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Abstract

We review how (dimensionally regulated) scattering amplitudes inN = 4 super-Yang–Mills theory provide a useful testi
ground for perturbative QCD calculations relevant to collider physics, as well as another avenue for investigating the AdS/CF
correspondence. We describe the iterative relation for two-loop scattering amplitudes inN = 4 super-Yang–Mills theory found
in [C. Anastasiou et al., Phys. Rev. Lett. 91 (2003) 251602], and discuss recent progress toward extending it to threeTo
cite this article: Z. Bern et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Théorie de super Yang–MillsN = 4, QCD et physique des collisionneurs.Nous rappelons comment des amplitudes
diffusion (après régularisation dimensionnelle) dans la théorie de super-Yang–Millspeuvent servir de base pour tester effi
cement des calculs perturbatifs pertinents pour la physique des collisionneurs, ainsi que pour étudier d’une autre manière
correspondance AdS/CFT. Nous décrivons la relation itérativepour les amplitudes de diffusion à deux boucles de la thé
de super-Yang–Mills N = 4 trouvée dans [C. Anastasiou et al., Phys. Rev. Lett. 91 (2003) 251602] et présentons les
récents vers son extension à trois boucles.Pour citer cet article : Z. Bern et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction and collider physics motivation

Maximally supersymmetric (N = 4) Yang–Mills theory (MSYM) is unique in manyways. Its properties are uniquely spe
ified by the gauge group, say SU(Nc), and the value of the gauge couplingg. It is conformally invariant for any value ofg.
Although gravity is not present in its usual formulation, MSYM is connected to gravity and string theory through the Ad
correspondence [1]. Because this correspondence is a weak-strong coupling duality, it is difficult to verify quantitatively for
general observables. On the other hand, such checks are possible and have been remarkably successful for quantitie
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by supersymmetry such as BPS operators [2], or when an additional expansion parameter is available, such as the
fields in sequences of composite, largeR-charge operators [3–8].

It is interesting to study even more observables in perturbative MSYM, in order to see how the simplicity of the
coupling limit is reflected in the structure of the weak coupling expansion. The strong coupling limit should be even
when the large-Nc limit is taken simultaneously, as it corresponds to a weakly-coupled supergravity theory in a back
with a large radius of curvature. There are different ways to study perturbative MSYM. One approach is via computatio
anomalous dimensions of composite, gauge invariant operators [1,3–8]. Another possibility [9], discussed here, is to study th
scattering amplitudes for (regulated) plane-wave elementary field excitations such as gluons and gluinos.

One of the virtues of the latter approach is that perturbative MSYM scattering amplitudes share many qualitative p
with QCD amplitudes in the regime probed at high-energy colliders. Yet the results and the computations (when orga
the right way) are typically significantly simpler. In this way, MSYM serves as a testing ground for many aspects of pertu
QCD. MSYM loop amplitudes can be considered as components of QCD loop amplitudes. Depending on one’s point of view,
they can be considered either ‘the simplest pieces’ (in terms of the rank of the loop momentum tensors in the numerator of
amplitude) [10,11], or ‘the most complicated pieces’ in terms of the degree of transcendentality (see Section 6) of th
functions entering the final results [12]. As discussed in Section 6, the latter interpretationlinks recent three-loop anomalou
dimension results in QCD [13] to those in the spin-chain approach to MSYM [5].

The most direct experimental probes of short-distance physics are collider experiments at the energy frontier. For the ne
decade, that frontier is at hadron colliders – Run II of the Fermilab Tevatron now, followed by startup of the CERN Large
Collider in 2007. New physics at colliders always contendswith Standard Model backgrounds. At hadron colliders,all physics
processes – signals and backgrounds – are inherently QCD processes. Hence it is important to be able to predict t
retically as precisely as possible. The cross section for a ‘hard’,or short-distance-dominated processes, can be factorized [1
into a partonic cross section, which can be computed order by order in perturbative QCD, convoluted with nonperturb
measurable parton distribution functions (pdfs). For example, the cross section for producing a pair of jets (plus anythin
in a pp̄ collision is given by

σpp̄→jjX(s) =
∑
a,b

1∫
0

dx1 dx2fa(x1;µF )f̄b(x2;µF )σ̂ab→jjX

(
sx1x2;µF ,µR;αs(µR)

)
, (1)

wheres is the squared center-of-mass energy,x1,2 are the longitudinal (light-cone) fractions of thep, p̄ momentum carried by
partonsa, b, which may be quarks, anti-quarks or gluons. The experimental definition of a jet is an involved one which ne
not concern us here. The pdffa(x,µF ) gives the probability for finding partona with momentum fractionx inside the proton;
similarly f̄b is the probability for finding partonb in the antiproton. The pdfs depend logarithmically on the factorization s
µF , or transverse resolution with which the proton is examined. The Mellin moments offa(x,µF ) are forward matrix element
of leading-twist operators in the proton, renormalized at the scaleµF . The quark distribution functionq(x,µ), for example,

obeys
∫ 1
0 dxxj q(x,µ) = 〈p|[q̄γ +∂

j
+q](µ)|p〉.

2. Ingredients for a NNLO calculation

Many hadron collider measurements can benefit from predictions that are accurate to next-to-next-to-leading order
in QCD. Three separate ingredients enter such an NNLO computation; only the third depends on the process:

(i) The experimental value of the QCD couplingαs(µR) must be determined at one value of the renormalization scaleµR

(for example,mZ), and its evolution inµR computed using the 3-loopβ-function, which has been known since 1980 [1
(ii) The experimental values for the pdfsfa(x,µF ) must be determined, ideally using predictions at the NNLO level

are available for deep-inelastic scattering [16] and more recently Drell–Yan production [17]. The evolution of
µF to NNLO accuracy has very recently been completed, after a multi-year effort by Moch, Vermaseren and Vo
(previously, approximations to the NNLO kernel were available [18]).

(iii) The NNLO terms in the expansion of the partonic cross sections must be computed for the hadronic process in
For example, the partonic cross sections for jet production have the expansion,

σ̂ab→jjX = α2
s (A + αsB + α2

s C + · · ·). (2)

The quantitiesA andB have been known for over a decade [19], butC has not yet been computed.

Indeed, the NNLO terms are unknown for all but a handful of collider processes. Computing a wide range of processe
at NNLO is the goal of a large amount of recent effort in perturbative QCD [20]. As an example of the improved pr
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Fig. 1. LHCZ production at NNLO in QCD [22]. Fig. 2. Purely gluonic contributions tôσgg→jjX at
NNLO.

that could result from this program, consider the production of a virtual photon,W or Z boson via the Drell–Yan process
the Tevatron or LHC. The total cross section for this process was first computed at NNLO in 1991 [21]. Last year, the
distribution of the vector boson also became available at this order [17,22], as shown in Fig. 1. The rapidity is defined in
the energyE and longitudinal momentumpz of the vector boson in the center-of-mass frame,Y ≡ 1

2 log(
E+pz

E−pz
). It determines

where the vector boson decays within the detector, or outside its acceptance. The rapidity is sensitive to thex values of the

incoming partons. At leading order in QCD,x1 =
√

m2
V

/s eY , x2 =
√

m2
V

/s e−Y , wheremV is the vector boson mass.
The LHC will produce roughly 100million Ws and 10 millionZs per year in detectable (leptonic) decay modes. L

experiments will be able to map out the curve in Fig. 1 with exquisite precision, and use it to constrain the parton distr
– in the same detectors that are being used to search for new physics in other channels, often with similarqq̄ initial states. By
taking ratios of the other processes to the ‘calibration’ processes of singleW andZ production, many experimental uncertaintie
including those associated with the initial state parton distributions, drop out. Thus Fig. 1 plays a role as a ‘partonic lu
monitor’ [23]. To get the full benefit of the remarkable experimental precision, though, the theory uncertainty must appr
1% level. As seen from the uncertainty bands in the figure, this precision is only achievable at NNLO. The bands are e
by varying the arbitrary renormalization and factorization scalesµR andµF (set to a common valueµ) from mV /2 to 2mV .
A computation to all orders inαs would have no dependence onµ. Hence theµ-dependence of a fixed order computation
related to the size of the missing higher-order terms in the series. Although sub-1% uncertainties may be special toW andZ

production at the LHC, similar qualitative improvements in precision will be achieved for many other processes, such as di-
production, as the NNLO terms are completed.

Even within the NNLO terms in the partonic cross section, there are several types of ingredients. This feature is il
in Fig. 2 for the purely gluonic contributions to di-jet production,σ̂gg→jjX. In the figure, individual Feynman graphs stand
full amplitudes interfered (×) with other amplitudes, in order to produce contributions to a cross section. There may be
4 partons in the final state. Just as in QED it is impossible to define an outgoing electron with no accompanying clou
photons, also in QCD sensible observables require sums over final states with different numbers of partons. Jets, for
are defined by a certain amount of energy into a certain conical region. At leading order, that energy typically come
single parton, but at NLO there may be two partons, and at NNLO three partons, within the jet cone.

Each line in Fig. 2 results in a cross-section contribution containing severe infrared divergences, which are trad
regulated by dimensional regulation withD = 4 − 2ε. Note that this regulation breaks the classical conformal invarianc
QCD, and the classical and quantum conformal invariance ofN = 4 super-Yang–Mills theory. Eachcontribution contains poles
in ε ranging from 1/ε4 to 1/ε. The poles in the real contributions come from regions of phase-spacewhere the emitted gluon
are soft and/or collinear. The poles in the virtual contributions come from similar regions of virtual loop integration. The
× real contribution obviously has a mixture of the two. The Kinoshita–Lee–Nauenberg theorem [24] guarantees that
all cancel in the sum, for properly-defined, short-distance observables, after renormalizing the coupling constant and
initial-state collinear singularities associated with renormalization of the pdfs.

A critical ingredient in any NNLO prediction is the set of two-loop amplitudes, which enter the doubly-virtual× real in-
terference in Fig. 2. Such amplitudes require dimensionally-regulated all-massless two-loop integrals depending o
one dimensionless ratio, which were only computed beginning in 1999 [25–27]. They also receive contributions fro
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Feynman diagrams, with lots of gauge-dependent cancellations between them. It is of interest to develop more efficie
festly gauge-invariant methods for combining diagrams, such as the unitarity or cut-based method successfully appl
loop [10] and in the initial two-loop computations [28].

3. N = 4 super-Yang–Mills theory as a testing ground for QCD

N = 4 super-Yang–Mills theory serves an excellent testing ground for perturbative QCD methods. Forn-gluon scattering a
tree level, the two theories in fact give identical predictions. (The extra fermions and scalars of MSYM can only be p
in pairs; hence they only appear in ann-gluon amplitude at loop level.) Therefore any consequence ofN = 4 supersymmetry
such as Ward identities among scattering amplitudes [29], automatically applies to tree-level gluonic scattering in QCD [30
Similarly, at tree level Witten’s topologicalstring [31] produces MSYM, but implies twistor-space localization properties f
QCD tree amplitudes. (Amplitudes with quarks can be related to supersymmetric amplitudes with gluinos using simp
manipulations.)

3.1. Pole structure at one and two loops

At the loop level, MSYM becomes progressively more removed from QCD. However, it can still illuminate general p
ties of scattering amplitudes, in a calculationally simpler arena. Consider the infrared singularities of one-loop massless gau
theory amplitudes. In dimensional regularization, the leading singularity is 1/ε2, arising from virtual gluons which are both so
and collinear with respect to a second gluon or another massless particle. It can be characterized by attaching a glu
pair of external legs of the tree-level amplitude, as in the left graph in Fig. 3. Up to color factors, this leading divergenc
same for MSYM and QCD. There are also purely collinear terms associated with individual external lines, as shown in
graph in Fig. 3. The pure-collinear terms have a simpler form than the soft terms, because there is less tangling of colo
but they do differ from theory to theory.

The full result for one-loop divergences can be expressed as an operatorI (1)(ε) which acts on the color indices of the tre

amplitude [32]. Treating theL-loop amplitude as a vector in color space,|A(L)
n 〉, the one-loop result is∣∣A(1)

n

〉 = I (1)(ε)
∣∣A(0)

n

〉 + ∣∣A(1),fin
n

〉
, (3)

where|A(1),fin
n 〉 is finite asε → 0, and

I (1)(ε) = 1

2

eεγ

Γ (1− ε)

n∑
i=1

n∑
j �=i

Ti · Tj

[
1

ε2
+ γi

T2
i

1

ε

](
µ2

R

−sij

)ε

, (4)

whereγ is Euler’s constant andsij = (ki + kj )2 is a Mandelstam invariant. The color operatorTi · Tj = T a
i

T a
j

and factor of

(µ2
R

/(−sij ))ε arise from soft gluons exchanged between legsi andj , as in the left graph in Fig. 3. The pure 1/ε poles terms
proportional toγi have been written in a symmetric fashion, which slightly obscures the fact that the color structure is a
simpler. We can use the equation which represents color conservation in the color-space notation,

∑n
j=1 Tj = 0, to simplify the

result. At order 1/ε we may neglect the(µ2
R/(−sij ))ε factor in theγi terms, and we have

∑n
j �=i Ti · Tj γi/T2

i = −γi . So the
color structure of the pure 1/ε term is actually trivial. For ann-gluon amplitude, the factorγi is set equal to its value for gluon
which turns out to beγg = b0, the one-loop coefficient in theβ-function. Hence the pure-collinear contribution vanishes
MSYM, but not for QCD.

The divergences of two-loop amplitudes can be described in the same formalism [32]. The relation to soft-collin
torization has been made more transparent by Sterman and Tejeda–Yeomans, who also predicted the three-loop behavior [

Decompose the two-loop amplitude|A(2)
n 〉 as∣∣A(2)

n

〉 = I (2)(ε)
∣∣A(0)

n

〉 + I (1)(ε)
∣∣A(1)

n

〉 + ∣∣A(2),fin
n

〉
, (5)

Fig. 3. Illustration of soft-collinear (left) and pure-collinear (right) one-loop divergences.
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where|A(2),fin
n 〉 is finite asε → 0 and

I (2)(ε) = −1

2
I (1)(ε)

(
I (1)(ε) + 2b0

ε

)
+ e−εγ Γ (1− 2ε)

Γ (1− ε)

(
b0

ε
+ K

)
I (1)(2ε)

+ eεγ

4εΓ (1− ε)

[
−

n∑
i=1

n∑
j �=i

Ti · Tj

H
(2)
i

T2
i

(
µ2

−sij

)2ε

+ Ĥ(2)

]
. (6)

HereK andH
(2)
i depend on the theory, andH(2)

i , like γi , also depends on the external legi. For QCD,K has long been

known from soft-gluon resummation [34], whileH(2)
i

were found by explicit computation of four-parton two-loop scatter
amplitudes [35–37]. For MSYM, the quantities are naturally simpler,

KN=4 = −ζ2CA, (7)

H
(2),N=4
i

= ζ3

2
C2

A, (8)

whereCA = Nc is the adjoint Casimir value. The quantitŷH(2) has non-trivial, but purely subleading-in-Nc , color structure. It
is associated with soft, rather than collinear, momenta [37,33], so it is theory-independent, up to color factors. An ans
for generaln has been presented recently [38].

3.2. Recycling cuts in MSYM

An efficient way to compute loop amplitudes, particularly in theories with a great deal of supersymmetry, is to use u
and reconstruct the amplitude from its cuts [10,38]. For the four-gluon amplitude in MSYM, the two-loop structure, an
of the higher-loop structure, follows from a simple property of the one-loop two-particle cut in this theory. For sim

we strip the color indices off of the four-point amplitudeA(0)
4 , by decomposing it into color-ordered amplitudesA

(0)
4 , whose

coefficients are traces of SU(Nc) generator matrices (Chan–Paton factors),

A(0)
4 (k1, a1;k2, a2;k3, a3;k4, a4) = g2

∑
ρ∈S4/Z4

Tr(T aρ(1)T aρ(2)T aρ(3)T aρ(4) )A
(0)
4 (kρ(1), kρ(2), kρ(3), kρ(4)). (9)

The two-particle cut can be written as a product of two four-point color-ordered amplitudes, summed over the pair of interm
diateN = 4 statesS,S′ crossing the cut, which evaluates to∑

S,S ′∈N=4

A
(0)
4 (k1, k2, 
S,−
′

S ′) × A
(0)
4 (
′

S ′ ,−
S , k3, k4) = is12s23A
(0)
4 (k1, k2, k3, k4) × 1

(
′ − k1)
2

1

(
 − k3)
2
, (10)

where
′ = 
 − k1 − k2. This equation is also shown in Fig. 4. The scalar propagator factors in Eq. (10) are depicted a
vertical lines in the figure. The dashed line indicates the cut. Thus the cut reduces to the cut of a scalar box integral, d

ID=4−2ε
4 ≡

∫
d4−2ε


(2π)4−2ε

1


2(
 − k1)
2(
 − k1 − k2)

2(
 + k4)
2
. (11)

One of the virtues of Eq. (10) is that it is valid for arbitrary external states in theN = 4 multiplet, althoughonly external gluons
are shown in Fig. 4. Therefore it can be re-used at higher loop order, for example, by attaching yet another tree to the

At two loops, the simplicity of Eq. (10) made it possible to compute the two-loopgg → gg scattering amplitude in tha
theory (in terms of specific loop integrals) in 1997 [11], four years before the analogous computations in QCD [36,37
the loop momenta in the numerators of the Feynman diagrams can be factored out, and only two independent loop
appear, the planar and nonplanar scalardouble box integrals. The result can be written in an appealing diagrammatic form,
Fig. 5, where the color algebra has the same form as the kinematics of the loop integrals [39].

Fig. 4. The one-loop two-particle cuts for the four-point amplitude in MSYM reduce to the tree amplitude multiplied by a cut scalar box
(for any set of four external states).
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quantity s12s23A
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4 transforms symmetrically under gluon interchange.) In the brackets, black lines are kinematic 1/p2 propagators, with

scalar (φ3) vertices. Grey lines are colorδab propagators, with structure constant (f abc) vertices. The permutation sum is over the three cy
permutations of legs 2,3,4, and makes the amplitude Bose symmetric.

Fig. 6. The rung rule for MSYM.

(a) (b)

Fig. 7. (a) Example of a ‘Mondrian’ diagram which
can be determined recursively from the rung rule.
(b) The first non-vanishing, non-Mondrian diagrams
appear at three loops in nonplanar, subleading-color
contributions.

At higher loops, Eq. (10) leads to a ‘rung rule’ [11] for generating a class of(L + 1)-loop contributions fromL-loop
contributions. The rule states that one can insert into aL-loop contribution a rung, i.e. a scalar propagator, transverse to
parallel lines carrying momentum
1 + 
2, along with a factor ofi(
1 + 
2)

2 in the numerator, as shown in Fig. 6. Usi
this rule, one can construct recursively the external and loop-momentum-containing numerators factors associated w
φ3-type diagram that can be reduced to trees by a sequence of two-particle cuts, such as the diagram in Fig. 7(a). Suc
can be termed ‘iterated 2-particle cut-constructible’, although a more compact notation might be ‘Mondrian’ diagram
their resemblance to Mondrian’s paintings. Not all diagrams can be computed in this way. The diagram in Fig. 7(b) is n
‘Mondrian’ class, so it cannot be determined from two-particle cuts. Instead, evaluation of the three-particle cuts show
appears with a non-vanishing coefficient in the subleading-color contributions to the three-loop MSYM amplitude.

4. Iterative relation in N = 4 super-Yang–Mills theory

Although the two-loopgg → gg amplitude in MSYM was expressed in terms of scalar integrals in 1997 [11], an
integrals themselves were computed as a Laurent expansion aboutD = 4 in 1999 [25,26], the expansion of theN = 4 am-
plitude was not inspected until last fall [9], considerably after similar investigations for QCD andN = 1 super-Yang–Mills
theory [36,37]. It was found to have a quite interesting ‘iterative’ relation, when expressed in terms of the one-loop amplitu
and its square.

At leading color, theL-loopgg → gg amplitude has the same single-trace color decomposition as the tree amplitude, E

Let M
(L)
4 be the ratio of this leading-color, color-ordered amplitude to the corresponding tree amplitude, omitting also sever

conventional factors,

A
(L),N=4 planar
4 =

[
2e−εγ g2Nc

(4π)2−ε

]L

A
(0)
4 × M

(L)
4 . (12)

Then the iterative relation (see also Fig. 8) is

M
(2)
4 (ε) = 1

2

(
M

(1)
4 (ε)

)2 + f (ε)M
(1)
4 (2ε) − 1

2
(ζ2)2 +O(ε), (13)

wheref (ε) ≡ (ψ(1− ε) − ψ(1))/ε = −(ζ2 + ζ3ε + ζ4ε2 + · · ·).
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Fig. 8. Schematic depiction of the iterative relation (13) between two-loop and one-loop MSYM amplitudes.

The analogous relation for gluon-gluon scattering at two loops in QCD takes a similar form at the level of the pol
in ε, thanks to the general result (5). But the finite remainder−1

2(ζ2)2 is replaced by approximately six pages of formu
(!), including a plethora of polylogarithms, logarithms andpolynomials in ratios of invariantss/t , s/u and t/u [37]. The
polylogarithm is defined by

Lim(x) =
∞∑
i=1

xi

im
=

x∫
0

dt

t
Lim−1(t), Li1(x) = − ln(1− x). (14)

It appears with degreem up to 4 at the finite, orderε0, level; and up to degree 4− i in theO(ε−i ) terms. In the case of MSYM
identities relating these polylogarithms are needed to establish Eq. (13).

Although theO(ε0) term in Eq. (13) is miraculously simple, as noted above the behavior of the pole terms is not a m
It is dictated in general terms by the cancellation of infrared divergences between virtual corrections and real emiss
Roughly speaking, for this cancellation to take place, the virtual terms must resemble lower-loop amplitudes, and the real term
must resemble lower-point amplitudes, in the soft and collinear regions of loop or phase-space integration.

At the level of the finite terms, the iterative relation (13) can be understood in the Regge/BFKL limit wheres 
 t , because
it then corresponds to exponentiation of large logarithms ofs/t [40]. For general values ofs/t , however, there is no suc
argument.

The relation is special toD = 4, where the theory is conformally invariant. That is, theO(ε1) remainder terms cannot b

simplified significantly. For example, the two-loop amplitudeM
(2)
4 (ε) contains atO(ε1) all three independent Li5 functions,

Li5(−s/u), Li5(−t/u) and Li5(−s/t), yet [M(1)
4 (ε)]2 has only the first two of these [9].

The relation is also special to the planar, leading-color limit. The subleading color-components of the finite rem

|A(2),fin
n 〉 defined by Eq. (5) show no significant simplification at all.
For planar amplitudes in theD → 4 limit, however, there is evidence that an identical relation also holds for an arb

numbern of external legs, at least for certain ‘maximally helicity-violating’ (MHV) helicity amplitudes. This evidence co
from studying the limits of two-loop amplitudes as two of then gluon momenta become collinear [9,38,41]. (Indeed, it was
analyzing these limits that the relation forn = 4 was first uncovered.) The collinear limits turn out to be consistent with
same Eq. (13) withM4 replaced byMn everywhere [9], i.e.,

M
(2)
n (ε) = 1

2

(
M

(1)
n (ε)

)2 + f (ε)M
(1)
n (2ε) − 1

2
(ζ2)2 + O(ε). (15)

The collinear consistency does not constitute a proof of Eq. (15), but in light of the remarkable properties of MSYM, i
be surprising if it were not true in the MHV case. Because the direct computation of two-loop amplitudes forn > 4 seems rathe
difficult, it would be quite interesting to try to examine the twistor-space properties of Eq. (15), along the lines of [31,42
right-hand side of Eq. (15) is not completely specified at order 1/ε andε0 for n > 4. The reason is that the orderε andε2 terms

in M
(1)
n (ε), which contribute to the first term in Eq. (15) at order 1/ε andε0, contain theD = 6 − 2ε pentagon integral [43]

which is not known in closed form. On the other hand, the differential equations this integral satisfies may suffice to

twistor-space behavior. Or one may examine just the finite remainderM
(2),fin
n defined via Eq. (5).)

It may soon be possible to test whether an iterative relation for planar MSYM amplitudes extends to three loops. A
for the three-loop planargg → gg amplitude, shown in Fig. 9, was provided at the same time as the two-loop result, in 199
The ansatz is based on the ‘rung-rule’ evaluation of the iterated 2-particle cuts, plus the 3-particle cuts with intermedi
in D = 4; the 4-particle cuts have not yet been verified. Two integrals, each beginning atO(ε−6), are required to evaluate th
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Fig. 9. Graphical representation of the three-loop amplitude for MSYM in the planar limit.

ansatz in a Laurent expansion aboutD = 4. (The other two integrals are related bys ↔ t .) The triple ladder integral on the to
line of Fig. 9 was evaluated last year by Smirnov, all the way throughO(ε0) [44]. Evaluation of the remaining integral, whic
contains a factor of(
 + k4)

2 in the numerator, is in progress [45]; all the terms throughO(ε−2) agree with predictions [33]
up to a couple of minor corrections.

5. Significance of iterative behavior?

It is not yet entirely clear why the two-loop four-point amplitude, and probably also then-point amplitudes, have the iterativ
structure (15). However, one can speculate that it is from the need for the perturbative series to be summable into s
which becomes ‘simple’ in the planar strong-coupling limit, since that corresponds, via AdS/CFT, to a weakly-coup
pergravity theory. The fact that the relation is special to the conformal limitD → 4, and to the planar limit, backs up th
speculation. Obviously it would be nice to have some more information at three loops. There have been other hints
erative structure in the four-point correlation functions of chiral primary (BPS) composite operators [46], but here a
exact structure is not yet clear. Integrability has played a key role in recent higher-loop computationsof non-BPS spin-chain
anomalous dimensions [4–6,8]. By imposing regularity of the BMN ‘continuum’ limit [3], a piece of the anomalous dimensio
matrix has even been summed to all orders ing2Nc in terms of hypergeometric functions[7]. The quantities we considered her
– gauge-invariant, but dimensionally regularized, scattering amplitudes of color non-singlet states – are quite different
composite color-singlet operators usually treated. Yet there should be some underlying connection between the differe
bative series.

6. Aside: anomalous dimensions in QCD and MSYM

As mentioned previously, the set of anomalous dimensions for leading-twist operators was recently computed at N
QCD, as the culmination of a multi-year effort [13] which is central to performing precise computations of hadron collide
sections. Shortly after the Moch, Vermaseren and Vogt computation, the anomalous dimensions in MSYM were extrac
this result by Kotikov, Lipatov, Onishchenko and Velizhanin [12]. (The MSYM anomalous dimensions are universal;
symmetry implies that there is only one independent one for each Mellin momentj .) This extraction was non-trivial, becau
MSYM contains scalars, interacting through both gauge and Yukawa interactions, whereas QCD does not. However
et al. noticed, from comparing NLO computations in both leading-twist anomalous dimensions and BFKL evolution,
‘most complicated terms’ in the QCD computation always coincide with the MSYM result, once the gauge group repres
of the fermions is shifted from the fundamental to the adjoint representation. One can define the ‘most complicated term
x-space representation of the anomalous dimensions – i.e., the splitting kernels – as follows: Assign a logarithm or facπ a
transcendentality of 1, and a polylogarithm Lim or factor ofζm = Lim(1) a transcendentality ofm. Then the most complicate
terms are those with leading transcendentality. For the NNLO anomalous dimensions, this turns out to be transcend
(This rule for extracting the MSYM terms from QCD has also been found to hold directly at NNLO, for the doubly-v
contributions [38].) Strikingly, the NNLO MSYM anomalous dimension obtained forj = 4 by this procedure agrees with
previous result derived by assuming an integrable structure for the planar three-loop contribution to the dilatation oper

7. Conclusions and outlook

N = 4 super-Yang–Mills theory is an excellent testing ground for techniques for computing, and understanding the structu
of, QCD scattering amplitudes which are needed for precise theoretical predictions at high-energy colliders. One can e
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something about the structure ofN = 4 super-Yang–Mills theory in the process, although clearly there is much more to
understood. Some open questions include: Is there any AdS/CFT ‘dictionary’ for color non-singlet states, like pla
gluons? Can one recover composite operator correlation functionsfrom any limits of multi-point scattering amplitudes? Is ther
a better way to infrared-regulateN = 4 supersymmetric scattering amplitudes, that might be more convenient for appro
the AdS/CFT correspondence, such as compactification on a three-sphere, use of twistor space, or use of cohere
states? Further investigations of this arena will surely be fruitful.
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