
/

stals with
is of
truction.
iscussed in
ission.

es dis-
teurs. Nous
dans le cœur
propriétés
e en termes
r émission

d 1990s.
ng Lang’s
d much

ce.
C. R. Physique 5 (2004) 687–698
http://france.elsevier.com/direct/COMREN

Ice: from dislocations to icy satellites/La glace : des dislocations aux satellites de glace
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Abstract

Possible dislocation Burgers vectors and core structures in ice are discussed, and compared with those in cry
closely related structures such as semiconductors. Theoretical expressions for dislocation velocities are given, on the bas
microscopic mechanisms in dislocation cores, implicitly including the possible role of protonic disorder and core recons
Macroscopic plastic properties are then examined, such as, for instance, the stress dependence of the strain rate, d
terms of dislocation density evolution, and the scale invariance of dislocation avalanches, as shown by acoustic emTo
cite this article: F. Louchet, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dislocations et plasticité dans la glace. Nous discutons les différents vecteurs de Burgers et structures de cœur d
locations dans la glace, en référence à ceux de cristaux ayant des structures très proches comme les semiconduc
donnons des expressions théoriques pour les vitesses de dislocations, basées sur les mécanismes microscopiques
des dislocations, incluant implicitement un rôle possible du désordre protonique et de la reconstruction du cœur. Les
macroscopiques sont ensuite examinées, comme la dépendance en contrainte de la vitesse de déformation, discuté
d’évolution des densités de dislocations, et l’invariance d’échelle des avalanches de dislocations, mises en évidence pa
acoustique.Pour citer cet article : F. Louchet, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Significant advances in the field of the micromechanisms responsible for ice plasticity were achieved in the 1970s an
X-rays were extensively used to observe both dislocations and dislocation motion in single crystals under stress, usi
topography technique [1]. This technique was significantly improved by the use of synchrotron radiation that allowe
shorter exposure times (for a review see [2]).

* Present address: Laboratoire de glaciologie et de géophysique de l’environnement, CNRS,BP 96, 38402 St Martin d’Hères cedex, Fran
E-mail address:louchet@lgge.obs.ujf-grenoble.fr (F. Louchet).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.09.001
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On the other hand, ice plasticity has been investigated at the macroscopic scale for about one and a half centuri
Among the main results obtained, one can mention (i) a high plastic anisotropy [8–10]; (ii) a power law stress dependen
creep rate, with an exponent close to 2 for single crystals, and to 3 for polycrystals; and (iii) a possible role of proton disorde
on dislocation mobility.

The aim of the present article is to review most of these results. It tries to give a few tracks that may help in bette
standing the relations between dislocation mechanisms and macroscopic plasticity, at scales ranging from the atom
to that of the collective behaviour of dislocation groups, taking the strong analogy of ice structure with that of diamon
semiconductors as a guideline.

2. Structure and defects in ice crystals

2.1. Ice

Hydrogen atoms in water molecules are covalently bonded to Oxygen atoms. Ordinary Ih ice, found between 0 and−200◦C
and up to pressures of about 100 MPa, consists in a tetracoordinated hexagonal lattice of such water molecules, linked
hydrogen bonding (wurtzite structure) [11], as shown in Fig. 1(a). At a typical temperature of−20◦C, the lattice parameter
area = 4.519 Å andc = 7.357 Å [7]. The angle between O–H bonds in the isolated water molecule (104.5◦) is almost the same
as between O–O bonds in ice crystals (109.5◦), which favours proton location on O–O bonds. Each bond between neigh
oxygen ions contains a single proton (Fig. 1(a)). There is no long range order in the orientation of these O–H bonds.

The crystallographic structure of Ih ice is closely related to that of its metastable diamond cubic variant Ic, their rela
being similar to that between CPH and FCC metals, or to that between wurtzite compound semiconductors and diam
ones as diamond, Si or Ge.

2.2. Point defects

We shall only focus here on molecular and on protonic defects, as they are the only ones, with impurities, that are
affect plastic properties.

Molecular point defects consist in vacancies and interstitials. It is currently agreed from observations of interstitial
loops [12] that, in contrast with metals, thedominant molecular point defects are interstitials, instead of vacancies, about whic
very little is known in ice. Formation and migration energies are 0.40 eV and 0.16 eV respectively, for interstitials
compared with 0.69 and 0.64 eV for vacancies in Al that are the dominant type of point defects in this case [13]. Add
together formation and migration energies gives a self-diffusion energyEsd of 0.56 eV in ice and 1.33 eV in Aluminium

(a) (b)

Fig. 1. (a) Hexagonal Ih ice crystal structure: each O–O bond contains one proton in average. There is no long range order in the pr
arrangement. (b) Different types of protonic (Bjerrum) defects: proton-free bonds and doubly occupied bonds are respectively labelled L and D
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Taking a melting temperature of about 900 K for Al, the ratioEsd/T m is 1.86 in ice and 1.47 in Aluminium, which theore
ically makes interstitial diffusion in ice slightly, but not drastically more difficult than vacancy diffusion in Al at equivale
temperaturesT/T m.

Since each O–O bond contains one proton in the perfect crystal, rotation of water molecules may lead to violations
bonding rules, resulting in various ‘protonic point defects’. Bjerrum defects, for instance, correspond to bonds containing eithe
no proton (L-defect), or two protons pointing towards one another (D-defect) (Fig. 1(b)). Such a ‘protonic disorder’ m
consequences for the dislocation motion, and hence for ice plasticity, as detailed later.

2.3. Dislocation structure and motion

The most common dislocation Burgers vectors observed in ice are the three(a/3)〈112̄0〉 vectors of the basal plane, a
expected from the line energy criterion (the dislocation elastic energy per unit length is proportional to the square of th
of its Burgers vector). A few circular or spiral-shaped prismatic loops with〈0001〉 Burgers vectors were also occasiona
observed lying in basal planes [14], and were shown to be formed by the condensation of interstitials [12]. As these dislocations
do not seem to participate in plastic deformation, we shall restrict ourselves in the following to dislocations with(a/3)〈112̄0〉
Burgers vectors.

Despite reasonable values of the self-diffusion energy, ranging between 0.6 eV and 0.7 eV [15,16], and temperatu
close to the melting point, no evidence for generalised diffusional plasticity has been reported so far in ice, in contr
metals. This is likely to be related to the significantly largerEsd/T m ratio (1.86) in ice as compared to metals, as mentione
Section 2.2. A further reason, more specific to dislocation climb, may be as follows: the climb velocity of an edge dis
is given by:

V = Vj cj ,

wherecj is the jog concentration andVj the jog climb velocity. The jog formation energy in a metal like Al is fairly sma
resulting in sizeable jog concentrations [17]. By contrast, as mentioned hereafter, and based on the argument that
is much easier than non-basal slip, basal dislocations in ice are thought to be widely dissociated in the basal plan
this assumption, the formation energy of jogs, that involves a significant contribution of fault constriction, should b
which may argue against a major and direct contribution of dislocation climb in ice deformation, even at elevated temp
However, no direct evidence of such a dissociation has been given so far, and the conclusions given above should be
with care.

X-Ray or synchrotron radiation topography experiments on ice crystals observed rapidly after unloading [18,19]
hexagonal-shaped dislocations lying in the basal plane, with(a/3)〈112̄0〉 Burgers vectors, and aligned along the th
(a/3)〈112̄0〉 directions of this plane. One of these three directions corresponds to screw dislocations, and the two o
so-called 60◦ dislocations. This typical shape is the signature of a lattice friction along these directions. Quite similar
are observed in semiconductors (Si, Ge) (Fig. 2) whose diamond cubic crystal structure is strongly related to that o
onal ice. This similarity with semiconductors suggests that theorigin of the latticefriction in ice is likely to be found in the
directional nature of bonding.

As in the case of semiconductors, and owing to the double layer arrangement of Oxygen ions in basal planes (Fig
sets of dislocations with identical Burgers vectors may exist, depending on whether the extra half plane ends betwee
spaced (shuffle) or narrowly spaced (glide) pairs of basal planes [20]. Dislocations belonging to one set can be tra
into those belonging to the other by absorption or emission of a row of point defects. A glide core may therefore theo
transform either into a shuffle vacancy or a shuffle interstitial one byclimb [21]. In contrast with glide set dislocations that m
dissociate into Shockey partial dislocations in the basal plane, dissociation of shuffle dislocations would lead to a hig
stacking fault, and is thus not considered.

Shuffle set dislocation cores contain a single dangling bond per core Oxygen ion, whereas those in the glide se
three of them. Though this simple argument suggests a higher stability for shuffle cores, the energy reduction associated w
a possible dissociation of dislocations of the glide set may stabilise glide dislocations. An essential feature of ice pla
the strong predominance of basal slip, which suggests that cross slip onto non-basal planes may be a difficult proces
strong argument in favour of widely dissociated dislocations, thus belonging to the glide set rather than to the shuffle s

The core of a dissociated dislocation loop lying in the basal plane of ice (or in a {111} plane in the diamond cubic str
is schematised in Fig. 4(a). Screw dislocations are dissociated into two 30◦ Shockley partials, whereas 60◦ dislocations are
dissociated into a 30◦ and a 90◦ Shockley partial. Dangling bonds (db) in dislocation cores may possibly reconstruct [2
shown in Fig. 4(b). Two equivalent reconstruction variants are possible, leading to some ‘antiphase’ sites, called ‘solito
labelled S in Fig. 4(b).

There is reasonable evidence for such a reconstruction in Si and Ge [21]. Covalent bonding indeed provides a stron
force for core reconstruction in semiconductors, as the pairing of electrons with opposite spins may compensate th
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Fig. 2. (a) Typical dislocation arrangement in a {111} plane in Si (from [30], with permission from Taylor & Francis). The same hexagon
shapes in the basal planes of ice [18] and in Si suggest that basal dislocations in basal planes of ice have the same core structure as 1/2〈110〉
dislocations in {111} planes in Silicon.

necessary for bond distortion. The situation is, however, different in ice: since every O–O bond contains a proton, only
of dangling bonds do so on average, dangling bonds containing protons being distributed at random. Pairing a proton-free d
with a proton-decorated db is likely to be favourable, as it reproduces (with some distortion) the normal O–O bond of
crystal, but pairing two proton-free dbs, or even worse two proton-decorated dbs would require energy. Dislocation
ice are therefore likely to be either unreconstructed, or partially reconstructed, i.e. containing a high density of solito
particular core structure may possibly affect dislocation mobility, a discussed hereafter (Section 3.2).
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Fig. 3. Ice hexagonal lattice projected along a〈12̄10〉 direction, with thec-axis vertical, i.e. basal planeshorizontal. Bonds lying in the figure
plane appear in full length, whereas those sitting out of the figure plane appear in projection as double bonds. Oxygen ions are arranged in
planes as double layers. An edge dislocation can be schematically constructed by (i) cutting the crystal along the dotted lines; (ii) taking
the atoms contained in the cut zone; and (iii) welding back the crystal. Two sets of dislocations with identical Burgers vectors can be obtai
depending on whether the cut terminates between narrowly (a) or widely (b) spaced basal planes. The corresponding dislocation cores a
labelled glide (a) and shuffle (b) sets, respectively.

(a) (b)

Fig. 4. (a) Schematic cores of a half-dislocation loop in the basal plane with a∗〈1−210〉∗ Burgers vector, made of one type of screw dislocat
(horizontal in the figure) and two types of 60◦ dislocations. The figure only shows the oxygen ions belonging to the two narrowly spaced ba
planes of Fig. 3 Screw dislocations are dissociated into two 30◦ partials. 60◦ dislocations are dissociated into a 90◦ and a 30◦ partials. (b) Same
dislocation loop, with reconstructed cores. Isolated dangling bonds (solitons) are shown on both 90◦ and 30◦ partial dislocations.

3. Dislocation mobility

3.1. Basal versus non-basal glide

Optical observations of slip lines by Nakaya [8,9] strongly suggest that basal slip strongly dominates ice plastic
resulting in a strong plastic anisotropy. This remains true even for crystalorientations close to those that should inhibit basal slip
Though some prismatic glide is observed for such crystal orientations, no observation of any plastic deformation is re
crystals loaded along the [0001] direction, that inhibits both basal and prismatic slip. As a consequence, a possible co
of pyramidal slip to deformation of ice should be considered as negligible.

Dislocation velocity measurements were obtained through sequences of X-ray topographs taken during deformat
ferent times [18,19,23–26]. Dislocation shapes in ice may change upon unloading, during the time necessary for
topographs. This disadvantage is removed by the use of intense collimated beams from a synchrotron source, that significantly
reduces the exposure time. Most of the results reported hereafter were obtained using this technique.

Basal dislocations gliding in basal planes are found to be far more numerous than those propagating in non-basal
are thought to carry most of the plastic deformation, in agreement with Nakaya’s slip line observations.
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Fig. 5. The propagation in a prismatic plane of an edge dislocation with a basal Burgers vector requires cutting the bonds marked with a do
slash for the glide set and with a single slash for the shuffle set. The former requires cutting twice as many bonds than the latter, and this i
balanced by the dissociation energy as it was for dislocations propagating along the basal plane. Edge dislocations propagating in the prism
plane are therefore likely to belong to the shuffle set.

Screw and 60◦ dislocations glide with comparable velocities in basal planes. The macroscopic slip direction corresponds
the maximum shear direction in the basal plane [27]. Such an observation may result from the possible combination of
(a/3)〈12̄10〉 slip directions in the basal plane, with equal critical stresses. The resulting direction should depend in this case o
the exponent of the power law relating the strain rate to the stress [28]. The observed result should obviously corres
linear stress dependence of the strain rate. However, the observed stress exponent for single crystals is close to 2, a
in Section 4.1.

As mentioned above, dislocations with non-basal Burgers vectors are rather uncommon [10]. By contrast, loops w
(a/3)〈12̄10〉 Burgers vectors and lying in prismatic planes are commonly observed. They are elongated along screw d
which suggests that screws are much less mobile than edges in these planes. It is indeed agreed that screw dislo
behind edges do not glide at all in prismatic planes [18], but rather in the intersecting basal planes.

Both the strong plastic anisotropy and the negligible screw mobility in prismatic planes were used to support the idea
basal dislocations should be widely dissociated in basal planes. These views are also supported by determinations o
fault energies from the observed shrinkage of prismatic loops [29]. As a consequence, cross-slip from basal to non-basal p
should be rather difficult, resulting in a strong additional barrier for screw motion in non-basal planes: in order to propag
in such planes, dissociated screws should indeed constrict on a critical length, and form a kink pair thatwould dissociate
again in the next valley. This process would require a significant additional energy as compared to the standard ener
experienced by screw (and 60◦) dislocations propagating in basal planes.

An interesting point is that reported velocities of edges in non-basal planes are between 5 to 10 times larger than tho
screws or 60◦ dislocations in basal planes [25,26,29]. This observation suggests that thenature of lattice friction experienced
by non-screw dislocations in basal and in prismatic planes should be somewhat different, which might possibly be un
in terms of the glide or shuffle nature of dislocations. Glide dislocation cores in basal planes correspond to three dangl
per atom, instead of a single one for shuffle cores. The excess core energy is nevertheless overbalanced by the d
energy for dislocations that lie in the basal plane, which stabilizes the glide core structure. This is also probably the
screw parts of dislocation loops propagating in prismatic planes, as they also dissociate in basal planes. By contrast,
dislocations lying in prismatic planes cannot dissociate in basal planes since they do not lie in such planes. However,
also have cores belonging to the equivalents of glide or shuffle sets in prismatic planes. Glide cores in prismatic plan
correspond to two dangling bonds instead of three for basal planes, as one of the four tetrahedral bonds is parallel toc-axis,
i.e. is contained in the prismatic plane (Fig. 5). The corresponding shuffle core only contains one dangling bond per at
basal planes. However, there is no obvious dissociation in prismatic planes, and the energy argument arguing in favou
cores instead of shuffle cores in basal planes is no longer valid here: non-screw dislocation cores in prismatic planes
of a shuffle nature. Propagation of such shuffle dislocations in prismatic planes requires breaking a single O–O bond
instead of three for dislocations propagating in basal planes, which corresponds to a significantly lower activation en
upper bound of this energy (neglecting the work necessary to drag the half-jog connecting the shuffle edge to the d
glide screw) can be roughly estimated as proportional to the number of bonds to be broken, which gives a factor 3
the former and the latter. This argument should lead to an upper bound of the velocity ratio of about e3 ≈ 20, which quite
reasonably agrees with the actual velocity ratio (5 to 10).
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3.2. Dislocation velocity measurements and modelling

As mentioned in Section 2.2, basal slip in ice involves hexagonal-shaped dislocations [18], which argues for the e
of a significant energy barrier for both kink pair nucleation and kink migration. A very similar situation was first sho
semiconductors, through either topography techniques [30], or Transmission Electron Microscopy (TEM) in situ s
experiments [31,32]. The analogy between dislocation behaviour in ice andin semiconductors is illustrated in Fig. 2.

However, these shapes are observed in ice up to temperatures very close to the melting point (−3◦C), which is not observed
in semiconductors, in which dislocation shapes become quite isotropic at temperatures above 0.5T m.

Measurements of dislocation velocities were performed through sequencesof X-ray topographs obtained between successiv
application of the load [33]. The velocities of screw and 60◦ dislocations in basal planes, and of edge dislocations in non-b
planes, is proportional to stress, for stresses up to 1 MPa. The temperature dependence of velocities at constant stress
Arrhenius law, from which activation energies�G can be derived (see Table 1).

These figures given in Table 1 can be compared with 1.33± 0.025 eV for screws and 1.40± 0.03 eV for 60◦ dislocations
in Ge [34]. With a melting temperatureTm = 1211.4 K for Ge, the activation energies normalised by melting temperat
�G/T m are 3.3 × 10 eV/K for ice and 1.38× 10 eV/K for Ge. This estimate suggests some differences in dislocation
structures of screw and 60◦ dislocations in ice as compared to semiconductors. The activation energy�G involves both the kink
formation and migration energiesF k andWm. The nature of bonding may affect�G as a whole, but also its two componen
F k andWm by different amounts. The former effect is responsible for the temperature dependence of dislocation velocities
The latter might be related with the observation of straighter dislocation shapes in ice at high temperatures, as comp
semiconductors. These two effects are tentatively discussed now.

One possible difference between ice and semiconductors may be found in the reconstruction of dangling bonds.
cation core reconstructs spontaneously, the reconstructed structure has to have a lower energy than the non-reconstructed
This means that potential troughs are deeper, which results in a more difficult kink pair (kp) nucleation and kink prop
In the case of semiconductors, kink pair nucleation was suggested to take place at solitons [35], as broken bonds are alrea
available there, followed by kink propagation along reconstructed cores. If dislocation cores in ice are badly reconstructed
stated above, kp nucleation should be as easy as in semiconductors (everything equal), except for the number of comp
that increases with soliton concentration. In contrast, kink propagation should be easier than in reconstructed semicond
cores. The number of competing sites affects the prefactor of the Boltzman exponential, whereas the depth of the ener
modifies the exponential argument, which usually has a larger effect. These arguments suggest a relatively larger kink
tion versus kp nucleation kinetics in ice as compared to semiconductors, which argues in favour of straighter dislocatio
at high temperatures in ice, as observed.

Another possible difference should be that proton disorder may present an obstacle to dislocation glide, as first pro
Glen [36,37]. Shear of one part of the crystal with respect to the other on an intermolecular distance may create Bjerru
on about 50% of bonds. 25% of bonds will become expensive doubly occupied D-defects. Reorientation of proton-d
bonds may prove difficult in the bulk crystal, owing to frustration problems, which might be the reason why such reorie
are usually disregarded. However, the assumption that proton disorder controls dislocation mobilities disagrees with
measurements, except if bonds near dislocations are supposed to reorient significantly faster than those in the rest of
(they are supposed to reorient at one half of the dielectric relaxation frequency) [37]. Dislocation propagation indee
first neighbour bonds only, and the extra degrees of freedom related to the presence of dangling bonds in dislocation
facilitate reorientations, in such a way that only few Bjerrum defects are left in the wake of gliding dislocations. Frustra
also be relieved by proton order defects, asionic defects, facilitating dislocation glide [38]. Though the role of proton disorder on
dislocation mobility isstill controversial, it seems that the possible inhibition of bond reconstruction in dislocation cores sho
make kink propagation easier as compared to semiconductors, and thus have a softening role rather than a hardenin

Lastly, the assertion that dislocations are straighter in ice than in semiconductors should be tempered by the fact
high temperature results were obtained using X-ray topography in ice, but Transmission Electron Microscopy (TEM)
conductors. These techniques correspond for practical reasons to low strain and dislocation densities in the former case, and hig
densities in the latter. As dislocation interactions are likely to be responsible for isotropic dislocation shapes in the latter ca

Table 1
Activation energies for velocities of disloca-
tions defects in ice

Dislocation type Energy (eV)

basal screw 0.95± 0.05
basal 60◦ 0.87± 0.04
non-basal edge 0.63± 0.04
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a similar situation cannot be totally disregarded in ice for large dislocation densities, for which X-ray topography observation
are impossible to carry out.

The strong analogy between dislocation behaviour in ice and in semiconductors suggest that they may obey a simila
versus stress law. As in other cases of Peierls relief (e.g. [39]), a possible linear dependence of dislocation velocities on
lengths is expected: the longer the dislocation is, the more numerous the kink pair nucleation sites, and the larger the
Yet, in the case of semiconductors, this dependence should disappear for lengths larger than a critical value: owing to th
limited migration rate, kinks of opposite signs may be found simultaneously on long straight dislocations; they prop
opposite directions, and annihilate at their meeting point, which limits the efficiency of a kink pair nucleation event to t
swept by the kinks before their annihilation. The length dependence of dislocation velocities may thus disappear for di
lengths typically larger than the mean free path of kinksX/2.

The dislocation velocityV was computed in the case of low stresses by Hirth and Lothe [20]:

V =




2νDL
σb3

kT
exp

[
−2Fk + Wm

kT

]
for L < X,

2νDb
σb3

kT
exp

[
−Fk + Wm

kT

]
for L > X,

whereWm andFk are respectively kink migration and kink formation energies. For the sake of simplicity, both the sep
between potential troughs for kink propagation and the kink height are taken equal to the Burgers vector modulub. The
distance swept out along the dislocation by one kink pair before it annihilates with the kinks from other pairs is given b

X = 2

√
Vk

J
= 2b exp

(
Fk

kT

)
,

whereV k is the kink velocity, andJ the kink pair nucleation rate. This is a typical low-stress approach: considering bot
ward and backward fluctuations in kp nucleation and expansion, the usual exponential stress dependence valid at lar
transforms indeed at low stresses into a sinh dependence, that is usually linearised. Such a linear dependence of disl
locities on stress is observed experimentally in ice. The maximum value of the sinh argumentσb3/kT obtained at temperature
of the order of 300 K for the maximum stress value reported in velocity measurements (10 MPa) is indeed of about
lower than 1, which validates the linearisation.

The length effect mentioned above was reported in semiconductors using in situ straining experiments in a T
allowed separate measurements of kink formation and migration energies [34,40]: in the case of Ge for instance,Fk = 0.55 eV
for screws and 0.50 eV for 60◦ dislocations, andWm = 0.78 eV for screws and 0.9 eV for 60◦ dislocations.

The existence of these two velocity regimes is not mentioned in the literature in the case of ice. Typical values
critical lengthX above which dislocation velocities no longer depend on their lengths was shown to be less than 1 µ in Si [40]
or Ge [34]. As X-ray topographs in ice are taken at much larger scales, it is likely that the observed basal segments ha
far above the critical value, in spite of the possible relatively larger kink migration rate as compared to kink pair nucleat
However, checking the possible existence of a length effect in ice should provide valuable information on the relative v
kink migration and nucleation rates.

4. From dislocation velocities to macroscopic strain rate

4.1. Macroscopic data

4.1.1. Single crystals
The general shape of stress/strain curves, that consist of a yield point followed by a strong softening, is quite s

those of semiconductors. It is agreed that the upper yield point corresponds with the onset of extensive mobile di
multiplication, which results in a significant decrease of their velocities, i.e. of flow stress, at constant strain rate. In the
semiconductors, the shape of the stress strain curve was modelled either analytically [41] or numerically [42]. Howev
cation multiplication mechanisms in ice may be slightly different [18,19,23,26] as illustrated for instance by the propag
fast non-basal edge dislocations that create long screw dipoles, which make these models difficult to use directly.

At larger strains, a steady state is reached, corresponding to an almost constant flow stress, i.e. no work hardeni
reports mention a non-zero work hardening rateat large strains, possibly due to crystal bending [43]. Another possibility should
be that the macroscopic strain rate may result from the successive operation of different slip bands, as recently repor
new band being nucleated when the hardening in the last one reaches the nucleation stress of the next one. A non-z
hardening may appear in this case when the whole specimen is filled with such bands. However, softening at large
also reported [45].
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Stress–strain curves are reasonably well described using a power law:

ε̇ ∝ σm exp(−Q/kT ).

The activation energy is of about 0.7 eV, and slightly decreasesas temperature is increasedclose to the melting point. Th
stress exponentm is 2± 0.1 in single crystals, from−20◦C up to temperatures as high as−0.2◦C [43].

4.1.2. Polycrystals
Owing to its large plastic anisotropy, ice can be considered to deform mainly through slip along three coplanar

equivalent to two independents ones. It is, however, usually recognised that extensive and homogeneous straining of p
requires the operation of at least five independent slip systems [46,47]. Though, basal and prismatic slip only provide four
them, and pyramidal slip has never been evidenced, as mentioned in Section 3.1. A relaxation of such a homogeneou
assumption allows compatible deformation of ice polycrystals, at the expense of the development of significant interna
[10,48]. These incompatibility stresses (known as kinematic hardening in mechanics) are associated with strong strain
and with the storage of ‘geometrically necessary’ dislocations [49], whose density is expected to be much larger tha
‘statistical’ dislocations [50,51].

Extensive straining (as observed in polar ice sheets) requires accommodation of these incompatibility stresses, whic
thought to occur through grain boundary migration [52]. These views are strongly supported by X-ray diffraction expe
carried out on ice crystals from the Vostok ice core [50,53]. As a consequence, polycrystals deform about a thousa
slower than a single crystal at comparable stresses [10]. The measured stress exponent is 3 at large stresses (0.1
[10], but 2 or less at low stresses (lower than 0.1 MPa) [54].

A thorough discussion of plastic deformation in polycrystalline ice is given in [51], to which the reader is referred for mo
details.

4.2. Mean field approach based on the Orowan equation

The simplest way to derive the constitutive equation from dislocation velocities is the well known mean field approx
that consists in using Orowan’s equation. This type of approachignores both space and time possible heterogeneities. A precis
knowledge of mobile dislocation densities and of their stress and temperature dependences is required for this purpo
state dislocation densities may be obtained from evolution equations, that involve in turn the kinetics of multiplicat
annihilation processes.

Deformation of ice crystals involves two types of dislocations with similar〈112̄0〉 Burgers vectors: edge segments t
propagate in non-basal planes, and screw and 60◦ dislocations that glide in basal planes. Two different rate equations
hence to be written, one for each type of dislocation.

Multiplication of basal dislocations takes place through two main processes [18]:

(i) edge segments, with basal〈112̄0〉 Burgers vectors, but gliding in non-basal planes, trail long screw segments behind
These screw segments can subsequently glide in basal planes, owing to their dislocation in these planes;

(ii) pole (spiral) sources, sometimes referred to as Frank–Read sources, operate in basal planes, rotating around
points. These anchoring obstacles are the out-of-plane edge segments mentioned above, acting as superjog
dislocations. However, very few sources of this type are observed during synchrotron topography dynamic expe
dislocation multiplication mainly occurring through mechanism (i), i.e. fast motion of non-basal segments (their velociti
are 5 to 10 times larger than those of basal dislocations).

Multiplication of non-basal segments is thought to arisefrom climb of 60◦ basal dislocations, rather than from cross slip
screw basal ones [18]. Though, the possibility that they may be generatedat surfaces cannot be disregarded.

Elimination of basal dislocations may stem from either pair annihilation of mobile dislocations, locking of mobile
cations on fixed obstacles, or elimination at surfaces. However, owing to the supposed low cross-slip ability of basal screw
dislocations, pair annihilation seems unlikely.

Owing to their reduced lengths and to the presence of long screws trailed behind them, the most obvious eliminatio
for edge non-basal segments consists of locking on basal dislocations that act as forest obstacles in non-basal glide p

Two coupled evolution equations can be written on this basis [55]. Steady state dislocation densities can be found for bo
non-basal and basal dislocations, that can be introduced in Orowan’s equation. The stress exponent of the strain ra
to be 2, in agreement with experiments, only if the mutual annihilation of mobile basal dislocations is neglected as c
to locking on obstacles or annihilation at surfaces. This conclusion agrees with the above statement that cross-slip is a diffi
process in ice. The only activation energy that remains in the computed strain rate is that related to formation by climb
basal segments, and not that corresponding to the propagation of basal nor non-basal dislocations. The experimental find



696 F. Louchet / C. R. Physique 5 (2004) 687–698

s the self
g

tals, the
related to

ation of
escribe the
behaviour.

omoge-
in

e
, generated
ent is geo-
the twist

nal simu-
g

acoustic
n

6). This
em cannot
that
ver large

ower law
that the steady state creep activation energy is between 0.6 and 0.8 eV (Table 8-1 in [7], i.e. in the same range a
diffusion energy (0.6 to 0.7 eV), agree with the model, the activation energy corresponding to basal dislocation velocities bein
somewhat larger (0.9 eV).

As dislocation multiplication and annihilation mechanisms are likely to be the same in single crystals and polycrys
larger values of the stress exponent in polycrystals for large stresses is not yet understood. They are probably to be
slip anisotropy and to the resulting incompatibility stresses.

4.3. Long range coupling and deformation dynamics

In contrast with the mean field approach described by Orowan’s equation, it is widely agreed that plastic deform
many materials is heterogeneous in both space and time. Though mean field approaches are usually sufficient to d
average stress–strain behaviour of materials, it is of interest to explore the profound reasons for such a heterogeneous
This is also the case for ice, as discussed now.

Since Nakaya’s observations of slip patterning in ice single crystals, it is recognised that ice does not deform h
neously in space. These findings were recently confirmed by measurements of lattice distortions in ice single crystals loaded
torsion [44]. Strain is found to fluctuate alongthe specimen shaft, thus defining a seriesof slip bands of different amplitudes. Th
twist strain corresponding to each band can be described by a regular arrangement of three sets of screw dislocations
at the specimen surface, and pushed toward the specimen axis by the applied torsion stress. This dislocation arrangem
metrically equivalent to a twist boundary, and consists of the geometrically necessary dislocations that accommodate
strain [50]. Deformation essentially proceeds through a gradual increase of the number of slip bands. Three-dimensio
lations of dislocation behaviour in iceunder torsion conditions [56] may perhaps give further hints for a thorough understandin
of slip patterning.

In addition to spatial slip heterogeneities, strain instabilities were also displayed during creep experiments using
emission techniques [57–61]: the amplitude distribution of acoustic waves associated with dislocation avalanches was show
to obey a power law, more clearly shown as a straight line with a negative slope in a double logarithmic plot (Fig.
so-called ‘scale-invariance’ means that there is no characteristic avalanche size. In other words, the size of the syst
be determined from the probability distribution function of strain instabilities. It extends over several decades, suggesting
the system is close to a critical state in which the motion of its various components (i.e. dislocations) is correlated o
distances. A small perturbation may result, in this case, in large events.

Fig. 6. Distribution of acoustic emission energies of an ice crystal deformed in creep conditions, for different stress levels. It obeys a p
with an exponent 1.6. The time distribution of AE energies (in attoJoules) is also shown.
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An interesting feature of this behaviour in ice is that the exponent of the distribution of acoustic emission energies
slope of the straight line) is independent of temperature, at least from−20◦C up to−3◦C [60]. Though the profound reason
for such a behaviour are still to beunderstood, these findings suggest (as intuitively expected) that the dynamics are controll
by elastic coupling between dislocations rather than by their individual mobilities.

Both space and time avalanche clustering are part of a single phenomenon, that may result from dynamical int
between avalanches [61]. New avalanches may be more likely to nucleate close to previous ones rather than at ran
crystal. In a same way as dislocations organise into avalanches through their mutual interactions, avalanches organ
into spatial and temporal clusters. Yet, the details of dynamical interactions responsible for avalanche clustering are still to
understood.

5. Conclusion

In the present review article, we explored the relations between dislocation mechanisms and macroscopic plasticity
ranging from the atomic size up to that of the collective behaviour of dislocation groups. Ice appears to be quite a p
material, despite the strong analogy of its structure with that of diamond cubic semiconductors. The main conclusio
follows:

(i) The high plastic anisotropy of ice agrees with a strong predominance of basal slip and a limited cross slip abi
suggests a significant dissociation of basal dislocations. This possible dissociation suggests in turn that basal d
cores belong to the glide set rather than to the shuffle set.

(ii) The protonic disorder characteristic of ice crystals is thought to be responsible for a poor bond reconstruction at dis
cores. The resulting enhancedkink mobility may be responsible for the observed marked hexagonal dislocation shap
to temperatures very close to the melting point, despite possible artifacts in the comparison of dislocation shap
and semiconductors. Such non-reconstructed cores may also help proton jumps during dislocation motion, avo
formation of Bjerrum defects in the dislocation wake. These two remarks suggest that the protonic disorder, in
being a limiting factor, may favour dislocation mobility, and that dislocation motion may be controlled by lattice fr
associated to O–O bonds rather than by protonic disorder.

(iii) By contrast, basal edges in non-basal planes can hardlydissociate; hence, they probably belong to the shuffle set, i
agreement with their much larger mobility.

(iv) Deformation is ensured by glide of screw and 60◦ dislocations in basal planes. As for semiconductors, the stress d
dence of dislocation velocities is linear at low stresses (<10 MPa), and results from a kink pair mechanism in a str
Peierls relief.

(v) Ice obeys a power-law stress dependence of the creep rate. The exponent close to 2 for single crystals may r
a combination of the linear dependence of dislocation velocities with a stationary balance between multiplica
elimination processes of mobile dislocations specific to ice. The larger exponent values reported for polycrystal
origin remains unclear, may be related to strain incompatibilities.

(vi) As for many materials, plasticity of ice is heterogeneous in space and time. It proceeds through dislocation av
whose magnitudes are power-law distributed. These avalanches are themselves organised into spatial and temporal
ters.
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