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Abstract

We review recent progress in quantitative checking of AdS/@&dlity in the sector of ‘semiclassical’ string states dual to
‘long’ scalar ' = 4 super Yang—Mills operators. In particular, we desetihe effective action approach, in which the same
sigma model type action describing coherent states is shown to emerge fr8dSthe $° string action and from an integrable
spin chain Hamiltonian representing the SYM dilatation operdmcite thisarticle: A.A. Tseytlin, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé
Cordes relativistes semi-classiques dans AdSs x S° et longs opérateurs dans la théorie de super Yang-Mills A/ = 4.
Nous passons en revue les progrés récents sur les vérifications quantitatives de la dualité AAS/CFT dans le régime ou les états
«semiclassiques » de cordes sont du aux « longsratsés scalaires de la théorie de super Yang—Mills: 4. En particulier,
nous décrivons I'approche effective, dans laquelle le modéle sigma décrivant les états cohérents est montré émerger de I'action
de la corde SuAdSs x S° et de I'Hamiltonien d’'une chaine de spin intégrable représentant I'opérateur de dilatation en SYM.
Pour citer cet article: A.A. Tseytlin, C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

TheN =4 SYM theory is a remarkable example of 4d conformal field theory. In the plahas (co) limit it is parametrized
by the 't Hooft couplingx = g%MN, and the major first step towards the solution of this theory would be to determine the
spectrum of anomalous dimensioAga) of the primary operators built out of products of local gauge-covariant fields. That
this may be possible in principle is sugted by the AdS/CFT duality implying the exénce of hidden integble 2d structure
corresponding té\dSs x S° string sigma model.
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The AdS/CFT duality implies the equality between #S energies of quantum closed string states as functions of the

effective string tensiolf’ = ‘2/—75 and quantum numbers likgP angular momenta = (J, ...) and dimensions of the corre-
sponding local SYM operators. To give a quantitative check efdhality one would like to understand how strings ‘emerge’
from the field theory, in particular, which (local, single-trace) gauge theory operators [1] correspond to which ‘excited’ string
states and how one may verify the matching of their dimensions/energies beyond the well-understood BPS/supergravity sector.
We would like to use the duality as a guide to deeper understaditing structure of quantum SYM theory. In particular, re-
sults motivated by comparison to string theory may allow one to ‘guess’ the general structure of the SYM anomalous dimension
matrix and may also suggest new methods of computing anomalous dimensions in less supersymmetric gauge theories.
Below we shall review recent progress in checking AdS/CFT correspondence in a subsector of string/SYM states with large
quantum numbers. Let us start with brief remarks on SYM and string sides of the duality. The SYM theory contains a gauge
field, 6 scalarg,, and 4 Weyl fermions, all in adjoint representation of(@U. It has global conformal anfl-symmetry, i.e. is
invariant under S@, 4) x SO(6). To determine (in planar limit) dimensions of local gauge-invariant operators one in general
needs to find the anomalous dimension matrix to all ordevs &md then to diagonalize it. The special case is that of chiral
primary or BPS operators (and their descendan¢$),);r1...¢mk}) whose dimensions are protected, i.e. do not deperd dhe
problem of finding dimensions appears to simplify also in the case of ‘long’ operators containing large number of fields under
the trace. One example is provided by ‘near-BPS’ operators [2] I'(l@i’tmg ---)+---whereJ > n, and®y = ¢y + i3,

k=1, 2, 3. Below we will consider ‘far-from-BPS’ operators Iik€(<1liljl<1>2J2 <) +---whereJp ~ Jo > 1.
The type I1IB string action i\dSs x 55 space has the following structure

2
1
I:—ET/dt/do(BpYﬂapYunMU —I—E)pXmE)pX"(Smn + .-, Q)
0

whereY*YVn, = =1, X" X" Sy =L =(—++++-), T = % and dots stand for the fermionic terms [3] that ensure
that this model defines a 2d conformal field theory. The closed string states can be classified by the values of the Cartan charges
of the obvious symmetry group $8 4) x SO(6), i.e.(E, S1, S2; J1, J2, J3), i.e. by theAdS; energy, two spins ildS; and 3
spins inS®. The mass shell condition gives a relatir= E(Q, T). HereT is the string tension an@d = (Sy, So, J1, Ja, J3; ng)
where stand for higher conserved charges (analogs of oscillation numbers in flat space).

According to AdS/CFT duality quantum closed string statefdSs x S5 should be dual to quantum SYM states at the
boundaryR x 53 or, via radial quantization, to local single-trace operators at the origiR®ofThe energy of a string state
should then be equal to the dimension of the corresponding SYM opefator, 7) = A(Q, 1), where on the SYM side the
chargesQ characterise the operator. By analogy with flat space and ignafingrrections (i.e. assuming — oo or o’ — 0)
the excited string states are expected to have eneﬂg&es\/—lo7 ~ 21/4 [4] which represents a non-trivial prediction for strong-

coupling asymptotics of SYM dimensions. In general, the natural (inverse-tension) perturbative expansion on the string side will
be given by}, (\%)n , while on the SYM side the usual planar perturbation theory will give the eigenvalues of the anomalous

dimension matrix ast = ), a,A". The AAS/CFT duality implies that the twogansions are to be trstrong-coupling and
weak-coupling asymptotics of the same function. To check the rel&@tienA is then a non-trivial problem. On the symmetry
grounds, this can be shown in the case ( BPS (chiral primary) operators dual to supergravity states (‘massless’ or ground
state string modes) since their energies/dimensions are protected from corrections.

For generic non-BPS states the situation looked hopeless until the remarkable suggestion [2,4] that a progress in checking
duality can be made by concentrating on a subsector of states with large (‘semiclassical’) values of quantum gumiders,

V4 (hereQ stands for generic quantum number like spirdSs or 5% or an oscillation number) and considering a new limit
0 — oo, A= 2= fixed. ¥3)
. . Q _ 1
On the string 5|deﬁ =7
be large. The energy of such states happens t6 beQ + f(Q, A). The duality implies that such semiclassical string states
as well as near-by fluctuations should be dual to ‘long’ SYM operators with large canonical dimension, i.e. containing large
number of fields or derivatives under the trace. In this case the duality map becomes more explicit.

The simplest possibility is to start with a BPS state that carries a large quantum number and consider small fluctuations near
it [2], i.e. a set ofnear-BPS states characterised by a large parameter [2]. The only non-trivial example of such BPS state is
represented by a point-like string moving along a geodesi§”iwith a large angular momentu@ = J. ThenE = J and
the dual operator is 7, @ = ¢1 + i¢». The small (nearly point-like) closed sigs representing near-by fluctuations are
ultrarelativistic, i.e. their kinetic energy is much larger than their mass. They are dual to SYM operators of théddrm i
where dots stand for a small number of other fields and/or covariant derivatives (and one needs to sum over different orders of

plays the role of the semiclassical parameter (like rotation frequency) which can then be taken to
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the factors to find an eigenstate of the anomalous dimension matrix). The energies of the small fluctuations happen to be [5,2]
E =J++1+n2kN, +O(%). One can argue in general [6,7] and check explicitly [8,9] that higher-order quantum string sigma
model corrections are indeed suppressed in the limit (2), i.e. in the Jarjeed i = % = )/ limit. The remarkable feature

of this expression is thak is analytic inX, suggesting direct comparison with perturbative SYM expansion imdeed, it

can be shown that the first twoand %2 terms in the expansion of the square root agree precisely with the one [2] and two
[10] (and also three [11,12]) loop terms in the anomalous dimensions of the corresponding operators. There is also a general
argument [13] (for a 2-impurity case) suggesting how the&@+ n2i expression can appear on the perturbative SYM side.
However, the general proof of the consistency of the BMN limit on the SYM side (i.e. that the usual perturbative expansion can
be rewritten as an expansionirand }) remains to be given' also, to explain why the string and SYM expressions match one

should show that the string limit (first — oo, then = 2 — 0) and the SYM limit (first. — 0, thenJ — oco) produce the
same expressions for the dimensions (cf. [14-16]).

If one moves away from the near-BPS limit and considers, e.g., a non-supersymmetric state with a large angular momentum
0 = S in AdSs [4], a direct quantitative check of the duality is no long@ssible: here the classicathergy is not analytic in
A and quantum corrections are no longer suppressed by pow%rstﬂwever, it is still possible to demonstrate a remarkable
qualitative agreement betweehdependence of the string energy and SYM anomalous dimension. The energy of a folded
closed string rotating at the centerAdSs which is dual to the twist 2 operators on the SYM sideQ'gj‘DSq)k), D=D1+iD;
and similar operators with spinors and gauge bosons that mix at higher loops [19,20]) has the form (when expanded at large

S): E=S+ f()InS +---. On the string sidef (1)1 = cov/A + c1 + % + ---, wherecg = ﬂl is the classical [4] and

1= —% In2 is the 1-loop [6] coefficient. On the gauge theory side one findsdhe S-dependence of the anomalous

dimension with the perturbative expansion of the lcoefficient beingf (1), «1 = a1 + apr2 +az23 + - -, whereas = #
[18], ap = _QT}TZ [19], andas = W [20]. Like in the case of the SYM entropy [21], here one expects the existence of a

smooth interpolating functiorf (1) that connects the two perturbative expansions (indeed, a simple square root formula seems
to give a good fit [19,20]).

One could wonder still if examples of quantitative agreemetivben string engies and SYM dimeriens observed for
near-BPS (BMN) states can be found also for more general non-BPS string states. Indeed, it was noticed already in [6] that a
string state that carries Iarge Spll‘lAdSs as well as large spiff =0 in S° has, in contrast to the above= 0 case, an analytic
expansion of its energy ih= 12 , Just as in the BMN case witlv,, ~ S. It was observed in [22] that semiclassical string states
carrying several large spins (with at least one of them bein§P)nhave regular expansion of their energyin powers ofi.
and it was suggested, by analogy with the near-BPS caseFtlean be matched with perturbative expansion for the SYM
dimensions.

For a classical rotating closed string solutionStione hast = vA€(w;), J; = ~/Aw; so thatE = E(J;, 2) and the key
property is that there is ng/A factors inE (in contrast to the case of a single spinidSs)

2

A A
E=J+c15 +ep

7 J3+~-=J[1+c1/”\+czi2+-~]. 3)

HereJ = 21'3:1 Jis r= % andc;, = cn(§) are functions of ratios of the spins which are finite in the lighit> 1, X = fixed.
The simplest example of such a solution is provided by a circular string rotating in two orthogonal plzﬂ%part of 55
with the two angular momenta being equal= J> [22]: X1 = X1 + iXo = cogno) %7, Xy = X3+ iX4 = sin(no) %7,
with the globalAdSs time beingr = « . The conformal gauge constraint implie$ = w? + n? and thusk = /J2 + n21 or
E=J(1+ %nzk — %n“kz + --+), whereJ = J; + Jo = 2J1. For fixedJ the energy thus has a regular expansion in tension

(in contrast to what happens in flat space where ./ a_2/ J). Similar expressions (3) are fouatko for more general multispin

circular strings [22—-27]. In particular, for a folded string rotating in one plang°aind with its center of mass orbiting along
big circle in another plane [24] the coefficients are transcendental functions (expressed in terms of elliptic integrals). More
generally, the 3-spin solutions are described by an integrable Neumann model [25,26] and the coeffiaiethis energy are
expressed in terms of genus two hyperelliptic functions.

To be able to compare the classical energy to the SYM dimension one should be sure that stimgctions are suppressed
in the limit J — oo, 1 = fixed. Formally, this should be the case sinde~ = ~ —=, but, what is more important, th?;

f «/—

corrections are again analytic in[23], i.e. the expansion in large and small is well-defined on the string side,

) d - d
E:J[1+x<c1+71+~->+/\2<c2+72+~->+«~], (4)
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with the classical energy (3) being tle— oo limit of the exact expressiof Similar expressions are found for the energies of
small fluctuations near a given classical solution: as in the BMN case, the fluctuation energies are suppressed by extra factor of
J i SE=A(ki+ "t 4+ )+ A2+ B2 )+

Assuming that the same limit is well-defined also on the SYM side, one should then be able to compare the coefficients in
(4) to the coefficients in the anomalous dimensions of the corresponding SYM operator$<{%2]¢t§’2¢3{3) +--- (and also
do similar matching for near-by fluctuation modes). In practice, it is known at least in principle how to compute the dimensions
in a different limit: first expanding in and then expanding in}. One may expect that this expansion of anomalous dimensions
takes the form equivalent to (4), i.e.

ap | b1 2faz | b2
A=J4+ M=+ =+ )2l =+ + )+,
(J J2 ) <J3 J4

and, moreover, the respective coefficient&iand A agree with each other. The subsequent work [28-33,15,34-36] did verify
this structure ofA and moreover established the general agreement between the two leading coefficients E (4) and the
‘one-loop’ and ‘two-loop’ coefficientaq, as in A.

To computeA one is first to diagonalize anomalous dimension matrix defined on a set of long scalar operators. The crucial
step was made in [28] where it was observed that the one-loop planar dilatation operator in the scalar sector can be interpreted
as a Hamiltonian of an integrable 8) spin chain and thus can be diagonalized even for large lehgthJ by the Bethe
ansatz method. In the simplest case of (closed) &3 $ector of operators cmljlq)zjz) + - - - built out of two chiral scalars the
latter can be interpreted as ‘spin up’ and ‘spin down’ states of periodic %XXpin chain with lengtiL = J = J; + J>. Then
the 1-loop dilatation operator becomes equivalent to the Hamiltonian of the ferromagnetic Heisenberg model

J
A S o
Dy = @2 1§=1(1 = 010141)- ®)

Considering the thermodynamic limif (- oo) of the Bethe ansatz the proposal of [22] was confirmed at the leading order of
expansion irk [29,30]: for eigen-operators with ~ Jo >> 1 it was shown that — J = A% +--- and aremarkable agreement

was found betweenﬂ%) and the coefficient; in the energies of various 2-spin string solutions. As in the BMN case, it was
possible also to match the energies of fluctuations near the cirgutar/o with the corresponding eigenvalues of (5) [29].

Similar leading-order agreement between string energies SYM dimensions was observed also in other sectors of
states with large quantum numbers: (i) for specific solutions [22,25,26] in th@)éctor with 3 spins ins® dual to
tr(q5111q>zfzq§?{3) + --- operators [32,37]; (ii) for a folded string state [6] belonging to thgZ3L[38] sector with one spin
in AdSs and one spin ins® (with £ = J + § + %¢1(5) + -+ [6,22]) dual to ttDS®7) + --- [30]; (iii) in a ‘subsector’ of
SQO(6) states containing pulsating (and rotating) solutions [29,32] which again have regular energy expansion in the limit of
large oscillation number, e.g5 = L +c1 5 + -+ [39].

2. Effective actionsfor coherent states

The observed agreement between energies of particular semiclassical string states and dimensions of the corresponding
‘long’ SYM operators leaves many questions, in particular: (i) How to understand this agreement beyond specific examples,
i.e. in a universal way? (ii) Which is the precise relation between profiles of string solutions and the structure of the dual SYM
operators? (iii) How to characterise the set of semiclassicalgsstates and dual SYM operators for which the correspondence
should work? (iv) Why agreement works, i.e. why the two limits (fifst> oo, and then — 0, or vice versa) taken on the
string and SYM sides give equivalent results? Should it work to all orders in expansiotaird %)? The questions (i), (ii)
were addressed in [33,35,42—44]; an alternative approach based on matching the general solution (and integrable structure) of
the string sigma model with &t of the thermodynamic limit of the Bethe ansatz was developed in [34]. The question (iii) was
addressed in [45-47,44], and the question (iv) in [15-17].

One key idea of [33] (elaborated further in [35,44]) was that instead of comparing particular solutions one should try to
match effective sigma models which appear on the string side and the SYM side. Another related idea of [33,35,44] was that

2 The reason for this particular form of the energy (4) can be expthias follows [7,27]: we are computing string sigma model loop
corrections to the mass of a stationary solitonic solution on a 2ddsti (no IR divergences). This theory is conformal (due to the crucial
presence of fermionic fluctuations) and thdeses not depend on UV cutoff. The relevant fuations are massive and their masses scale as
w~ % As a result, the inverse mass expansion is well-defined angLigmetum corrections should beoportional to positive powers af.
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since ‘semiclassical’ string states carrying large quantum numbers are represented in the quantum theory by coherent states,
one should be comparing coherent string states to coherent SYM states (i.e. to coherent states of the spin chain). Because of
the ferromagnetic nature of the dilatation operator (5) in the thermodynamic Jigit/; + Jo — oo with fixed number of
|mpur|t|es it is favorable to form large clusters of spins and thus a ‘low-energy’ approximation and continuum limit apply,
leading to an effective ‘non-relativistic’ sigma model for a coherent-state expectation value of the spin operator. Taking the
‘large energy’ limit directly in the string action gives a reduced ‘non-relativistic’ sigma model that describes in a universal
way the leading-order Q) corrections to the energies of all string solutions in the two-spin sector. The resulting action agrees
exactly [33] with the semiclassical coherent state action describing th2) Skktor of the spin chain in the— oo, i = fixed
limit. This demonstrates how a string action can directly emerge from a gauge theory in th&/lngiéand provides a direct
map between ‘coherent’ SYM states (or operators built out of two holomorphic scalars) and all two-spin classical string states.
Furthermore, the correspondence established at the level of the action implies also the matching of fluctuations around particular
solutions (as in the BMN case) and thus goes beyond the special examples of rigidly rotating strings.

Starting with the SI2) algebrd S3, S+]1 =S4+, [S+, S—] = 253 and considering the= 1/2 representation whe= %Fr
one can define spln coherent stats a linear superposition of spin up and spln down states= R(u)|0), whereR =
g S+—u"S- ,10) = |2 2) andu is a complex number that can be parametrized ass 0e'¢ An equivalent way to label the
coherent state is a by a unit 3-veciodefining a point ofs2. Then|n) = R(17)|0) where|0) corresponds to a 3-vect@, 0, 1)
along the 3rd axisi{ = vtsu, U= (u1, up)) and R() is an SQ@3) rotation from a north pole to a generic point$4. The
key property of the coherent state is thadetermines the expectation value of the spin operatos)ii) = %ﬁ

In general, one can rewrite the usual phase space path integral as an integral over the overcomplete set of coherent states
(for the harmonic oscillator this is simply the change of variahles %(q +ip)): Z = [[du] €54l The action isS =

[ dt ((ulié’;\u) — (u|H|u)), where the first (WZ or ‘Berry phase’) term is the analog of the ugudaterm in the phase-space
action. Applying this to the case of the Heisenberg spin chain Hamiltonian (5) one ends up with the following action for
the coherent state variablgg(z) at sites =1,..., J (see also [41])S = [ dr lezl[C(nl) SRy — ﬁ(ﬁl+l —7i)2]. Here

dcC = el/kp; dnj Adny (i.e. Cisa monopole potential a§¥). In local coordinates (at eaéhii = (sind cosg, sind sing, cosd),
C-di= %cos@ de. In the limit J — oo with fixed X = % one can take a continuum limit by introducing the 2d figld o) =
{#i(r, Z-0)}. Then

2
dol= . 1. .
S:J/dt/—g C- i — ZA@i) 2+ |, (6)
2 8
0

where dots stand for higher derivative terms suppresse}j.by the limit J — oo we are interested in all quantum corrections
are thus suppressed l%/ and thus the above action can be treated classically. The corresponding equation of/metion

%Xeijknjn;{’ are the Landau-Lifshitz equation for a classical ferromagnet.

The action (6) should be describing the coherent states of the Heisenberg spin chain in the above thermodynamic limit. One
may wonder how a similar ‘non-relativistic’ action may appear on the string side where one starts with a usual sigma model (1).
To obtain such an effective action one is to perform the following procedure [33,35,44]: (i) isolate a ‘fast’ coosdimadase
momentump,, is large in our limit; (ii) gauge fix ~ t andpy ~ J (or & ~ o wherea is ‘T-dual’ to «); (iii) expand the action
in derivatives of ‘slow’ or ‘transverse’ coordinates (to be identified wijhLet us consider the S@) sector of string states
carrying two large spins i, with string motions restricted t§3 part of $°. The relevant part of th8dSs x $° metric is then
ds? = —dr? + dX; dX¥, with X; X¥ = 1. Letus set X = X1 +iXp =u1 €%, Xp = X3 +iX4 = uz€®, u;u’ = 1. Herea will
be a collective coordinate associated to the total (large) spin in the two planes (which in general will be the sum of orbital and
internal spin)x; (defined modulo U(1) gauge transformation) will be the ‘slow’ coordinates determining the ‘transverse’ string
profile. Then dXdX* = (do + )2+ Du;Du?, whereC = —iu} du;, Du; = du; —iCu; and the second term represent the

3 Letus briefly review the definition of coherent states (see, e.g., [40]). For a harmonic osc[uatx;rr](= 1) one can define the coherent
state asu) asalu) = ulu), whereu is a complex number. Equivalenty) = R(«)|0), where R = eWL”*” so that acting orj0) R is
simply proportional to @‘T Note that|u) can be written as a superposition of eigenstatef the harmonic oscillator Hamiltonian) ~

,‘f 0 fln An alternative definition of coherent state is that it is a state with minimal uncertainty for both coorﬁraat% (a + a*)

and momentunp = — ﬁ(a — aT) operators,A Ac} = 2, Ap© = (ulp |u) — ((u\p\u) . For that reason this is the best approximation
to a classical state. If one defines a time-dependent ptétp = "H’\u) then the expectation values §fand p{u|q|u) = %(n + u®),
(u|plu) = — 4 (u — u™), will follow the classical trajectories.

e
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metric of CP (this parametrisation corresponds to Hopf fibratiSn~ S1 x $2). Introducingii = U6 U, U = (u1, up) we get

dX; dX¥ = (Da)? + %(dﬁ)z, Da = da + C(n). Writing the resulting sigma model action in phase space form and imposing the
(non-conformal) gauge= 7, py = const= J one gets the action (6) with the WZ teidh 9,7 originating from thep,, Do term

in the phase-space Lagrangian (cf. its origin on the spin chain side as an analogpgf tinethe coherent state path integral
action). Equivalent approach is based on first applying a 2d duality (or ‘T-duadity’} @ and then choosing the ‘static’

gauger =7, @ = (i)~ Yo, (Vi)~1= ﬁ Indeed, applying T-duality i we getl = —1./=ggP9 (8,141 + dpadyd +
Dpul Dgu;) +€P4Cp,a. Thus the ‘T-dual’ background has no off-diagonal metric component but has a non-trivial NS-NS
2-form coupling in the@, u;) sector. Eliminating the 2d metrig”? we then get the Nambu-type actidn= e”9C ,d,& — /h,

whereh = |deth pg| andh pg = —dptdgt + 3padqa + D(pu; Dyyu;. If we now fix the static gauge=r7, @ = Winlo we
finish with the following action’ = J [ dr /& $ £,

£=Co—Vh h=(1+iD1u;?)(1- Dou;|?) + 15.(Dou} Du; +c.c)?. )
To leading order i this gives
L= —iufdou; — 35|Dyu;|?, ®)

which is the same as th@P! Landau—Lifshitz action (6) when written in termsif Thus the string-theory counterpart of the
WZ term in the spin-chain coherent state effective action comes from the 2d NS-NS WZ term upon the static gauge fixing in
the ‘T-dual’ @ action [44].

To summarize: (i)¢, @) are the ‘longitudinal’ coordinates that are gauge-fixed (withlaying the role of string direction
or spin chain direction on the SYM side); (i) = (u1,up) orn = UG U are ‘transverse’ coordinates that determine the
semiclassical string profile and also the structure of the coherent operator on the SYM Ejgéy t®;). The agreement
between the low-energy actions on the spin chain and the string side explains not only the matching between energies and
coherent states for configurations with two large spins (and near-by fluctuations) but also the matching of integrable structures
observed on specific examples in [31,32].

This leading-order agreement in &) sector has several generalizations. First, we may include higher-order terms on the
string side. Expanding (7) ih and eliminating higher powers of time derivatives by field redefinitions (note that leading-order
equation of motion is 1-st order in time ) we end up with [35]

- A 32 3 23 7 25 13
—C.-9n— A2 N o2 OoAN N o2 T =2-1m2 S0 oo 2 2916 9
L=C-0n 8n + 32<n 4n 7 n 4n n > n'n") +16n —+ 9)
The samé.? term is obtained [35] in the coherent state action on the spin chain side by starting with the sum of the 1-loop
dilatation operator (5) and the 2-loop term found in [11]

22

P27 Gyt

J
> Q2 —4Q 41, Qui=1-5;-3. (10)
=1

This explains the matching of energies and dimensions to the first two orders, as first observed on specific examples using Bethe
ansatz in [15]. Equivalent general conclusiabout 2-loop matching wasbtained in the integrabilitpased approach in [34].
The order-by-order agreement seems to break dovir? &B-loop) order, and a natural reason [15,16] is that the string limit
(first J — oo, theni — 0) and the SYM limit (first. — 0, thenJ — oc) need not be the same. Suggestions how to ‘complete’
the gauge-theory answer to have the agreement with string theory appeared in416,17].

One can also generalize [42,43] the above leading-order agreement to@jesBttor of states with three large@ spinsJ;,
i = 1,2,3, finding theCP? analog of theCP* ‘Landau-Lifshitz’ Lagrangian in (6) and (8) [43} = —iuXdou; — 3| Dyu; |2
on both string and spin chain sides. Similar conclusion is reached [43] in t® Séctor of(S, J) states (using the dilatation
operator of [38]), wheré — I, lf — l% — l% = 1. Finally, one can consider also pulsating string states discussed in the next
section.

4 They also resolve the ordar disagreement [9] between stringdagauge theory predictions fo} corrections to the BMN spectrum.
A possible explanation of why the agreement took place at first two ordérssithat the structure of the dilatation operator at one and two
loop order is uniquely fixed by the BMN limit, which thus essentiallyedmines the low energy effective action in a unique way; this is no
longer so starting with 3-loop order.
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3. General fast motion in $° and scalar operators from SO(6) sector

One would like to try to understand the general conditions ongsstates and SYM operatdicar which the above correspon-
dence works, and, in particular, incorporate also states with large oscillation numbers. Here we will follow [43,44] (a closely
related approach was developed in [46,47]). For strings movitsg imith large oscillation numbeE = L + cl% +---,l.e.the
limit L — o0, A = ﬁ — 0 is again regular [39], and the leading-order duality relation between string energies and anomalous

dimensions was checked in [29,32,48]. The general condition on string solutions for Ehick: f (%) has a regular expansion

in X appears to be that the world sheet metric should degenerate [46]inth@ limit, i.e. the string motion should be ultra-
relativistic in the small string tension limit [45]. In the strict tensionléss- 0 limit each string piece is following a geodesic

(big circle) of $°, while switching on tension leads to a slight deviation from geodesic flow, i.e. to a nearly-null world surface
[46]. The dual coherent SYM operators are then ‘locally BPS’, i.e. each string bit corresponds to a BPS linear combination of
6 scalars. In general, the scalar operators can be writtéh=a<y; ..., tr(¢m, - - - ¢m, ). The planar 1-loop dilatation operator
acting onCp,,..., was found in [28] (and is equivalent to an integrable(&Gpin chain Hamiltonian)

L

A
D By 8™ 4 2550 St — 2858 ). (11)

Hn1~~~nL
(4n)2 Pt mp+1 mi+1

mi--mp =

To find the analog of the coherent-state action (8) we choose a natural set of cohererngtajesvhere at each sitp) =
R(v)|0). HereR is an S@6) rotation and0) is the BPS vacuum state corresponding (@4 i)~ or v =(1,1,0,0,0,0),
which is invariant undeH = SQ(2) x SO(4). Then the rotatiorR(v) and thus the coherent state is parametrized by a point in
G/H =S06)/[SO4) x SO(2)], i.e. v belongs to the Grassmanigip g [43]. G2 6 is thus the coherent state target space for
the spin chain sigma model since it parametrizes the orbits of the half-BPS opgratap, under the S@6) rotations. This

is the space of 2-planes passing through zer®%nor the space of big circles i§°, i.e. the moduli space of geodesicssih

[47]. It can be represented also as an 8-dimensional quad@®™ a complex 6-vecton,, should be subject, in addition to
vm vy, =1 (and gauging away the common phase) alsg,to,, = 0 condition. Taking the limi. — oo with fixed A= ﬁ and

the continuum limitv,,, (1) — vy, (¢, o) we then get the&, g analog of theCP! action (6), (8)

2
d . 1.
S=L/dt/ %(—Iv;ﬁlagvm — EMDlvm\Z), vmv;"nzl, U Um =0, (12)
0

where as irCP" caseDqv;,; = 01v, — (vV¥010)vp,.

One may wonder how this 8-dimensional sigma model can be related to string sigma mdtiel$hwhere the coordinate
space of transverse motions is only 4dimensional. The crucial point is that the coherent state action is defined on the phase space
(cf. the harmonic oscillator case), ane=81+5) x 2— 2 x 2 is indeed the phase space dimension of a string movisg.ion
the string side, the need to use the phase space description is related to the fact that to isolate a ‘fast’ ecododiagteneric
string motion we need to specify both the position and velocity of each string piece. Starting with(31)2 + (0 X,,)2 in
conformal gaugeX X' = 0, X2+ X2 =2, X2 = 1) we find the geodesics &, = a, COSx + by, Sina, wherew = k7, a2, =
1, b2 =1, ambm = 0. Equivalently,X,, = iz(ei"‘vm + e ley* ) wherev,, = %(a'" —ibm), vmv =1, vum =0, i.e. the
constant,, belongs taG2 . In general, for near-relativistic string motionys should change slowly with ando . Then starting
with the phase space Lagrangian {of,,, p,) and changing the variables according to (cf. harmonic oscillator cagex
%(e’“vm +e7 %%, pm = ﬁpa (€%, —e'*v¥) wherea andv,, now depend or ando andv,, belongs taG; . There

is an obvious U(1) gauge invarianee— o — 8, vy — &P, Gauge-fixingt ~ =, po ~ L (or, after approximate T-duality
in o, @ ~ o) one finds that the phase-space Lagrangian becomes{44]|p, Doo — %A\Dlv\z — L—ll)n[ez""(Dlv)2 +c.c)l.

The first term here producesiv}; dpv, and the last term averages to zero since kv + --- wherex = (\/i)‘l — 0.
Equivalently, thex-dependent terms in the action (that were absent in the pure-rotati@) Séttor) can be eliminated by
canonical transformations [44]. We then end up with the following 8-dimensional phase-space Lagrangian for the ‘transverse’
string motions:£ = —iv;y; doum — %X|D1vm\2, which is the same as found on the spin chain side (12). The 3-spin rotation
SU(3) case is the special case whep= (u1, iuq, up, iup, uz, iuz), whereu; belongs taCP? subspace of; 6. The agreement
between the spin chain and string sides in this ger@sad = SO(6)/[SO(4) x SO(2)] case explains not only the matching for
pulsating solutions [39,32] but also for near-by fluctuations.
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Let us now discuss the reason for restrictin= 0 and also the structure of coherent operators corresponding to semiclas-
sical string states. Starting With = C;...;m; tr(¢m, - - - ¢, ) ON€ May obtain the Schrédinger equation for the wave function
C (1) from®

d
—/dl(lc;knl de le -mr, +le mLH;l’l’l%_ 7nLC'11 ”L)

In the limit L — oo we may consider the coherent state description and assume the factorizedansaiz = v, - - vm,
where eachy,,; is a complex unit-norm vector [44]. The BPS case corresponding to totally symmetric tra€gless, is
represented by,,; = vy, (0, v<20) = 0. Using (11) and substituting the ansatz bmto the above action one finds

A
/dt (Ivl o v+ n )2 [(v7v7+l)(v1vl+1) +2—2(vl*v1+1)(v1v7+l)]>. (13)

As expected [28], the Hamiltonian (second term) vanishes for the BPS casevwtieaes not depend ahand v2 =0. More
generally, if we assume thaj is changing slowly witl/ (i.e. v; >~ v;41), then we find that (13) contains a potential term

(v} vf) (vyvp) coming from the first ‘trace’ structure in (11). This term will lead to large (order{28]) shifts of anomalous
dimensions, invalidating low-energy expansioa, prohibiting one fromaking the continuum limi. — oo, A = iz = fixed,

and thus from establishing correspondence with string theory along the lines of [33,35,43]. To get solutions with variations of
v; from site to site small we are to imposé =0, [=1,..., L, which minimizes the potential energy coming from the first
term in (11). This condition implies that the operator @&ch site is invariant under half of supersymmetriesr.zif: 0 the

matrix v, '™ appearing in the variation of the operatgs ¢, i.e. 8¢ (Vndm) = 'Eé(vm ryyr, satisfies(vy, I'™)2 = 0. This

means that,, ¢, is invariant under the variations associated with the null eigenvalues. One may thuls-edlla ‘local BPS
condition since the preserved combinations of supercharges in general are different far, @ackhe operator corresponding

toC =v1---vg is not BPS. Here ‘local’ should be understood in the sense of the spin chain, or, equivalently, the spatial world-
sheet directiof. In the case whem; are slowly changing we can take the continuum limit as in [33,35,43] by introducing the
2d field vy, (¢, o) with v,,,; (1) = v (2, %). Then (13) reduces to (12) (all higher derivative terms are suppressed by powers
of % and the potential term is absent due to the conditide= 0), i.e. (13) becomes equivalent to tte  ‘Landau-Lifshitz’

sigma model which was derived from the phase space action on the strirfg side.

To summarize, considering ultra-relativistic stringsSthone can isolate a fast variatte(a ‘polar angle’ in the string phase
space) whose momentupy, is large. One may gauge fpg, to be constant- L, or@ ~ Lo, so thats or the ‘operator direction’
on the SYM side gets interpretation of ‘T-dual to fast coordinate’ direction. As a result, one finds a local phase-space action
with 8-dimensional target space (wkeone can no longer eliminate 4 momentahwiit spoilirg the locality). This action is
equivalent to the Grassmanigip g Landau-Lifshitz sigma model action appearing on the spin chain side.

We thus get a precise mapping between string solutions and operators representing coherent spin chain states. Explicit
examples corresponding to pulsating and rotating solutions are given in [44]. In the continuum limit we may write the operator
corresponding to the solution, o) asO =tr([], v(¢,0)), V= v (t, 0 )¢m. This locally BPS coherent operator is the SYM
operator naturally associated to a ultra-relativistic string solution.Tdependence of the string solution thus translates into
the RG scale dependence ©f, while the o-dependence describes the ordering of the factors under the trace. In general,
semiclassical string states represented by classical string solutions should be dual to coherent spin chain states or coherent
operators, which are different from the exact eigenstates of the dilatation operator but which should lead to the same energy or
anomalous dimension expressions. At the same time, the Bethe ansatz approach [29,30,34] is determining the exact eigenvalues
of the dilatation operator. The reason why the two approaches happen to be in agreement is that in the limit we consider the
problem is essentially semiclassical, and because of the ibiétyraf the spin chain, its exact eigenvalues are not just well-
approximated by the classical solutions but are actually exactly reproduced by them, i.e. (just as in the harmonic oscillator or
flat space string theory case) the semiclassical coherent state sigma model approach happens to be exact.

5 For coherent states we consider this equation may be interpreteghas-tivial) RG equation for theaupling constant associated to the
operatorQ.

6 This generalizes the argument implicit in [33]; an equivalent propasal made in [47]. This is related to but different from the ‘nearly
BPS’ operators discussed in [45] (which, by dé&fon, were those which become BPS in the litit> 0).

7 The presence of the trace in the SYM operators implies that we haemsider only spin chain states that are invariant under translations
in [ orin o. This means that the momentum in the directtoshould vanish:P, =0, or, equivalently,ji)z’T %v;;a,,vm = 0. This should be
viewed as a condition on the solutiong (¢, o). The same condition appears on the string side from a constraint.
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4. Concluding remarks

As reviewed above, during the last year and a half it was realized that there exists a remarkable generalization of the near-
BPS (BMN) limit to non-BPS but ‘locally-BPS’ sector of string/SYM states. This is an important progress in understanding
of gauge-string duality at the quantitatilevel. The hope igo find eventually the string/SM spectrum exactly, at least in a
subsector of states. The relation between phase-space action for ‘slow’ variables on the string side and the coherent-state action
on the SYM (spin chain) side gives a very explicit picture of how string action ‘emerges’ from the gauge theory (dilatation
operator). It implies not only the equivalence between string energies and SYM dimensions (directly established to first two
orders in expansion in effective couplingexpansion) but also a direct relation between the string profiles and the structure of
coherent SYM operators [33,44].

One may try to go further and use the duality to string theory as a tool to uncover the structure of planar SYM theory
to all orders in. by imposing the exact agreement with particular string solutions. For example, demanding the consistency
with the BMN scaling limit (along with the superconformal algebra) determines the structure of the full 3-loop SYM dilatation
operator in the S(2) sector [11,12]. One can also use the BMN limit to fix only a part of the dilatation operator but to all
orders inA [49]. Generalizing (5), (10) and the 3- and 4-loop expressions in [11,12] one can organize [35,49] the dilatation
operator as an expansion in powers qQf Q= I — 6y - o; which reflect interactions between spin chain sites= Y~ Q +
3 QQ+ Y. QQQ+ ---. Here the products Q-Q are ‘irreducible’, i.e. each site index appears only once. Thee@ins
first appear at 3 Ioops,:Qerms — at 4 loops, etc. [11,12]. Concentrating on the order Qp&rt of D one can write (here
L=1J): DD =320 A5 D), D)) = g ankQuigk, of DY = Yy S U7 (L, 2) Q44 Demanding
the agreement with the BMN limit one can then determine the coefficigntaind thus the function explicitly to all orders
in A [49]. In particular, for largd_, i.e. whenD acts on ‘long’ operators, one finds

L oo 00 G
DY =33 fr)Quisk: W)= ———ar. (14)
I=1k=1 G0

where the coefficientg, (A) can be summed up in terms of the standard Gauss hypergeometric function [49]

NERE 11 o
fk(M—(m) mzﬁ(k—ésk"' E,Zk—i—l,—?). (15)

The function f; (1) smoothly interpolates between the usual perturbative expansion atstaatl f; (A) ~ +/A at stronga
(which is the expected behaviour of anomalous dimensions of ‘long’ operators dual to ‘semiclassical’ states). Similar interpo-
lating functions are expected to appear in anomalous dimensions of other SYM op®rators.

One may hope that imposing additional constraints coming fcorrespondence with otherisy solutions may help to
determine the dilatation operator further (see also [16,17]).
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