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Abstract

Integrable structures on both sides of the AdS/CFT correspondence are reviewed, with emphasis on the Bethe ansTo cite
this article: K. Zarembo, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Intégrabilité semi-classique dans AdS/CFT. Des structures intégrables de chaque coté de la correspondance AdS/CF
rappelées, avec un accent sur la conjecture de Bethe.Pour citer cet article : K. Zarembo, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The large-N limit of N = 4 super-Yang–Mills (SYM) is a string theory that has a geometric description at strong coupli
in terms of theAdS5 × S5 background with RR flux [1–3]. A remarkable property of the large-N SYM is its complete integra
bility. It arises in CFT as a quantum symmetry of the operator mixing [4–8] and in AdS as a classical symmetry on the stri
world-sheet [9–11]. The quantum nature of integrability in CFT suggests that the world-sheet integrability should also survive
quantization. Unfortunately not much is know about quantum string theory inAdS5 × S5 and it is not possible to compar
integrable structures on both sides of AdS/CFT directly, but it is possible to do such comparison in the semiclassical lim
is accurate for states with large quantum numbers [12,13]. I will shortly review the semiclassical integrability in AdS/CF
following [14].

There are two mechanisms by which SYM operators can acquire large quantum numbers. First, the majority of t
operators get large scaling dimensions at strong coupling [2], in the stringy regime of AdS/CFT. Or one can consider o
that contain large number of constituent fields [12]. Such operators have huge quantum numbers already at the tree le
is qualitatively clear why both types of operators behave stringy. At strong coupling, diagramswith large number of vertice
and propagators that resemble continuous string world-sheets obviously dominate. Planar diagrams for long operato
contain a large number of propagators and are stringy even at lowest orders of perturbation theory.
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1 Also at ITEP, 117259 Bol. Cheremushkinskaya 25, Moscow, Russia.
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2. Integrability in CFT

The field content ofN = 4 SYM theory consists of gauge fieldsAµ, six scalarsΦi and four Majorana fermionsΨ A
α , all in

the adjoint representation of U(N). The action is

S = 1

g2

∫
d4x tr

{
−1

2
F2

µν + (DµΦi)
2 + [Φi,Φj ]2 + fermions

}
. (1)

I will consider local gauge-invariant operators composed of two types of complex scalarsZ = Φ1 + iΦ2 andW = Φ3 + iΦ4:

O = tr(ZL−MWM + permutations). (2)

These operators transform non-trivially under a SU(2) × U(1) subgroup of the SO(6) R-symmetry ofN = 4 SYM. (Z,W)

transform as a doublet under U(2), so that the length of the operatorL is its U(1) charge andL − M is its SU(2) spin. The
operators of the same lengthL obviously have the same bare dimension:∆0 = L. The number of operators with the sameL

andM grows exponentially and if the length is sufficiently large perturbation theory becomes highly degenerate.2 This makes
computation of anomalous dimensions for long operators highly non-trivial problem even at one loop.

The set of operators (2) is closed under renormalization and does not mix with operators that contain other fields o
tives [15]. Including such operators is certainly possible [6,8] but will not be discussed here for the sake of simplicity.
operators (2) admit a very simple parametrization. If we associate theZ field with spin up and theW with spin down, an
operator of the form (2) can be associated with a distribution of spins on a periodic one-dimensional lattice of lengthL:

trZZZWWZZZWWWZWZZZZ . . . ←→ | ↑↑↑↓↓↑↑↑↓↓↓↑↓↑↑↑↑ . . .〉.
The map between operators and states of a spin chain is one-to-one if we impose an additional constraint that the sta
be translationally invariant. Translational invariance is equivalent to the cyclicity of trace. This condition can be implemente
as a constraint on admissible states. The mixing matrix acts linearly on operators and can thus be interpreted as a H
of a lattice spin system.

The mixing matrix is defined asΓ = Z−1 dZ/d lnΛ, whereΛ is a UV cutoff and(Z − 1)O is the counterterm that make
correlation functions ofZO finite. The counterterm need not be proportional to the bare operator, soZB

A and henceΓ B
A are

matrices with multi-indices that parameterize all operators of the same length. The eigenvectors of the mixing m

conformal operators and eigenvalues are their anomalous dimensions:Γ B
A O(n)

B = γnO(n)
B , so that∆n = L + γn.

The mixing matrix can be easily computed at one loop. There are three diagrams that contribute (Fig. 1): the sc
interaction, the gluon exchange and the self-energy graphs. While the gluon exchange and the self-energy produce
renormalized operator, the scalar vertex can lead to the interchange ofZ andW fields. The really simplification occurs at larg
N , when the interchange can only occur between nearest neighbors. Indeed, an insertion of a vertex between a pa
nearest-neighbor propagators produces a non-planar diagram which is suppressed by 1/N . As a result, the planar mixing matri
is a Hamiltonian of a spin chain with nearest-neighbor interactions [4]:

Γ = λ

16π2

L∑
l=1

(1− Pl,l+1), (3)

Fig. 1. The one-loop diagrams.

2 It is assumed here thatN → ∞. At finite N the number of degenerate operators grows linearly withL.
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Fig. 2. The spectrum of the Heisenberg spin chain.

whereλ = g2N is the ’t Hooft coupling andP is the permutation operator:P a ⊗ b = b ⊗ a. The use of the identityP =
(1+ σ ⊗ σ)/2 brings the mixing matrix to the form

Γ = λ

16π2

L∑
l=1

(1− σl · σl+1). (4)

This is the Hamiltonian of the Heisenberg spin chain. The remarkable property of this model is its completely integrab
Though the Heisenberg Hamiltoniancontains no adjustable parameters except for the length of the chain, it is possible

identify several energy scales in its spectrum (Fig. 2). The ground state is the ferromagnetic vacuum (all spin up). Th
state energy is zero because the corresponding operator trZL belongs to a short multiplet andhas zero anomalous dimensio
to all orders in perturbation theory. The excited states are created by flipping one or more spins. The approximate
operators are

a
†
n = 1√

L

L∑
l=1

e2π inl/Lσ−
l

. (5)

The operatora†
n creates magnon with mode numbern and momentump = 2πn/L. If L is large, Fock statesa†

n1 · · · a†
nM

|0〉
(with M 	 L) approximate the eigenstates of the Heisenberg Hamiltonian sufficiently well. These states correspond to
operators [12], which are dual to string states in the pp-wave limit of theAdS5 × S5 geometry. Their anomalous dimensions

γ = λ

2L2

M∑
k=1

n2
k (6)

match with the energies computed on the string side.
The situation changes when the number of magnons becomes macroscopically large:M ∼ L. The interaction betwee

magnons then cannot be neglected and the Fock space generated by simple operators (5) is no longer a good approx
the spectrum. Fortunately, the spectrum of the Heisenberg model can be computed exactly [16,17]. The energy eigen
be found by solving a set of algebraic Bethe equations:(

uj + i/2

uj − i/2

)L

=
∏
k �=j

uj − uk + i

uj − uk − i
. (7)

The Bethe rootsuj , j = 1, . . . ,M , are rapidities of individual magnons. The rapidity is related to the momentum as

eip = u + i/2

u − i/2
,

so the momentum constraint takes the form∏
j

uj + i/2

uj − i/2
= 1. (8)

The anomalous dimension is given by

γ = λ

8π2

∑
j

1

u2
j + 1/4

. (9)
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Fig. 3. Macroscopically large Bethe strings.

The simplest solution of Bethe equations that satisfies the momentum constraint contains two roots:

u1 = −u2 = cot
2πn

L − 1
, n = 1,2, . . . , (10)

with

γ = λ

π2
sin2 πn

L − 1
. (11)

WhenL is large,u1,2 ≈ ±L/2πn andγ is well approximated by the BMN formula (6). Sinceui ∼ L, the right-hand side o
Bethe equations can be replaced by 1, magnons do not interact and the spectrum is the Fock space of free magno
the scattering can be neglected only if all mode numbers are different. The Bethe ansatz does not allow different Beth
coincide completely. What happens when we try to put two magnons in the same momentum state is that they form a bo
and their rapidities become complex. Because(u + i/2)/(u − i/2) is no longer a pure phase whenu is complex, the left-hand
side of Bethe equations turns either to zero or to infinity asL → ∞. Hence, the right-hand side should develop either zer
pole. This can only happen if two of the rapidities are separated by±i. Bethe roots with the same mode number form arr
parallel to the imaginary axis with separation between adjacent roots equal to i. Such arrays are usually called str
number of Bethe roots in a string can be arbitrary, even macroscopically large [18] (Fig. 3). In the latter case strings be
some contours in the complex plane. Corresponding Bethe states describe macroscopic spin waves and are dual to se
strings inAdS5 × S5 [19].

Since Bethe roots scale linearly withL, it is natural to definexi = ui/L, which then stays finite asL → ∞. Taking logarithm
of the Bethe equations (7) and expanding in 1/L, we get

1

xj
+ 2πnj = 1

L

∑
k �=j

2

xj − xk
, (12)

where the phases 2πnj parameterize different branches of the logarithm. The rapidities of magnons with the same mode num
nj form a string with the center of mass atx = 2πnj . The distance between adjacent rootsxk −xk+1 ∼ 1/L, so the distribution
of roots can be characterized by a continuous density in the scaling limit:

ρ(x) = 1

L

∑
j

δ(x − xj ). (13)

The density is non-zero on a collection of contoursC = C1 ∪ · · · ∪ CK in the complex plane and is normalized by∫
dx ρ(x) = M

L
, (14)
C
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whereM is the total number of magnons or the number ofW fields in the operator (2). Equivalently, the distribution of Be
roots can be characterized by the resolvent:

G(x) = 1

L

∑
j

1

x − xj
=

∫
C

dy
ρ(y)

x − y
. (15)

The Taylor expansion ofG(x) at zero generates local conserved charges of the Heisenberg model [20,21]. In particular, the to
momentum is−G(0). Translational invariance of the physical states requires

−G(0) =
∫
C

dx
ρ(x)

x
= 2πm. (16)

The Taylor coefficient beforex determines the anomalous dimension:

γ = λ

8π2L

∫
C

dx
ρ(x)

x2
. (17)

The Bethe equations reduce to a singular integral equation for the density:

−
∫

C

dy ρ(y)

x − y
= 1

x
+ 2πnk, x ∈ Ck. (18)

This equation can be solved in hyperelliptic integrals. The details can be found in[14]. The Riemann surface associated with
the hyperelliptic integrals is obtained by gluing together two copies of the complex plane with cuts along the contoursCk .

The simplest one- and two-cut solutions have been worked out in detail [19,22,14] and were compared to Frolov–
string solitons [23]. Even 1/L corrections can be calculated in the simplest cases [24]. The scaling dimensions of op
agree with the energies of the string solitons up to two loops. At three loops the agreement generally breaks down [25
two-loop agreement can be established quite generally at the level of equations of motion or effective actions [26].
higher charges of the integrable hierarchies, that do not have geometric interpretation in AdS/CFT, agree for simplest
[20]. In fact, it is possible to match the whole integrable hierarchies, including Bethe ansatz equations [14]. Usuall
ansatz is associated with quantum systems, but it turns out that classical solutions of the sigma-model can also be par
by an integral equation which resembles the scaling limit of Bethe equations in the Heisenberg model.

3. Integrability in AdS

The R-charges of the operator tr(ZL−MWM + · · ·), L andM , translate into two angular momenta of the string onS5.
A string moving in theS3 ⊂ S5 and sitting in the middle ofAdS5 has the right quantum numbers, and I will concentrate
this particular subsector by all setting transverse coordinates to zero. Then the world sheet is parameterized by the g
time X0 and by four Cartesian coordinatesXi constrained byXiXi = 1. A point on the three-sphere defines a group elem
of SU(2):

g =
(

X1 + iX2 X3 + iX4
−X3 − iX4 X1 − iX2

)
≡

(
Z1 Z2

−�Z2 �Z1

)
∈ SU(2). (19)

The string action and the equations of motion can be formulated in terms of currents

ja = g−1∂ag = σA

2i
jA
a . (20)

In the conformal gauge,3

Sσm = −
√

λ

4π

2π∫
0

dσ

∫
dτ

[
1

2
Trj2

a + (∂aX0)2
]

, (21)

which give the following equations of motion:

3 The world-sheet metric is(+−).
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∂+∂−X0 = 0, (22)

∂+j− + ∂−j+ = 0, (23)

∂+j− − ∂−j+ + [j+, j−] = 0, (24)

where∂± = ∂τ ± ∂σ andj± = jτ ± jσ . The equation of motion forX0 always has a trivial solution

X0 = κτ.

The equation of motion should be supplemented by Virasoro constraints

1

2
tr j2± = −(∂±X0)2 = −κ2. (25)

The global symmetry of the sigma-model (21) is SUL(2) × SUR(2) × R. The first two factors are associated with the l
and right group multiplication:g → hg andg → gh. The Noether current of these symmetries arela andja , where

la = gjag−1 = ∂ag g−1 = σA

2i
lAa . (26)

Therefore

QA
L =

√
λ

4π

2π∫
0

dσ lAτ , QA
R =

√
λ

4π

2π∫
0

dσ jA
τ (27)

generate left and right group shifts. The dual R-charges in the SYM theory can be easily identified. The six scala
SYM transform under SO(6) in the same way as the six Cartesian coordinates that parameterize the sphere:Φi ∼ Xi . Since
Z = Φ1 + iΦ2 andW = Φ3 + iΦ4, these fields transform asZ1 andZ2 in (19). Thus(Z1,Z2) and (Z,W) are doublets of
SUR(2), so thatZ hasQ3

R = 1 andW andQ3
R = −1. For the operator (2),

Q3
R = L − 2M. (28)

Under the left shifts,(Z1,−�Z2) and (Z2,−�Z1) transform as doublets. Therefore,(Z,− �W) and (W,−�Z) are doublets of
SUL(2) and both fieldsZ andW haveQ3

L = 1. The left charge of the operator (2) is just the length of the spin chain:

Q3
L = L. (29)

The time translationsX0 → X0 + t generate scale transformations on the boundary ofAdS5. The energy of the string thu
should be identified with the scaling dimension of the dual operator:

∆ =
√

λ

2π

2π∫
0

dσ ∂τ X0 = √
λκ. (30)

The equation of motion for the chiral field (22), (23) are completely integrable [27,28] and can be effectively lineariz
the help of the inverse scattering transformation [29]. This method is based on the zero-curvature representation of the
of motion [30]. The rescaled currents [28]

J±(x) = j±
1∓ x

(31)

are flat for any value ofx:

∂+J− − ∂−J+ + [J+, J−] = 0, (32)

as a consequence of the equations of motion. The converse is also true: If (32) is satisfied for anyx, thenj± are solutions of the
equations of motion. The monodromy of the flat connection (31) defines the quasi-momentump(x):

Ω(x) = P exp

(
−

2π∫
0

dσ Jσ

)
= P exp

2π∫
0

dσ
1

2

(
j+

x − 1
+ j−

x + 1

)
(33)

and

trΩ(x) = 2cosp(x), (34)
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where the integral is taken along a fixed-time section of the world-sheet. Because the connection is flat on-shell, the
integration does not depend on which particular section is taken and therefore the quasi-momentum is conserved a
the equations of motion are satisfied. The quasi-momentum can thus be regarded as a generating function for an infi
integrals of motion.

The SUL,R(2) charges appear in the expansion ofp(x) in 1/x and inx at large and smallx, respectively. SinceJσ (x) =
jτ /x + · · · at infinity,

trΩ = 2+ 1

2x2

2π∫
0

dσ1 dσ2 tr j0(σ1)j0(σ2) + · · · = 2− 4π2Q2
R

λx2
+ · · · = 2− 4π2(L − 2M)2

λx2
+ · · · . (35)

Hence,

p(x) = −2π(L − 2J )√
λx

+ · · · (x → ∞). (36)

The expansion of the monodromy matrixΩ(x) at infinity before taking the trace generates Yangian charges, which are p
tially important in the AdS/CFT correspondence in general [31].

At x → 0, ∂σ + Jσ (x) = ∂σ + jσ − xjτ + · · · = g−1(∂σ − xlτ + · · ·)g, so

trΩ = 2+ x2

2

2π∫
0

dσ1 dσ2 tr l0(σ1)l0(σ2) + · · · = 2− 4π2Q2
L

λ
x2 + · · · = 2− 4π2L2

λ
x2 + · · · , (37)

which yields

p(x) = 2πm + 2πL√
λ

x + · · · (x → 0), (38)

wherem is an arbitrary integer.
The local charges are obtained by expanding the quasi-momentum in the Lorant series atx = ±1. I will only compute the

leading order here, but it is possible to develop a systematic procedure that recursively determines all local integrals
[30]. A slightly different but equivalent definition of the quasi-momentum is more appropriate for that purpose. Let us c
the auxiliary linear problem[

∂σ − 1

2

(
j+

x − 1
+ j−

x + 1

)]
ψ = 0, (39)

whereψ(σ ;x) is a two-component vector (j± are anti-Hermitian 2×2 matrices). This equation can be regarded as an eigen
problem for a one-dimensional Dirac operator with a periodic potential, wherex plays the role of the spectral parameter. T
linearly independent solutions can be chosen quasiperiodic:ψ(σ + 2π;x) = e±ip(x)ψ(σ ;x). This is the standard definition o
the quasi-momentum. It is equivalent to the previous one, becauseψ(σ +2π;x) = Ω(x)ψ(σ ;x), which is true for any solutions
not only quasi-periodic. Quasi-periodicity corresponds to diagonalization of the monodromy matrix, whose eigenva
precisely e±ip(x).

Whenx is close to 1 or−1, we can keep only the singular term in the potential and rewrite (39) as

(h̄∂σ − j±)ψ = 0, h̄ ≡ 2(x ∓ 1). (40)

The limit x → ±1 is equivalent tōh → 0. As usual in the semiclassical limit, we look for the solution in the formψ = χeiS/h̄.
Plugging this into (40), we find thatχ satisfies an algebraic equation

(i∂σ S − j±)χ = 0,

which has solutions only if det(j± − i∂σ S) = 0. It follows from the Virasoro constraints (25) that the two eigenvalues ofj± are
±iκ . Choosing the upper sign we find thatS(σ ) = κσ and

ψ(σ + 2π;x) = exp

(
iπκ

x ∓ 1

)
ψ(σ ;x).

Therefore4

p(x) = − πκ

x ∓ 1
+ · · · (x → ±1). (41)

4 The local analysis determinesp(x) only up to a sign. Here the sign ambiguity is fixed. As a result, some solutions, like for ins
pulsating strings [32,21], can be lost. SeeSection 5.3 of [14] for more details.
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The linear problem (39) has a band spectrum, but since the Dirac operator in (39) does not possess any particular H
properties allowed bands do not lie on the real axis. The quasi-momentum is real on the allowed zones, so trΩ is real there and
|trΩ| < 2. Forbidden zones can be defined as contours on which the quasi-momentum is pure imaginary (trΩ real,|trΩ| > 2).
At zone boundaries trΩ = 2 and the monodromy matrixΩ degenerates into a Jordan cell.5 The two quasi-periodic solution
of the Dirac equation, let us denote themψ±(σ ;x), become degenerate at zone boundaries. Going around a zone bo
interchanges the two solutions, soψ±(x) have branch points there. By cutting the complex plane along the forbidden
and gluing two copies of it together we get a Riemann surface on whichψ± are globally defined as two branches of a sin
meromorphic function. The same is true for the eigenvalues of the monodromy matrix e±ip(x). This is easy to understand. Th
trace of the monodromy matrix trΩ(x) is non-analytic atx = ±1, where the potential in the Dirac operator has a pole,
has no other singularities. However, solving eip + e−ip = trΩ for eip produces square root branch points precisely at the z
boundaries.

Let us now pick up a particular branch of the quasi-momentump(x) which is an analytic function ofx on the complex plane
with cuts and has single poles atx = ±1. Subtracting the poles we get a function

G(x) = p(x) + πκ

x − 1
+ πκ

x + 1
, (42)

which has only branch cut singularities and therefore is completely determined by its discontinuity:G(x + i0) − G(x − i0) ≡
2iπρ(x). It is straightforward to prove thatG(x) admits the dispersion representation

G(x) =
∫
C

dy
ρ(y)

x − y
, (43)

which is an analog of (15).
The densityρ(x) satisfies an integral equation which reflects the unimodularity of the monodromy matrix. To deriv

equation, let us consider the behavior of the quasi-momentum near a forbidden zone where it experiences a jum
eip(x±i0) are two branches of the double-valued analytic function. The two branches are the two eigenvalues of the mo
matrixΩ(x) and thus satisfy eip(x+i0) eip(x−i0) = 1, or

p(x + i0) + p(x − i0) = 2πnk, x ∈ Ck, (44)

whereCk is one of the forbidden zones. Taking into account (42) and the spectral representation (43), we get

G(x + i0) + G(x − i0) = 2−
∫

dy
ρ(y)

x − y
= 2πκ

x − 1
+ 2πκ

x + 1
+ 2πnk, x ∈ Ck. (45)

The density also satisfies several normalization conditions which follow from (36), (38) and (41):∫
dx ρ(x) = 2π√

λ
(∆ + 2J − L), (46)∫

dx
ρ(x)

x
= 2πm, (47)∫

dx
ρ(x)

x2
= 2π√

λ
(∆ − L). (48)

Eqs. (45)–(48) are direct analogs of the classical Bethe equations in the spin chain. The change of variablesx → 4πLx/
√

λ

makes this analogy explicit:

2−
∫

dy
ρ(y)

x − y
= x

x2 − λ/(16π2L2)

∆

L
+ 2πnk, x ∈ Ck, (49)∫

dx ρ(x) = M

L
+ ∆ − L

2L
, (50)∫

dx
ρ(x)

x
= 2πm, (51)

∆ − L = λ

8π2L

∫
dx

ρ(x)

x2
. (52)

In the limit λ/L2 → 0 these equations coincide with (18), (14), (16) and (17).

5 Not all points with trΩ = 2 are zone boundaries! The eigenvalues ofΩ can become degenerate whileΩ still has two independen
eigenvectors.
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4. Discussion

The main result of the long derivation in Section 3 is an integral equation that parameterizes classical solution of t
sigma-model [14]:

2−
∫

dy
ρ(y)

x − y
= x

x2 − λ/(16π2L2)

∆

L
+ 2πnk. (53)

At λ/L2 → 0 this equation reduces to the classical Bethe equation for the spin chain:

2−
∫

dy
ρ(y)

x − y
= 1

x
+ 2πnk. (54)

That equation in its turn is an approximation to the exact quantum Bethe equations(
uj + i/2

uj − i/2

)L

=
∏
k �=j

uj − uk + i

uj − uk − i
. (55)

In view of the analogy between (53) and (54), it is natural to call (53) classical Bethe equation. Is there quantum Bethe
for which (53) is a scaling limit? Such equation, if exists, will describe non-perturbative spectrum in the SU(2) subsector of
the AdS string and hence of the large-N SYM. It is not clear at present how quantum Bethe equations in string theory
be derived from first principles, but some hints come from the known solution of the SU(2) chiral field (sigma-model onS3)
[33]. According to [33] the sigma-model is equivalent to a four-fermion model which is solvable by Bethe ansatz. Of
restriction to the SU(2) sector only makes sense at the classical level, but Bethe ansatz equations usually have rat
group structure [34] and in many cases Bethe equations for a larger group can be guessed by looking at the Bethe an
subgroup. It is not inconceivable that the classical limit uniquely fixes quantum Bethe equations. In any case, a putative
Bethe ansatz for the AdS string should reproduce (53) in the classical limit. In other words quantum Bethe equation
be a discretization of (53). A particular discretization was proposed in [35] and passed several non-trivial checks. Th
equations of [35] are valid at strong coupling, they do have a spin-chain interpretation [36]. The Hamiltonian of this sp
starts to deviate from the mixing matrix ofN = 4 SYM at three loops.
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