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Abstract

Integrable structures on both sides of the AAS/CFT correspondence are reviewed, with emphasis on the Beffedigsatz.
thisarticle: K. Zarembo, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
I ntégrabilité semi-classique dans AAS/CFT. Des structures intégrables de chaque coté de la correspondance AdS/CFT sont

rappelées, avec un accent sur la conjecture de Betloe.citer cet article: K. Zarembo, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The large limit of A" = 4 super-Yang—Mills (SYM) is a string theory thatsha geometric description at strong coupling
in terms of theAdSs x S° background with RR flux [1-3]. A remarkable property of the larg&YM is its complete integra-
bility. It arises in CFT as a queum symmetry of the operator mixing [4—8]&im AdS as a classical symmetry on the string
world-sheet [9-11]. The quméum nature of integrability in CFT suggests tha wvorld-sheet integraty should also survive
quantization. Unfortunately not much is know about quantum string theoAdss x S° and it is not possible to compare
integrable structures on both sides of AAS/CFT directly, but it is possible to do such comparison in the semiclassical limit which
is accurate for states with large quantum numbers [12,13]ll Ishortly review the semiclassical integrability in AdS/CFT
following [14].

There are two mechanisms by which SYM operators can acquire large quantum numbers. First, the majority of the SYM
operators get large scaling dimensions at strong coupling [2], in the stringy regime of AdS/CFT. Or one can consider operators
that contain large number obnstituent fields [12]. 8ch operators have huge quantum numbers already at the tree level. It
is qualitatively clear why both types of operators behave stridggtrong coupling, diagramwith large number of vertices
and propagators that resemble continuous string world-sheets obviously dominate. Planar diagrams for long operators always
contain a large number of propagators and are stringy even at lowest orders of perturbation theory.
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2. Integrability in CFT

The field content of\" = 4 SYM theory consists of gauge fields,, six scalarsp; and four Majorana fermionwof‘, allin
the adjoint representation of(¥). The action is

1 1 .
S = ? / d*x tr{—EFﬁU + (Duq)l.)z + [®;, qu]Z + fermlons}. Q)
| will consider local gauge-invariant operators composed of two types of complex szZataB; + i®> andW = @3 + iPy:
O =tr(zL"MwM 4 permutations 2

These operators transform non-trivially under a(8Ux U(1) subgroup of the S®@) R-symmetry ofNV' =4 SYM. (Z, W)
transform as a doublet under(2), so that the length of the operatbris its U(1) charge and. — M is its SU2) spin. The
operators of the same lengthobviously have the same bare dimensidg; = L. The number of operators with the saihe
and M grows exponentially and if the length is sufficiently large perturbation theory becomes highly degéﬂéﬁxmakes
computation of anomalous dimensions for long operators highly non-trivial problem even at one loop.

The set of operators (2) is closed under renormalization and does not mix with operators that contain other fields or deriva-
tives [15]. Including such operators is certainly possible [6,8] but will not be discussed here for the sake of simplicity. Indeed
operators (2) admit a very simple parametrization. If we associat¢ tfield with spin up and thé¥ with spin down, an
operator of the form (2) can be associated with a distribution of spins on a periodic one-dimensional lattice df length

WWZZZWWZZZWWWZIWZZZZ... <«— | MALIAMLLIIMtT ...

The map between operators and states of a spin chain is one-to-one if we impose an additional constraint that the states should
be translationally invariant. @nslational invariance is equivalent to the lgity of trace. This condition can be implemented
as a constraint on admissible states. The mixing matrix acts linearly on operators and can thus be interpreted as a Hamiltonian
of a lattice spin system.

The mixing matrix is defined a5 = Z—1dz/dIn A, whereA is a UV cutoff and(Z — 1)@ is the counterterm that makes
correlation functions oZ O finite. The counterterm need not be proportional to the bare operatmﬁ snd hencel"f are
matrices with multi-indices that parameterize all operators of the same length. The eigenvectors of the mixing matrix are

conformal operators and eigenvalues are their anomalous dimenE]E(%g') = y,,(’)g’), sothatd, =L + yy.

The mixing matrix can be easily computed at one loop. There are three diagrams that contribute (Fig. 1): the scalar self-
interaction, the gluon exchange and the self-energy graphs. While the gluon exchange and the self-energy produce the same
renormalized operator, the scalar vertex can lead to the intercharigared W fields. The really simplification occurs at large
N, when the interchange can only occur between nearest neighbors. Indeed, an insertion of a vertex between a pair of non-
nearest-neighbor propagators produces a non-planar diagram which is suppresg€dAy d result, the planar mixing matrix
is a Hamiltonian of a spin chain with nearest-neighbor interactions [4]:

L
A
FZWZ(]-—PI,HD’ (3)
=1
Z w Wi
W zZ zZ
ISy
Al e~
z W z ¥ z

Fig. 1. The one-loop diagrams.

2 |tis assumed here that — co. At finite N the number of degenerate operators grows linearly with
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Fig. 2. The spectrum of the Heisenberg spin chain.

wherex = g2N is the 't Hooft coupling andP is the permutation operatoP a ® b = b ® a. The use of the identity? =
(1+ 0 ® 0)/2 brings the mixing matrix to the form
, L
r= > (d-0p-0141). 4)

1672
167111

This is the Hamiltonian of the Heisenberg spin chain. The remarkable property of this model is its completely integrability.
Though the Heisenberg Hamiltoniaontains no adjustable parameters excepttie length of the chain, it is possible to

identify several energy scales in its spectrum (Fig. 2). The ground state is the ferromagnetic vacuum (all spin up). The ground

state energy is zero because the corresponding operabrhelongs to a short multiplet arttas zero anomalous dimension

to all orders in perturbation theory. The excited states are created by flipping one or more spins. The approximate creation

operators are

_i L winl/L _—
_ﬁzglez o (5)

The operatozz:,r creates magnon with mode numbeand momentunp = 2zn/L. If L is large, Fock statets,f1 - -a,J,rM |0)

(with M « L) approximate the eigenstates of the Heisenberg Hamiltonian sufficiently well. These states correspond to the BMN
operators [12], which are dual to string states in the pp-wave limit oAtiS x S° geometry. Their anomalous dimensions

A M
E : 2
k=1

match with the energies computed on the string side.

The situation changes when the number of magnons becomes macroscopicallyMargé. The interaction between
magnons then cannot be neglected and the Fock space generated by simple operators (5) is no longer a good approximation for
the spectrum. Fortunately, the spectrum of the Heisenberg model can be computed exactly [16,17]. The energy eigenvalues can
be found by solving a set of algebraic Bethe equations:

uj+i/2 L_l_[uj—uk+i @)
uj—i/2 _k?éjuj—uk—i'
The Bethe roots ;, j =1,..., M, are rapidities of individual magnons. The rapidity is related to the momentum as
eip _ u -+ ?/27
u—i/2
so the momentum constraint takes the form
ui+i/2
Suj— |/2

J
The anomalous dimension is given by

22 2+1/4 ©
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L

Fig. 3. Macroscopically large Bethe strings.

The simplest solution of Bethe equations that satisfies the momentum constraint contains two roots:

2nn
= —up=cot——, =12..., 10
uy=—u 1 " (10)
with
A n
== sir? 11
r=->3 71 (11)

WhenL is large,u; » ~ +L/2rn andy is well approximated by the BMN formula (6). Sineg ~ L, the right-hand side of
Bethe equations can be replaced by 1, magnons do not interact and the spectrum is the Fock space of free magnons. In fact,
the scattering can be neglected only if all mode numbers are different. The Bethe ansatz does not allow different Bethe roots to
coincide completely. What happens when we try to put two magnons in the same momentum state is that they form a bound state
and their rapidities become complex. Because-i/2)/(u —i/2) is no longer a pure phase whers complex, the left-hand
side of Bethe equations turns either to zero or to infinity.as co. Hence, the right-hand side should develop either zero or
pole. This can only happen if two of the rapidities are separatedtibiBethe roots with the same mode number form arrays
parallel to the imaginary axis with separation between adjacent roots equal to i. Such arrays are usually called strings. The
number of Bethe roots in a string can be arbitrary, even macroscopically large [18] (Fig. 3). In the latter case strings bend along
some contours in the complex plane. Corresponding Bethe states describe macroscopic spin waves and are dual to semiclassical
strings inAdSs x S° [19].

Since Bethe roots scale linearly with it is natural to define; = u; /L, which then stays finite as — oo. Taking logarithm
of the Bethe equations (7) and expanding jii lwe get

1 1

2
Xj ngjxj—xk

where the phasesrz ; parameterize different branches of the logamitfThe rapidities of magnons with the same mode number
n j form a string with the center of mass:at= 27n ;. The distance between adjacent rogts- x; 1 ~ 1/L, so the distribution
of roots can be characterized by a continuous density in the scaling limit:

1
p(x)zzZ(S(x—xj'). (13)
J
The density is non-zero on a collection of contodrs- C1 U - - - U Cg in the complex plane and is normalized by

M
/ drp() =1 (14)
C
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whereM is the total number of magnons or the numbemofields in the operator (2). Equivalently, the distribution of Bethe
roots can be characterized by the resolvent:

21 1 p(y)
G(x)_L;x_xj_/dyx_y. (15)
C

The Taylor expansion daf (x) at zero generates local conserved charges of #isgiberg model [20,21]. In particular, the total
momentum is-G(0). Translational invariance of the physical states requires

—G(0) :/d.x Y (16)
X
C
The Taylor coefficient before determines the anomalous dimension:
A p(x)
= dx . 17
v 8r72L ,/ x2 7
C

The Bethe equations reduce to a singular integral equation for the density:

][ MZE'FZﬂnk, x € Ck. (18)
cC x—Yy X

This equation can be solved in hyp#iptic integrals. The details can be found[i¥]. The Riemann staice associated with

the hyperelliptic integrals is obtained lgluing together two copies of the cghex plane with cuts along the contouts.

The simplest one- and two-cut solutions have been worked out in detail [19,22,14] and were compared to Frolov—Tseytlin
string solitons [23]. Even /IL corrections can be calculated in the simplest cases [24]. The scaling dimensions of operators
agree with the energies of the string solitons up to two loops. At three loops the agreement generally breaks down [25,14]. The
two-loop agreement can be established quite generally at the level of equations of motion or effective actions [26]. Even the
higher charges of the integrable hierarchies, that do not have geometric interpretation in AAS/CFT, agree for simplest solutions
[20]. In fact, it is possible to match the whole integrable hierarchies, including Bethe ansatz equations [14]. Usually, Bethe
ansatz is associated with quantum systems, but it turns out that classical solutions of the sigma-model can also be parameterized
by an integral equation which resembles the scaling limit of Bethe equations in the Heisenberg model.

3. Integrability in AdS

The R-charges of the operatofZ-~MwM 1 ...) L and M, translate into two angular momenta of the stringh
A string moving in thes2 c $° and sitting in the middle 0AdS; has the right quantum numbers, and | will concentrate on
this particular subsector by all setting transverse coordinates to zero. Then the world sheet is parameterized by the global AdS
time X0 and by four Cartesian coordinat&é constrained byx’ X’ = 1. A point on the three-sphere defines a group element
of SU(2):

[ X1+iXy X3+iXy
=\ —x3-ix4 X1-iX,

The string action and the equations of motion can be formulated in terms of currents

_( Z1 2

- (_72 71) € SUQ). (19)
A

. -_— (7 .

Ja=8"Y0ag =S Ji" (20)

In the conformal gaug%,

f 2 1
Som :_l/da/dr [—Trj§+(aaxo)2], (21)
A 2
0

which give the following equations of motion:

3 The world-sheet metric i6+—).
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9,9_Xo=0, (22)
dyj_ +0_jt+ =0, (23)
Oy j— —0—j+ + i+, j-1=0, (24)

whered+ = d; £ 9, and j+ = jr & js. The equation of motion fox© always has a trivial solution
X0 = 1.
The equation of motion should be supplemented by Virasoro constraints
1
St j2 =—0+X%?% = —«2 (25)

The global symmetry of the sigma-model (21) is 88) x SUg(2) x R. The first two factors are associated with the left
and right group multiplicationg — hg andg — gh. The Noether current of these symmetriesiarand j,, where

| -1 of A
la=gjag =0agg ~ = ﬁlw (26)
Therefore
27 2
A VA A A Vi A
QL:E/dalf’ QR:E dU‘].r (27)
0 0

generate left and right group shifts. The dual R-charges in the SYM theory can be easily identified. The six scalars of the
SYM transform under S@®) in the same way as the six Cartesian coordinates that parameterize the gpher&?. Since

Z =@ +idy andW = &3 + Py, these fields transform &, and Z, in (19). Thus(Zy, Z2) and (Z, W) are doublets of
SUg(2), so thatz hasQ3, = 1 andW and 03, = —1. For the operator (2),

03 =1L-2m. (28)
Under the left shifts(Zq, —Z5) and (Z5, —Z) transform as doublets. ThereforgZ, —W) and (W, —Z) are doublets of
SU; (2) and both fieldZ and W haveQ% =1. The left charge of the operator (2) is just the length of the spin chain:

03 =1L. (29)

The time translation® — x0 + ¢ generate scale transformations on the boundard$. The energy of the string thus
should be identified with the scaling dimension of the dual operator:

2
A:Q/daathzﬁk. (30)
21
0

The equation of motion for the chiral field (22), (23) are completely integrable [27,28] and can be effectively linearized with
the help of the inverse scattering transformation [29]. This method is based on the zero-curvature representation of the equations
of motion [30]. The rescaled currents [28]

j+
Ja00) = 7 (31)
Fx
are flat for any value af:
dpJ_ —d_Jy +[Jg,J_1=0, (32)

as a consequence of the equations of motion. The converse is also true: If (32) is satisfiedfahany+ are solutions of the
equations of motion. The monodromy of the flat connection (31) defines the quasi-momentum

27 27 1/ )
_ _ _ L J+ J—
.Q(x)_Pexp< /da]a>_Pexp/daz<x_l+x+l) (33)
0 0

and

tr 2(x) = 2cosp(x), (34)
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where the integral is taken along a fixed-time section of the world-sheet. Because the connection is flat on-shell, the result of
integration does not depend on which particular section is taken and therefore the quasi-momentum is conserved as soon as
the equations of motion are satisfied. The quasi-momentum can thus be regarded as a generating function for an infinite set of
integrals of motion.

The SU, r(2) charges appear in the expansionpgk) in 1/x and inx at large and smalt, respectively. Sincdy (x) =
Jo/x + -+~ atinfinity,

1 7 47202 4x2(L — 2M)?
tr2=2+ 5.2 /dol doatr jo(o1) jo(o2) + - =2— 2 +oo=2- —Z (35)
0
Hence,
2 (L —27)
X)=———" 4.+ (x —> 00). 36
p(x) Jix ( ) (36)

The expansion of the monodromy mateix(x) at infinity before taking the trace generates Yangian charges, which are poten-
tially important in the AAS/CFT correspondence in general [31].
Atx — 0,05 4+ Jo (x) =05 + jo — Xjz 4+ =8 L0y —xlg +---)g, SO
27

2 47202 47212
tr.Q:2+%/dnldoztrlo(al)lo(az)+-‘-:2—sz-i-m:Z— ”A X4, (37)
0
which yields
27 L
py=2rm+ =5 (x> 0), (38)

Vi
wherem is an arbitrary integer.
The local charges are obtained by expanding the quasi-momentum in the Lorant serieg4t | will only compute the
leading order here, but it is possible to develop a systematic procedure that recursively determines all local integrals of motion
[30]. A slightly different but equivalent definition of the quasi-momentum is more appropriate for that purpose. Let us consider
the auxiliary linear problem

1/ j+ Jj- _
[a"_§<x—1+x+1)}l’_o’ )

wherey (o; x) is atwo-component vectoy{ are anti-Hermitian Z 2 matrices). This equation can be regarded as an eigenvalue
problem for a one-dimensional Dirac operator with a periodic potential, whetays the role of the spectral parameter. Two
linearly independent solutions can be chosen quasiperigdic-+ 27; x) = €=P()y(o; x). This is the standard definition of
the quasi-momentum. It is equivalent to the previous one, begalse 27 ; x) = 2 (x)y (o; x), which is true for any solutions,
not only quasi-periodic. Quasi-periodicity corresponds to diagonalization of the monodromy matrix, whose eigenvalues are
precisely &),

Whenx is close to 1 or-1, we can keep only the singular term in the potential and rewrite (39) as

(hdg — j£)¥ =0, h=2(xF1D). (40)

The limitx — +1 is equivalent tdi — 0. As usual in the semiclassical limit, we look for the solution in the fgrms x&S/%.
Plugging this into (40), we find that satisfies an algebraic equation

(1058 — jx)x =0,

which has solutions only if déf+ —id, S) = 0. It follows from the Virasoro constraints (25) that the two eigenvaluegig-adre
+ix. Choosing the upper sign we find th#i) = ko and

iTK
Yo+ 2r;x) = exp(—)zp(a; X).
xF1l
Thereforé
K

px)y=——"-—+--- (x— x1). (41)
xFl

4 The local analysis determings(x) only up to a sign. Here the sign ambiguity is fixed. As a result, some solutions, like for instance
pulsating strings [32,21], can be lost. S&ection 5.3 of [14] for more details.
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The linear problem (39) has a band spectrum, but since the Dirac operator in (39) does not possess any particular Hermiticity
properties allowed bands do not lie on the real axis. The quasi-momentum is real on the allowed zoti2$s sedirthere and
tr 2| < 2. Forbidden zones can be defined as contours on which the quasi-momentum is pure imagihesgl(itr 2| > 2).
At zone boundaries 12 = 2 and the monodromy matri2 degenerates into a Jordan cellhe two quasi-periodic solutions
of the Dirac equation, let us denote thefm (o; x), become degenerate at zone boundaries. Going around a zone boundary
interchanges the two solutions, ga-(x) have branch points there. By cutting the complex plane along the forbidden zones
and gluing two copies of it together we get a Riemann surface on whiclre globally defined as two branches of a single
meromorphic function. The same is true for the eigenvalues of the monodromy ni#f%)e This is easy to understand. The
trace of the monodromy matrix £ (x) is non-analytic atv = +1, where the potential in the Dirac operator has a pole, but
has no other singularities. However, solviig e e~'? =tr 22 for €? produces square root branch points precisely at the zone
boundaries.
Let us now pick up a particular branch of the quasi-momengm) which is an analytic function of on the complex plane
with cuts and has single polesxat +1. Subtracting the poles we get a function
G K K 42
) =p0) + —5+ 7 (42)
which has only branch cut singularigsi@nd therefore is coptetely determinedyits discontinuity:G (x +i0) — G(x —i0) =
2izp(x). Itis straightforward to prove thak (x) admits the dispersion representation

Gx )_/d p(y) 43)

which is an analog of (15).

The densityp (x) satisfies an integral equation which reflects the unimodularity of the monodromy matrix. To derive this
equation, let us consider the behavior of the quasi-momentum near a forbidden zone where it experiences a jump, so that
dP(x£i0) are two branches of the double-valued analytic function. The two branches are the two eigenvalues of the monodromy
matrix 2 (x) and thus satisfyl@ ¥ +i0 gr(x—i0) — 1 or

p(x +i0) + p(x —i0) =27n;, xe€Cy, (44)
whereCy, is one of the forbidden zones. Taking into account (42) and the spectral representation (43), we get
2 21K
G(x +i0) + G(x —i0) = ][d PG _ 2k t2mng, xeCy. (45)
-y x—-1 x+1

The density also satisfies several normalization conditions which follow from (36), (38) and (41):

/dxp(x)z%(A—i—ZJ—L), (46)
/mﬂﬂ:hm 47)
/dx PO _ 2—”(A L. (48)

Egs. (45)—(48) are direct analogs of the classical Bethe equations in the spin chain. The change of variadbtesx /+/A
makes this analogy explicit:

p(y) X A

][d A/(167t2L2) 7 T x€Ck (49)

/dx px)= f + 2L , (50)
pe) (51)
_ 2 p(x)

A—L_ST[ZL/dx = (52)

In the Iimit)L/L2 — 0 these equations coincide with (18), (14), (16) and (17).

5 Not all points with tr2 = 2 are zone boundaries! The eigenvaluesdtan become degenerate whi still has two independent
eigenvectors.
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4. Discussion

The main result of the long derivation in Section 3 is an integral equation that parameterizes classical solution of the string
sigma-model [14]:

p() x A
24d = — + 27ny. 53
][ Yx—y  x2—ajaer2r2) Lk (53)
At 1./L2 — 0 this equation reduces to the classical Bethe equation for the spin chain:
1
2][dy PO L . (54)
xX—=y X
That equation in its turn is an approximation to the exact quantum Bethe equations
uj+i/2 L_l_[uj—uk+i (55)
uj—i/2 _k?éjuj—uk—i'

In view of the analogy between (53) and (54), it is natural to call (53) classical Bethe equation. Is there quantum Bethe equation
for which (53) is a scaling limit? Such equation, if exists, will describe non-perturbative spectrum in {Bg sSlsector of

the AdS string and hence of the largeSYM. It is not clear at present how quantum Bethe equations in string theory could

be derived from first principles, but some hints come from the known solution of tki2) $tiral field (sigma-model 063)

[33]. According to [33] the sigma-model is equivalent to a four-fermion model which is solvable by Bethe ansatz. Of course,
restriction to the S(2) sector only makes sense at the classical level, but Bethe ansatz equations usually have rather rigid
group structure [34] and in many cases Bethe equations for a larger group can be guessed by looking at the Bethe ansatz for its
subgroup. Itis not inconceivable that the classical limit uniquely fixes quantum Bethe equations. In any case, a putative quantum
Bethe ansatz for the AdS string should reproduce (53) in the classical limit. In other words quantum Bethe equations should
be a discretization of (53). A particular discretization was proposed in [35] and passed several non-trivial checks. Though the
equations of [35] are valid at strong coupling, they do have a spin-chain interpretation [36]. The Hamiltonian of this spin chain
starts to deviate from the mixing matrix 8f = 4 SYM at three loops.
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