such bandpass nonlinear delayed d
are not widely known yet, although they should reveal very interesting phenomena. From our encryption point of vi
numerical calculations tend to show that for an equal bandwidth, the bandpass systems exhibit greater Lyapunov d
than the low pass ones. The chaos encryption system in Fig. 8 also takes advantage of this situation.
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Fig. 9. Dynamical properties of the intensity chaos setup: (a) RF spectrum of the chaotic optical carrier spread by the nonlinear function
filtered by a 10 GHz photodiode; (b) optical spectrum for increasing CW laser power, from 1 mW to 7 mW with 1 mW step; (c) experimen
bifurcation diagram recorded with a 5 GHz oscilloscope.

Fig. 10. Bit Error Rate (BER) test withbinary pseudo randomsequence (length 27 − 1) at 3 Gb/s: (a) eye diagram for the direct transmiss
without chaos encryption (BER< 10−12); (b) eye diagram for the direct detection by an eavesdropper of the chaos encoded mes
(BER> 10−2); (c) eye diagram of the recovered bits corresponding to Bit Error Rate of 7× 10−9; and (d) RF spectra of the original bina
message (black), and the encoded one (spectral masking, grey trace).

Typical experimental encoding and decoding results at 3 Gb/s are depicted in Fig. 10. The message is obtained
direct laser diode modulation with a 27 −1 binary pseudo random sequence. The masking efficiency is determined by ad
the relative message to chaos optical power, thus varying the parameterα in Eq. (5). Forα > 1.7, it was found that the chaoti
carrier was not strong enough to prevent eavesdropping from direct detection of the transmitted signal, leading to a measurab
BER (in the order of 10−2). Fig. 10 was obtained withα = 1.4, thus preventing bit recovery from direct detection, but a
leading to an acceptable BER for the authorized receiver of 7×10−9. To the best of our knowledge, this setup currently achie
the best results in terms of masking efficiency, decoding quality, and bit rate.

As already explained, security is here viewed as a compromise to be done between the masking efficiency and the
the decoding quality (or BER quality). However, deeper investigations are still needed to have a better understanding of t
correct confidentiality level that can be expected from this chaos-based encryption scheme. The next section is intend
directions to solve this problem.

4. Security issues and future developments

The points we already explored concerning the problem of confidentiality are divided into two classes. On the on
we investigated new physical situations to implement the chaos encryption principles described earlier; this conc
combination of coherence modulation principles together with a time delayed electro-optic chaos generator, and it also
the exploration of new chaos generator architectures. On the other hand, we explored the possibility of extracting
transmitted signal – the one available to an eavesdropper – any determinism attached to the chaos generation process. If th
determinism of the chaos generator can thus be recovered, the eavesdropper would be able to construct his own d
recover the message.
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Fig. 11. Chaotic encoding with coherence modulation. (a): experimental setup, (b): originaland recevered sine waveform, (c): transmitt
intensity fluctuations and chaotic coherence modulated carrier, (d) spectrum of the transmitted intensity encoding the sine waveform, (e
spectrum of the recovered sine signal.

4.1. Encoding chaotic architectures with enhanced security

Coherence modulation has been found to be a possible way to add a second security level at the physical lay
transmission system, complementary to the chaos encoding principle. This unusual optical modulation technique
known for a long time, but is not used in conventional fiber telecommunication systems. A typical coherence mo
transmitter consists of (see Fig. 11(a)):

– A broadband optical emitter, such as a super luminescent diode, or amplified spontaneous emission,instead of highly
coherent laser light.

– An unbalanced electro-optic interferometer e.g., a Mach–Zehnder modulator, whose static optical path differenc
is greater than the light source coherence length. Due to this, no detectable intensity modulation occurs in the pr
an electro-optic modulation, although a phase modulation is present in the transmitted light beam. Virtually, the broadban
source can be viewed as a set of incoherent wavepackets, whose spatial extension is of the order of the source
length. An unbalanced interferometer divides the input wavepackets into two at the output, the latter being separ
distance greater than the coherence length (thus preventing from any detectable interference).

The coherence demodulator consists of a second unbalanced interferometer, whose static OPD is adjusted to that of
modulator: the OPD acts as an encoding key, without which demodulation cannot be performed. The demodulator inter
duplicates a second time the two input wavepackets, leading at its output to four wavepackets, two of them being sep
twice the OPD, but the two others are superimposed, giving rise to an interference between them. If an electro-opti
is applied to the modulator, the interference at the demodulator is scanned according to the modulator voltage amplitude
respect to the half wave voltage electro-optic device.

Combining the modulator and the demodulator in a single emitter with an electro-optic feedback and a time delay as shown
Fig. 11 yields a chaotically coherent modulated light beam at the modulator output. The emitter and receiver setup is depicted i
Fig. 11(a) [24], and the corresponding encoding and decoding signals and spectra are shown in Fig. 11(b)–(e). Beside
security level proposed by the coherence modulation combined with the chaotic encoding, the main advantages of the

– its extremely good matching capability between the emitter andreceiver components, thus leading to an excellent decodin
quality (typical signal-to-noise better than 40 dB);

– its all-optical subtractioncapability to extract the message, due to the intrinsic physical properties of the coheren
demodulation principles;

– its multiplexing capability due tocoherence modulation properties (different channels corresponding to different sta
OPDs).
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Fig. 12. High dimensional, high speed, phase chaos: (a) experimental setup; (b) RF spectrum of the electronic feedback signal.

Unfortunately, a high bandwidth requires the use of nonconventional optical components for telecommunication,
high power broadband optical source, and high speed unbalanced integrated Mach–Zehnder modulators.

The advantage of this approach is its high flexibility for testing newchaotic processes involving nonlinear delay syste
derived from the general scheme in Fig. 2(b). Such an approach is reported in [25], when two feedback loops compr
different time delays and two different nonlinear functions are considered. The aim is to enhance the chaotic carrier comple
thus making more difficult any kind of time series analysis that might be use by an eavesdropper. Using a standard L
dimension algorithm adapted for the multiple nonlinear delayed feedback loop, we obtained greater attractor dimensions a
compared to the single feedback loop.

The Ikeda–type nonlinear dynamical system represents the simplest version for nonlinear delayed dynamics:
corresponds to a scalar first order delay differential equation. Vectorial models and more complex, but still deterministic
dynamics could offer a higher degree of security. This issue has motivated recent investigations [26] on fiber cavi
optoelectronic oscillators, as depicted in Fig. 12(a). At first sight, the setup seems very similar to Ikeda setup, since i
of an all-optical (fiber) ring cavity, and the phase modulation (electro-optically) is changed at each cavity round trip of th
However, the physical phenomena ruling the dynamical behavior exhibit a great difference: the phase modulation is p
at the input of the cavity, and not inside.

In order to observe instabilities in this oscillator,the typical time scale fluctuations needs to be faster than the cavity r
trip time i.e., the cut-off frequency of the phase modulator has to be higher than the cavity free spectral range.

The mathematical model can be written in the same way as the previous nonlinear delay oscillator. The dynamical proces
supposed to be ruled by the impulse response of the electronic feedback, convolved by the detected optical intensity fl
p3(t) at the input of the electronic feedback (the photodiode).

φ(t) = β[h � p3](t), wherep3(t) = ρp0

[
κ + (1− κ)γ

p4τR

p0
− 2

√
γ κ(1− κ)

p4τR

p0
sin

[
ϕ4τR

+ φL − φ(t)
]]

. (7)

The last expression forp3(t) reflects the interference observed at port 3 of the fiber coupler. The two interfering bea
formed by the cavity input light with a modulated phaseφ(t) and a constant powerp0, and the delayed cavity feedback havi
a powerp4τR

= p4(t − τR) and a phaseϕ4τR
= ϕ4(t − τR). The latter two quantities are ruled by a 2D-mapping describing

sequence of interferences inside the fiber cavity, thus distinguishing this chaotic phase dynamics as from Ikeda dynam

p4(t) = ρp0

[
1− κ + γ κ

p4τR

p0
+ 2

√
γ κ(1− κ)

p4τR

p0
sin

(
φL − φ(t) + ϕ4τR

)]
,

ϕ4(t) = φ(t) + π

2
− arctan

{ √
κγp4τR

cos[φL − φ(t) + ϕ4τR
]√

(1− κ)p0 + √
κγp4τR

sin[φL − φ(t) + ϕ4τR
]
}
. (8)

The numerical results obtained with this dynamical model show a very good qualitative agreement with the experime
observations.

Besides enhancing security through greaterdynamical complexity, we also started to investigate the confidentiality of chao
based encryption systems using a cryptanalytic approach.

4.2. Cryptanalysis directions

Following the cryptanalysis approach, we assume that the system architecture is known (for example determined b
nonlinear delay differential dynamics as in Eq. (1)), and then parameter settings used to generate the chaotic oscillation
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unknown to the eavesdropper. One way for the eavesdropper to intervene is to perform an exhaustive search of all
values(pi)i=1ton. This task is done within a volume of the parameter space; this volume corresponds to all the ach
chaotic regimes:

V =
∫

Chaos

dnpi . (9)

A finite precision(δpi ) is practically attached to each parameterpi , that precision being determined by the minimu
parameter matching allowing a sufficient decoding quality. This approach leads to an equivalent number of necessary
quantifying the key space size:

N =
∑
i

log2
V∏
i δpi

. (10)

For experimental systems, this calculation leads to a key size between 20 and 25 bits, which is relatively small as c
with the several hundreds bits key size used in algorithm based encryption techniques. However, this rough approach
a minimum equivalent key size, which is not realistic due to the physical nature of chaos. A more realistic approach
consider the following:

– The physical signal has to be analyzed in the analogue world, since we are dealing with very fast analogue signa
are difficult to process numerically (a multi GHz signal sampling is required, thus also introducing noise in the dat

– The nonlinear function, as already stated, can be chosen from a huge set of possibilities, which is not considered by th
previous cryptanalytic approach, since this function is assumed to be fixed. Considering a system governed by E
(8) would significantly increase the complexity of the required computation.

– The assumption of scalar nonlinear delay dynamics does not match the most recent ultra fast chaos generators
in effective experimental demonstrators. Multiple delays and multiple feedbackloops should be considered, which makes
also the analysis much more difficult.

To the best of our knowledge, no efficient cryptanalysis method has been found yet, but only a few papers have
such analyses. Among these papers, successful results were obtained under quite restricted situations, such as low d
dynamics [27], or low nonlinear process authorizing linear approaches [28].

However, an interesting direction should be investigated more deeply, using nonlinear time series analysis tech
order to recover the dynamics determinism [29]. These analysis tools have been used to investigate single extremum
delay dynamics so far. They begin to be used to break multipleextrema systems, as well as for multiple delay and multiple
nonlinear function delay dynamics, but so far those methods have failed (although they were successfully used to b
complexity systems with a single extremum).

5. Conclusions

A generalized nonlinear delayed differential dynamics based on the Ikeda ring cavity principle has been de
together with its application to secure communications using a chaotic carrier for optical telecommunications. P
implementations and performance of the whole encryption system have been reported through different experimental
involving different dynamical variables (wavelength, intensity, coherence modulation, optical phase) and different perfo
(encoding speed, decodingquality, masking capability,dynamics complexity). The architecture basedon an electro-optica
nonlinearity performed by LiNbO3 integrated optics components succeeded in demonstrating a record encryption spe
digital pseudo random sequence at 3 Gb/s. Improvements are in progress in view of several 10 s of Gb/s. Enhanced ar
for chaos generation have also been proposed, in order to improvecomplexity and confidentiality. One of the open problems th
remains partly unsolved is the evaluation of the security level, which is extremely high in the various cases discussed p
This problem has been addressed, giving directions for solving that important issue.
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