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Abstract

We review recent progress in quantitative checking of AdS/CFTduality in the sector of ‘semiclassical’ string states dua
‘long’ scalarN = 4 super Yang–Mills operators. In particular, we describe the effective action approach, in which the sa
sigma model type action describing coherent states is shown to emerge from theAdS5 × S5 string action and from an integrab
spin chain Hamiltonian representing the SYM dilatation operator.To cite this article: A.A. Tseytlin, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Cordes relativistes semi-classiques dans AdS5 × S5 et longs opérateurs dans la théorie de super Yang–Mills N = 4.
Nous passons en revue les progrès récents sur les vérifications quantitatives de la dualité AdS/CFT dans le régime o
« semiclassiques » de cordes sont du aux « longs » opérateurs scalaires de la théorie de super Yang–MillsN = 4. En particulier,
nous décrivons l’approche effective, dans laquelle le modèle sigma décrivant les états cohérents est montré émerger
de la corde surAdS5 × S5 et de l’Hamiltonien d’une chaîne de spin intégrable représentant l’opérateur de dilatation en
Pour citer cet article : A.A. Tseytlin, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

TheN = 4 SYM theory is a remarkable example of 4d conformal field theory. In the planar (N → ∞) limit it is parametrized
by the ’t Hooft couplingλ = g2

YMN , and the major first step towards the solution of this theory would be to determin
spectrum of anomalous dimensions∆(λ) of the primary operators built out of products of local gauge-covariant fields.
this may be possible in principle is suggested by the AdS/CFT duality implying the existence of hidden integrable 2d structure
corresponding toAdS5 × S5 string sigma model.
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1 Also at Imperial College, London and Lebedev Physics Institute, Moscow.
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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The AdS/CFT duality implies the equality between theAdS energies of quantum closed string states as functions o

effective string tensionT =
√

λ
2π

and quantum numbers likeS5 angular momentaQ = (J, . . .) and dimensions of the corre
sponding local SYM operators. To give a quantitative check of the duality one would like to understand how strings ‘emer
from the field theory, in particular, which (local, single-trace) gauge theory operators [1] correspond to which ‘excited
states and how one may verify the matching of their dimensions/energies beyond the well-understood BPS/supergrav
We would like to use the duality as a guide to deeper understandingof the structure of quantum SYM theory. In particular,
sults motivated by comparison to string theory may allow one to ‘guess’ the general structure of the SYM anomalous d
matrix and may also suggest new methods of computing anomalous dimensions in less supersymmetric gauge theor

Below we shall review recent progress in checking AdS/CFT correspondence in a subsector of string/SYM states w
quantum numbers. Let us start with brief remarks on SYM and string sides of the duality. The SYM theory contains
field, 6 scalarsφm and 4 Weyl fermions, all in adjoint representation of SU(N). It has global conformal andR-symmetry, i.e. is
invariant under SO(2,4) × SO(6). To determine (in planar limit) dimensions of local gauge-invariant operators one in ge
needs to find the anomalous dimension matrix to all orders inλ and then to diagonalize it. The special case is that of ch
primary or BPS operators (and their descendants) tr(φ{m1···φmk

}) whose dimensions are protected, i.e. do not depend onλ. The
problem of finding dimensions appears to simplify also in the case of ‘long’ operators containing large number of field
the trace. One example is provided by ‘near-BPS’ operators [2] like tr(ΦJ

1 Φn
2 · · ·) + · · · whereJ � n, andΦk = φk + iφk+3,

k = 1,2,3. Below we will consider ‘far-from-BPS’ operators like tr(Φ
J1
1 Φ

J2
2 · · ·) + · · · whereJ1 ∼ J2 � 1.

The type IIB string action inAdS5 × S5 space has the following structure

I = −1

2
T

∫
dτ

2π∫
0

dσ(∂pYµ∂pYνηµν + ∂pXm∂pXnδmn + · · ·), (1)

whereYµYνηµν = −1, XmXnδmn = 1, ηµν = (− + + + +−), T =
√

λ
2π

and dots stand for the fermionic terms [3] that ens
that this model defines a 2d conformal field theory. The closed string states can be classified by the values of the Carta
of the obvious symmetry group SO(2,4) × SO(6), i.e.(E,S1, S2;J1, J2, J3), i.e. by theAdS5 energy, two spins inAdS5 and 3
spins inS5. The mass shell condition gives a relationE = E(Q,T ). HereT is the string tension andQ = (S1, S2, J1, J2, J3;nk)

where stand for higher conserved charges (analogs of oscillation numbers in flat space).
According to AdS/CFT duality quantum closed string states inAdS5 × S5 should be dual to quantum SYM states at

boundaryR × S3 or, via radial quantization, to local single-trace operators at the origin ofR4. The energy of a string stat
should then be equal to the dimension of the corresponding SYM operator,E(Q,T ) = ∆(Q,λ), where on the SYM side th
chargesQ characterise the operator. By analogy with flat space and ignoringα′ corrections (i.e. assumingR → ∞ or α′ → 0)
the excited string states are expected to have energiesE ∼ 1√

α′ ∼ λ1/4 [4] which represents a non-trivial prediction for stron

coupling asymptotics of SYM dimensions. In general, the natural (inverse-tension) perturbative expansion on the string
be given by

∑
n

cn

(
√

λ)n
, while on the SYM side the usual planar perturbation theory will give the eigenvalues of the anom

dimension matrix as∆ = ∑
n anλn. The AdS/CFT duality implies that the two expansions are to be thestrong-coupling and

weak-coupling asymptotics of the same function. To check the relationE = ∆ is then a non-trivial problem. On the symmet
grounds, this can be shown in the case of 1/2 BPS (chiral primary) operators dual to supergravity states (‘massless’ or g
state string modes) since their energies/dimensions are protected from corrections.

For generic non-BPS states the situation looked hopeless until the remarkable suggestion [2,4] that a progress in
duality can be made by concentrating on a subsector of states with large (‘semiclassical’) values of quantum numbers,Q ∼ T ∼√

λ (hereQ stands for generic quantum number like spin inAdS5 or S5 or an oscillation number) and considering a new lim

Q → ∞, λ̃ ≡ λ

Q2
= fixed. (2)

On the string sideQ√
λ

= 1√
λ̃

plays the role of the semiclassical parameter (like rotation frequency) which can then be ta

be large. The energy of such states happens to beE = Q + f (Q,λ). The duality implies that such semiclassical string sta
as well as near-by fluctuations should be dual to ‘long’ SYM operators with large canonical dimension, i.e. containin
number of fields or derivatives under the trace. In this case the duality map becomes more explicit.

The simplest possibility is to start with a BPS state that carries a large quantum number and consider small fluctuat
it [2], i.e. a set ofnear-BPS states characterised by a large parameter [2]. The only non-trivial example of such BPS
represented by a point-like string moving along a geodesic inS5 with a large angular momentumQ = J . ThenE = J and
the dual operator is trΦJ , Φ = φ1 + iφ2. The small (nearly point-like) closed strings representing near-by fluctuations a
ultrarelativistic, i.e. their kinetic energy is much larger than their mass. They are dual to SYM operators of the form tr(ΦJ · · ·)
where dots stand for a small number of other fields and/or covariant derivatives (and one needs to sum over different
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the factors to find an eigenstate of the anomalous dimension matrix). The energies of the small fluctuations happen t

E = J +
√

1+ n2λ̃Nn +O( 1
J

). One can argue in general [6,7] and check explicitly [8,9] that higher-order quantum string

model corrections are indeed suppressed in the limit (2), i.e. in the largeJ , fixed λ̃ = λ
J 2 ≡ λ′ limit. The remarkable featur

of this expression is thatE is analytic inλ̃, suggesting direct comparison with perturbative SYM expansion inλ. Indeed, it
can be shown that the first twõλ and λ̃2 terms in the expansion of the square root agree precisely with the one [2] an
[10] (and also three [11,12]) loop terms in the anomalous dimensions of the corresponding operators. There is also

argument [13] (for a 2-impurity case) suggesting how the full
√

1+ n2λ̃ expression can appear on the perturbative SYM s
However, the general proof of the consistency of the BMN limit on the SYM side (i.e. that the usual perturbative expan
be rewritten as an expansion inλ̃ and 1

J
) remains to be given; also, to explain why the string and SYM expressions matc

should show that the string limit (firstJ → ∞, thenλ̃ = λ
J 2 → 0) and the SYM limit (firstλ → 0, thenJ → ∞) produce the

same expressions for the dimensions (cf. [14–16]).
If one moves away from the near-BPS limit and considers, e.g., a non-supersymmetric state with a large angular m

Q = S in AdS5 [4], a direct quantitative check of the duality is no longerpossible: here the classicalenergy is not analytic in
λ and quantum corrections are no longer suppressed by powers of1

S . However, it is still possible to demonstrate a remarka
qualitative agreement betweenS-dependence of the string energy and SYM anomalous dimension. The energy of a
closed string rotating at the center ofAdS5 which is dual to the twist 2 operators on the SYM side (tr(Φ∗

k DSΦk), D = D1+ iD2
and similar operators with spinors and gauge bosons that mix at higher loops [19,20]) has the form (when expande
S): E = S + f (λ) lnS + · · ·. On the string sidef (λ)λ�1 = c0

√
λ + c1 + c2√

λ
+ · · ·, wherec0 = 1

π is the classical [4] and

c1 = − 3
2π

ln 2 is the 1-loop [6] coefficient. On the gauge theory side one finds thesame S-dependence of the anomalo

dimension with the perturbative expansion of the lnS coefficient beingf (λ)λ	1 = a1λ + a2λ2 + a3λ3 + · · ·, wherea1 = 1
2π2

[18], a2 = − 1
96π2 [19], anda3 = 11

360×64π2 [20]. Like in the case of the SYM entropy [21], here one expects the existenc
smooth interpolating functionf (λ) that connects the two perturbative expansions (indeed, a simple square root formula
to give a good fit [19,20]).

One could wonder still if examples of quantitative agreement between string energies and SYM dimensions observed for
near-BPS (BMN) states can be found also for more general non-BPS string states. Indeed, it was noticed already in
string state that carries large spin inAdS5 as well as large spinJ = 0 in S5 has, in contrast to the aboveJ = 0 case, an analyti
expansion of its energy iñλ = λ

J 2 , just as in the BMN case withNn ∼ S. It was observed in [22] that semiclassical string sta

carrying several large spins (with at least one of them being inS5) have regular expansion of their energyE in powers ofλ̃
and it was suggested, by analogy with the near-BPS case, thatE can be matched with perturbative expansion for the S
dimensions.

For a classical rotating closed string solution inS5 one hasE = √
λE(wi), Ji = √

λwi so thatE = E(Ji, λ) and the key
property is that there is no

√
λ factors inE (in contrast to the case of a single spin inAdS5)

E = J + c1
λ

J
+ c2

λ2

J3
+ · · · = J

[
1+ c1λ̃ + c2λ̃2 + · · ·]. (3)

HereJ = ∑3
i=1 Ji , λ̃ ≡ λ

J 2 andcn = cn(
Ji
J

) are functions of ratios of the spins which are finite in the limitJi � 1, λ̃ = fixed.

The simplest example of such a solution is provided by a circular string rotating in two orthogonal planes inS3 part of S5

with the two angular momenta being equalJ1 = J2 [22]: X1 ≡ X1 + iX2 = cos(nσ )eiwτ , X2 ≡ X3 + iX4 = sin(nσ )eiwτ ,
with the globalAdS5 time beingt = κτ . The conformal gauge constraint impliesκ2 = w2 + n2 and thusE =

√
J2 + n2λ or

E = J (1 + 1
2n2λ̃ − 1

8n4λ̃2 + · · ·), whereJ = J1 + J2 = 2J1. For fixedJ the energy thus has a regular expansion in ten

(in contrast to what happens in flat space whereE =
√

2
α′ J ). Similar expressions (3) are foundalso for more general multispi

circular strings [22–27]. In particular, for a folded string rotating in one plane ofS5 and with its center of mass orbiting alon
big circle in another plane [24] the coefficientscn are transcendental functions (expressed in terms of elliptic integrals).
generally, the 3-spin solutions are described by an integrable Neumann model [25,26] and the coefficientscn in the energy are
expressed in terms of genus two hyperelliptic functions.

To be able to compare the classical energy to the SYM dimension one should be sure that stringα′ corrections are suppresse
in the limit J → ∞, λ̃ = fixed. Formally, this should be the case sinceα′ ∼ 1√

λ
∼ 1

J
√

λ̃
, but, what is more important, the1J

corrections are again analytic inλ̃ [23], i.e. the expansion in largeJ and small̃λ is well-defined on the string side,

E = J

[
1+ λ̃

(
c1 + d1

J
+ · · ·

)
+ λ̃2

(
c2 + d2

J
+ · · ·

)
+ · · ·

]
, (4)
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with the classical energy (3) being theJ → ∞ limit of the exact expression.2 Similar expressions are found for the energies
small fluctuations near a given classical solution: as in the BMN case, the fluctuation energies are suppressed by extr
J , i.e.δE = λ̃(k1 + m1

J + · · ·) + λ̃2(k2 + m2
J + · · ·) + · · ·.

Assuming that the same limit is well-defined also on the SYM side, one should then be able to compare the coeffi

(4) to the coefficients in the anomalous dimensions of the corresponding SYM operators [22] tr(Φ
J1
1 Φ

J2
2 Φ

J3
3 ) + · · · (and also

do similar matching for near-by fluctuation modes). In practice, it is known at least in principle how to compute the dim
in a different limit: first expanding inλ and then expanding in1

J
. One may expect that this expansion of anomalous dimens

takes the form equivalent to (4), i.e.

∆ = J + λ

(
a1

J
+ b1

J2
+ · · ·

)
+ λ2

(
a2

J3
+ b2

J4
+ · · ·

)
+ · · · ,

and, moreover, the respective coefficients inE and∆ agree with each other. The subsequent work [28–33,15,34–36] did v
this structure of∆ and moreover established the general agreement between the two leading coefficientsc1, c2 in E (4) and the
‘one-loop’ and ‘two-loop’ coefficientsa1, a2 in ∆.

To compute∆ one is first to diagonalize anomalous dimension matrix defined on a set of long scalar operators. The
step was made in [28] where it was observed that the one-loop planar dilatation operator in the scalar sector can be i
as a Hamiltonian of an integrable SO(6) spin chain and thus can be diagonalized even for large lengthL = J by the Bethe

ansatz method. In the simplest case of (closed) ‘SU(2)’ sector of operators tr(ΦJ1
1 Φ

J2
2 ) + · · · built out of two chiral scalars the

latter can be interpreted as ‘spin up’ and ‘spin down’ states of periodic XXX1/2 spin chain with lengthL = J = J1 + J2. Then
the 1-loop dilatation operator becomes equivalent to the Hamiltonian of the ferromagnetic Heisenberg model

D1 = λ

(4π)2

J∑
l=1

(1− 
σl · 
σl+1). (5)

Considering the thermodynamic limit (J → ∞) of the Bethe ansatz the proposal of [22] was confirmed at the leading ord
expansion iñλ [29,30]: for eigen-operators withJ1 ∼ J2 � 1 it was shown that∆−J = λ

a1
J +· · · and a remarkable agreeme

was found betweena1(
J1
J2

) and the coefficientc1 in the energies of various 2-spin string solutions. As in the BMN case, it
possible also to match the energies of fluctuations near the circularJ1 = J2 with the corresponding eigenvalues of (5) [29].

Similar leading-order agreement between string energiesand SYM dimensions was observed also in other sector
states with large quantum numbers: (i) for specific solutions [22,25,26] in the SU(3) sector with 3 spins inS5 dual to

tr(ΦJ1
1 Φ

J2
2 Φ

J3
3 ) + · · · operators [32,37]; (ii) for a folded string state [6] belonging to the SL(2) [38] sector with one spin

in AdS5 and one spin inS5 (with E = J + S + λ
J

c1( S
J

) + · · · [6,22]) dual to tr(DSΦJ ) + · · · [30]; (iii) in a ‘subsector’ of
SO(6) states containing pulsating (and rotating) solutions [29,32] which again have regular energy expansion in the
large oscillation number, e.g.,E = L + c1

λ
L

+ · · · [39].

2. Effective actions for coherent states

The observed agreement between energies of particular semiclassical string states and dimensions of the corr
‘long’ SYM operators leaves many questions, in particular: (i) How to understand this agreement beyond specific e
i.e. in a universal way? (ii) Which is the precise relation between profiles of string solutions and the structure of the du
operators? (iii) How to characterise the set of semiclassical string states and dual SYM operators for which the correspond
should work? (iv) Why agreement works, i.e. why the two limits (firstJ → ∞, and thenλ̃ → 0, or vice versa) taken on th
string and SYM sides give equivalent results? Should it work to all orders in expansion inλ̃ (and 1

J
)? The questions (i), (ii)

were addressed in [33,35,42–44]; an alternative approach based on matching the general solution (and integrable st
the string sigma model with that of the thermodynamic limit of the Bethe ansatz was developed in [34]. The question (ii
addressed in [45–47,44], and the question (iv) in [15–17].

One key idea of [33] (elaborated further in [35,44]) was that instead of comparing particular solutions one shou
match effective sigma models which appear on the string side and the SYM side. Another related idea of [33,35,44]

2 The reason for this particular form of the energy (4) can be explained as follows [7,27]: we are computing string sigma model lo
corrections to the mass of a stationary solitonic solution on a 2d cylinder (no IR divergences). This theory is conformal (due to the cru
presence of fermionic fluctuations) and thusdoes not depend on UV cutoff. The relevant fluctuations are massive and their masses scal
w ∼ 1√˜ . As a result, the inverse mass expansion is well-defined and thequantum corrections should be proportional to positive powers of̃λ.
λ
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since ‘semiclassical’ string states carrying large quantum numbers are represented in the quantum theory by coher
one should be comparing coherent string states to coherent SYM states (i.e. to coherent states of the spin chain). B
the ferromagnetic nature of the dilatation operator (5) in the thermodynamic limitJ = J1 + J2 → ∞ with fixed number of
impurities J1

J2
it is favorable to form large clusters of spins and thus a ‘low-energy’ approximation and continuum limit

leading to an effective ‘non-relativistic’ sigma model for a coherent-state expectation value of the spin operator. Ta
‘large energy’ limit directly in the string action gives a reduced ‘non-relativistic’ sigma model that describes in a un
way the leading-order O(λ̃) corrections to the energies of all string solutions in the two-spin sector. The resulting action
exactly [33] with the semiclassical coherent state action describing the SU(2) sector of the spin chain in theJ → ∞, λ̃ = fixed
limit. This demonstrates how a string action can directly emerge from a gauge theory in the large-N limit and provides a direc
map between ‘coherent’ SYM states (or operators built out of two holomorphic scalars) and all two-spin classical strin
Furthermore, the correspondence established at the level of the action implies also the matching of fluctuations around
solutions (as in the BMN case) and thus goes beyond the special examples of rigidly rotating strings.

Starting with the SU(2) algebra[S3, S±] = ±S±, [S+, S−] = 2S3 and considering thes = 1/2 representation where
S = 1
2 
σ

one can define spin coherent state3 as a linear superposition of spin up and spin down states:|u〉 = R(u)|0〉, whereR =
euS+−u∗S− , |0〉 = |1

2, 1
2〉 andu is a complex number that can be parametrized asu = 1

2θeiφ . An equivalent way to label th

coherent state is a by a unit 3-vector
n defining a point ofS2. Then|
n〉 = R(
n)|0〉 where|0〉 corresponds to a 3-vector(0,0,1)

along the 3rd axis (
n = U†
σU , U = (u1, u2)) andR(
n) is an SO(3) rotation from a north pole to a generic point ofS2. The
key property of the coherent state is that
n determines the expectation value of the spin operator:〈
n| 
S|
n〉 = 1

2 
n.
In general, one can rewrite the usual phase space path integral as an integral over the overcomplete set of cohe

(for the harmonic oscillator this is simply the change of variablesu = 1√
2
(q + ip)): Z = ∫ [du]eiS[u]. The action isS =∫

dt (〈u|i d
dt

|u〉 − 〈u|H |u〉), where the first (WZ or ‘Berry phase’) term is the analog of the usualpq̇ term in the phase-spac
action. Applying this to the case of the Heisenberg spin chain Hamiltonian (5) one ends up with the following ac
the coherent state variables
nl(t) at sitesl = 1, . . . , J (see also [41]):S = ∫

dt
∑J

l=1[ 
C(nl) · 
nl − λ
2(4π)2 (
nl+1 − 
nl)

2]. Here

dC = εijkni dnj ∧dnk (i.e. 
C is a monopole potential onS2). In local coordinates (at eachl) 
n = (sinθ cosφ,sinθ sinφ,cosθ),

C ·d
n = 1

2 cosθ dφ. In the limitJ → ∞ with fixed λ̃ = λ
J 2 one can take a continuum limit by introducing the 2d field
n(t, σ ) =

{
n(t, 2π
J

l)}. Then

S = J

∫
dt

2π∫
0

dσ

2π

[

C · ∂t 
n − 1

8
λ̃(∂σ 
n)2 + · · ·

]
, (6)

where dots stand for higher derivative terms suppressed by1
J . In the limit J → ∞ we are interested in all quantum correctio

are thus suppressed by1J , and thus the above action can be treated classically. The corresponding equation of motioṅi =
1
2 λ̃εijknj n′′

k are the Landau–Lifshitz equation for a classical ferromagnet.
The action (6) should be describing the coherent states of the Heisenberg spin chain in the above thermodynamic

may wonder how a similar ‘non-relativistic’ action may appear on the string side where one starts with a usual sigma m
To obtain such an effective action one is to perform the following procedure [33,35,44]: (i) isolate a ‘fast’ coordinateα whose
momentumpα is large in our limit; (ii) gauge fixt ∼ τ andpα ∼ J (or α̃ ∼ σ whereα̃ is ‘T-dual’ to α); (iii) expand the action
in derivatives of ‘slow’ or ‘transverse’ coordinates (to be identified with
n). Let us consider the SU(2) sector of string state
carrying two large spins inS5, with string motions restricted toS3 part ofS5. The relevant part of theAdS5 × S5 metric is then
ds2 = −dt2 + dXi dX∗

i
, with XiX

∗
i

= 1. Let us set X1 = X1 + iX2 = u1 eiα , X2 = X3 + iX4 = u3 eiα , uiu
∗
i

= 1. Hereα will
be a collective coordinate associated to the total (large) spin in the two planes (which in general will be the sum of or
internal spin);ui (defined modulo U(1) gauge transformation) will be the ‘slow’ coordinates determining the ‘transverse’
profile. Then dXi dX∗

i
= (dα + C)2 + DuiDu∗

i
, whereC = −iu∗

i
dui , Dui = dui − iCui and the second term represent t

3 Let us briefly review the definition of coherent states (see, e.g., [40]). For a harmonic oscillator ([a,a†] = 1) one can define the cohere

state as|u〉 as a|u〉 = u|u〉, whereu is a complex number. Equivalently,|u〉 = R(u)|0〉, whereR = eua†−u∗a so that acting on|0〉 R is

simply proportional to eua†
. Note that|u〉 can be written as a superposition of eigenstates|n〉 of the harmonic oscillator Hamiltonian,|u〉 ∼∑∞

n=0
un√
n! |n〉. An alternative definition of coherent state is that it is a state with minimal uncertainty for both coordinateq̂ = 1√

2
(a + a†)

and momentump̂ = − i√
2
(a − a†) operators,∆p̂2 = ∆q̂2 = 1

2 , ∆p̂2 ≡ 〈u|p̂2|u〉 − (〈u|p̂|u〉)2. For that reason this is the best approximat

to a classical state. If one defines a time-dependent state|u(t)〉 = e−iHt |u〉 then the expectation values ofq̂ and p̂〈u|q̂|u〉 = 1√
2
(u + u∗),

〈u|p̂|u〉 = − i√ (u − u∗), will follow the classical trajectories.

2
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metric ofCP1 (this parametrisation corresponds to Hopf fibrationS3 ∼ S1 ×S2). Introducing
n = U†
σU , U = (u1, u2) we get
dXi dX∗

i
= (Dα)2 + 1

4(d
n)2, Dα = dα +C(n). Writing the resulting sigma model action in phase space form and imposin

(non-conformal) gauget = τ , pα = const= J one gets the action (6) with the WZ term
C ·∂t 
n originating from thepαDα term
in the phase-space Lagrangian (cf. its origin on the spin chain side as an analog of the ‘pq̇ ’ in the coherent state path integr
action). Equivalent approach is based on first applying a 2d duality (or ‘T-duality’)α → α̃ and then choosing the ‘static

gauget = τ , α̃ = (
√

λ̃)−1σ , (
√

λ̃)−1 = J√
λ

. Indeed, applying T-duality inα we getL = −1
2
√−ggpq(−∂pt∂q t + ∂pα̃∂q α̃ +

Dpu∗
i Dqui ) + εpqCp∂q α̃. Thus the ‘T-dual’ background has no off-diagonal metric component but has a non-trivial N

2-form coupling in the(α̃, ui ) sector. Eliminating the 2d metricgpq we then get the Nambu-type actionL= εpqCp∂q α̃ −√
h,

whereh = |dethpq | andhpq = −∂pt∂q t + ∂pα̃∂q α̃ + D(pu∗
i Dq)ui . If we now fix the static gauget = τ , α̃ = (

√
λ̃)−1σ we

finish with the following actionI = J
∫

dt
∫ 2π
0

dσ
2π

L,

L= C0 −
√

h̃, h̃ = (
1+ λ̃|D1ui |2

)(
1− |D0ui |2

) + 1
4 λ̃(D0u

∗
i D1ui + c.c.)2. (7)

To leading order iñλ this gives

L= −iu∗
i ∂0ui − 1

2 λ̃|D1ui |2, (8)

which is the same as theCP1 Landau–Lifshitz action (6) when written in terms of
n. Thus the string-theory counterpart of t
WZ term in the spin-chain coherent state effective action comes from the 2d NS–NS WZ term upon the static gauge
the ‘T-dual’ α̃ action [44].

To summarize: (i)(t, α̃) are the ‘longitudinal’ coordinates that are gauge-fixed (withα̃ playing the role of string direction
or spin chain direction on the SYM side); (ii)U = (u1, u2) or 
n = U†
σU are ‘transverse’ coordinates that determine
semiclassical string profile and also the structure of the coherent operator on the SYM side, tr

∏
σ (uiΦi). The agreemen

between the low-energy actions on the spin chain and the string side explains not only the matching between ene
coherent states for configurations with two large spins (and near-by fluctuations) but also the matching of integrable s
observed on specific examples in [31,32].

This leading-order agreement in SU(2) sector has several generalizations. First, we may include higher-order terms
string side. Expanding (7) iñλ and eliminating higher powers of time derivatives by field redefinitions (note that leading-
equation of motion is 1-st order in time ) we end up with [35]

L= 
C · ∂t 
n − λ̃

8

n′2 + λ̃2

32

(

n′′2 − 3

4

n′4

)
− λ̃3

64

[

n′′′2 − 7

4

n′2
n′′2 − 25

2
(
n′ 
n′′)2 + 13

16

n′6

]
+ · · · . (9)

The samẽλ2 term is obtained [35] in the coherent state action on the spin chain side by starting with the sum of the
dilatation operator (5) and the 2-loop term found in [11]

D2 = λ2

(4π)4

J∑
l=1

(Ql,l+2 − 4Ql,l+1), Qk,l ≡ I − 
σk · 
σl . (10)

This explains the matching of energies and dimensions to the first two orders, as first observed on specific examples u
ansatz in [15]. Equivalent general conclusion about 2-loop matching wasobtained in the integrability-based approach in [34
The order-by-order agreement seems to break down atλ̃3 (3-loop) order, and a natural reason [15,16] is that the string l
(first J → ∞, thenλ̃ → 0) and the SYM limit (firstλ → 0, thenJ → ∞) need not be the same. Suggestions how to ‘comp
the gauge-theory answer to have the agreement with string theory appeared in [16,17].4

One can also generalize [42,43] the above leading-order agreement to the SU(3) sector of states with three largeS5 spinsJi ,
i = 1,2,3, finding theCP2 analog of theCP1 ‘Landau–Lifshitz’ Lagrangian in (6) and (8) [43]L = −iu∗

i
∂0ui − 1

2 λ̃|D1ui |2
on both string and spin chain sides. Similar conclusion is reached [43] in the SL(2) sector of(S, J ) states (using the dilatatio
operator of [38]), where
n → 
l, l21 − l22 − l23 = 1. Finally, one can consider also pulsating string states discussed in th
section.

4 They also resolve the orderλ̃3 disagreement [9] between string and gauge theory predictions for1J corrections to the BMN spectrum

A possible explanation of why the agreement took place at first two orders inλ̃ is that the structure of the dilatation operator at one and
loop order is uniquely fixed by the BMN limit, which thus essentially determines the low energy effective action in a unique way; this is
longer so starting with 3-loop order.
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3. General fast motion in S5 and scalar operators from SO(6) sector

One would like to try to understand the general conditions on string states and SYM operatorsfor which the above correspon
dence works, and, in particular, incorporate also states with large oscillation numbers. Here we will follow [43,44] (a
related approach was developed in [46,47]). For strings moving inS5 with large oscillation numberE = L + c1

λ
L +· · ·, i.e. the

limit L → ∞, λ̃ = λ
L2 → 0 is again regular [39], and the leading-order duality relation between string energies and ano

dimensions was checked in [29,32,48]. The general condition on string solutions for whichE/L = f (λ̃) has a regular expansio
in λ̃ appears to be that the world sheet metric should degenerate [46] in theλ̃ → 0 limit, i.e. the string motion should be ultra
relativistic in the small string tension limit [45]. In the strict tensionlessλ̃ → 0 limit each string piece is following a geodes
(big circle) ofS5, while switching on tension leads to a slight deviation from geodesic flow, i.e. to a nearly-null world s
[46]. The dual coherent SYM operators are then ‘locally BPS’, i.e. each string bit corresponds to a BPS linear combin
6 scalars. In general, the scalar operators can be written asO = Cm1···mL tr(φm1 · · ·φmL). The planar 1-loop dilatation operat
acting onCm1···mL was found in [28] (and is equivalent to an integrable SO(6) spin chain Hamiltonian)

H
n1···nL
m1···mL

= λ

(4π)2

L∑
l=1

(
δmlml+1δ

nlnl+1 + 2δ
nl
ml

δ
nl+1
ml+1 − 2δ

nl+1
ml

δ
nl
ml+1

)
. (11)

To find the analog of the coherent-state action (8) we choose a natural set of coherent statesΠl |vl〉, where at each site|v〉 =
R(v)|0〉. HereR is an SO(6) rotation and|0〉 is the BPS vacuum state corresponding to tr(φ1 + iφ2)L or v(0) = (1, i,0,0,0,0),
which is invariant underH = SO(2) × SO(4). Then the rotationR(v) and thus the coherent state is parametrized by a poi
G/H = SO(6)/[SO(4) × SO(2)], i.e.v belongs to the GrassmanianG2,6 [43]. G2,6 is thus the coherent state target space
the spin chain sigma model since it parametrizes the orbits of the half-BPS operatorφ1 + iφ2 under the SO(6) rotations. This
is the space of 2-planes passing through zero inR6, or the space of big circles inS5, i.e. the moduli space of geodesics inS5

[47]. It can be represented also as an 8-dimensional quadric inCP5: a complex 6-vectorvm should be subject, in addition t
vmv∗

m = 1 (and gauging away the common phase) also tovmvm = 0 condition. Taking the limitL → ∞ with fixed λ̃ = λ
L2 and

the continuum limitvlm(t) → vm(t, σ ) we then get theG2,6 analog of theCP1 action (6), (8)

S = L

∫
dt

2π∫
0

dσ

2π

(
−iv∗

m∂0vm − 1

2
λ̃|D1vm|2

)
, vmv∗

m = 1, vmvm = 0, (12)

where as inCPn caseD1vm = ∂1vm − (v∗∂1v)vm.
One may wonder how this 8-dimensional sigma model can be related to string sigma model onR × S5 where the coordinate

space of transverse motions is only 4dimensional. The crucial point is that the coherent state action is defined on the ph
(cf. the harmonic oscillator case), and 8= (1+ 5)× 2− 2× 2 is indeed the phase space dimension of a string moving inS5. On
the string side, the need to use the phase space description is related to the fact that to isolate a ‘fast’ coordinateα for a generic
string motion we need to specify both the position and velocity of each string piece. Starting withL = −(∂t)2 + (∂Xm)2 in
conformal gauge (̇XX′ = 0, Ẋ2+X′2 = κ2, X2

m = 1) we find the geodesics asXm = am cosα+bm sinα, whereα = κτ, a2
m =

1, b2
m = 1, ambm = 0. Equivalently,Xm = 1√

2
(eiαvm + e−iαv∗

m), wherevm = 1√
2
(am − ibm), vmv∗

m = 1, vmvm = 0, i.e. the

constantvm belongs toG2,6. In general, for near-relativistic string motionsvm should change slowly withτ andσ . Then starting
with the phase space Lagrangian for(Xm,pm) and changing the variables according to (cf. harmonic oscillator case)Xm =

1√
2
(eiαvm + e−iαv∗

m), pm = i√
2
pα(eiαvm − e−iαv∗

m) whereα andvm now depend onτ andσ andvm belongs toG2,6. There

is an obvious U(1) gauge invariance,α → α − β, vm → eiβvm. Gauge-fixingt ∼ τ , pα ∼ L (or, after approximate T-dualit
in α, α̃ ∼ σ ) one finds that the phase-space Lagrangian becomes [44]:L ∼ pαD0α − 1

2 λ̃|D1v|2 − 1
4 λ̃[e2iα(D1v)2 + c.c.)].

The first term here produces−iv∗
m∂0vm and the last term averages to zero sinceα ≈ κτ + · · · whereκ = (

√
λ̃)−1 → ∞.

Equivalently, theα-dependent terms in the action (that were absent in the pure-rotation SU(3) sector) can be eliminated b
canonical transformations [44]. We then end up with the following 8-dimensional phase-space Lagrangian for the ‘tra
string motions:L = −iv∗

m∂0vm − 1
2λ̃|D1vm|2, which is the same as found on the spin chain side (12). The 3-spin rot

SU(3) case is the special case whenvm = (u1, iu1, u2, iu2, u3, iu3), whereui belongs toCP2 subspace ofG2,6. The agreemen
between the spin chain and string sides in this generalG2,6 = SO(6)/[SO(4) × SO(2)] case explains not only the matching f
pulsating solutions [39,32] but also for near-by fluctuations.
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Let us now discuss the reason for restrictionv2 = 0 and also the structure of coherent operators corresponding to sem
sical string states. Starting withO = Cm1···mL tr(φm1 · · ·φmL) one may obtain the Schrödinger equation for the wave func
C(t) from5

S = −
∫

dt

(
iC∗

m1···mL

d

dt
Cm1···mL + C∗

m1···mL
H

n1···nL
m1···mL

Cn1···nL

)
.

In the limit L → ∞ we may consider the coherent state description and assume the factorized ansatzCm1···mL = vm1 · · ·vmL ,
where eachvml is a complex unit-norm vector [44]. The BPS case corresponding to totally symmetric tracelessCm1···mL is
represented byvml = vm(0), v2

(0)
= 0. Using (11) and substituting the ansatz forC into the above action one finds

S = −
∫

dt

L∑
l=1

(
iv∗

l

d

dt
vl + λ

(4π)2

[
(v∗

l v∗
l+1)(vlvl+1) + 2− 2(v∗

l vl+1)(vlv
∗
l+1)

])
. (13)

As expected [28], the Hamiltonian (second term) vanishes for the BPS case whenvl does not depend onl andv2 = 0. More
generally, if we assume thatvl is changing slowly withl (i.e. vl � vl+1), then we find that (13) contains a potential te
(v∗

l
v∗
l
)(vlvl) coming from the first ‘trace’ structure in (11). This term will lead to large (orderλL [28]) shifts of anomalous

dimensions, invalidating low-energy expansion,i.e. prohibiting one from taking the continuum limitL → ∞, λ̃ = λ
L2 = fixed,

and thus from establishing correspondence with string theory along the lines of [33,35,43]. To get solutions with varia
vl from site to site small we are to imposev2

l = 0, l = 1, . . . ,L, which minimizes the potential energy coming from the fi

term in (11). This condition implies that the operator ateach site is invariant under half of supersymmetries: ifv2 = 0 the
matrix vmΓ m appearing in the variation of the operatorvmφm, i.e. δε(vmφm) = i

2 ε̄(vmΓ m)ψ , satisfies(vmΓ m)2 = 0. This

means thatvmφm is invariant under the variations associated with the null eigenvalues. One may thus callv2 = 0 a ‘local BPS’
condition since the preserved combinations of supercharges in general are different for eachvl , i.e. the operator correspondin
to C = v1 · · ·vL is not BPS. Here ‘local’ should be understood in the sense of the spin chain, or, equivalently, the spatia
sheet direction.6 In the case whenvl are slowly changing we can take the continuum limit as in [33,35,43] by introducin
2d field vm(t, σ ) with vml(t) = vm(t, 2πl

L
). Then (13) reduces to (12) (all higher derivative terms are suppressed by p

of 1
L

and the potential term is absent due to the conditionv2 = 0), i.e. (13) becomes equivalent to theG2,6 ‘Landau–Lifshitz’

sigma model which was derived from the phase space action on the string side.7

To summarize, considering ultra-relativistic strings inS5 one can isolate a fast variableα (a ‘polar angle’ in the string phas
space) whose momentumpα is large. One may gauge fixpα to be constant∼ L, or α̃ ∼ Lσ , so thatσ or the ‘operator direction
on the SYM side gets interpretation of ‘T-dual to fast coordinate’ direction. As a result, one finds a local phase-spac
with 8-dimensional target space (where one can no longer eliminate 4 momenta without spoiling the locality). This action is
equivalent to the GrassmanianG2,6 Landau–Lifshitz sigma model action appearing on the spin chain side.

We thus get a precise mapping between string solutions and operators representing coherent spin chain state
examples corresponding to pulsating and rotating solutions are given in [44]. In the continuum limit we may write the o
corresponding to the solutionv(t, σ ) asO = tr(

∏
σ v(t, σ )), v ≡ vm(t, σ )φm. This locally BPS coherent operator is the SY

operator naturally associated to a ultra-relativistic string solution. Thet -dependence of the string solution thus translates
the RG scale dependence ofO, while theσ -dependence describes the ordering of the factors under the trace. In g
semiclassical string states represented by classical string solutions should be dual to coherent spin chain states o
operators, which are different from the exact eigenstates of the dilatation operator but which should lead to the same
anomalous dimension expressions. At the same time, the Bethe ansatz approach [29,30,34] is determining the exact e
of the dilatation operator. The reason why the two approaches happen to be in agreement is that in the limit we con
problem is essentially semiclassical, and because of the integrability of the spin chain, its exact eigenvalues are not just w
approximated by the classical solutions but are actually exactly reproduced by them, i.e. (just as in the harmonic osc
flat space string theory case) the semiclassical coherent state sigma model approach happens to be exact.

5 For coherent states we consider this equation may be interpreted as a(non-trivial) RG equation for the coupling constant associated to th
operatorO.

6 This generalizes the argument implicit in [33]; an equivalent proposalwas made in [47]. This is related to but different from the ‘nea
BPS’ operators discussed in [45] (which, by definition, were those which become BPS in the limitλ → 0).

7 The presence of the trace in the SYM operators implies that we have to consider only spin chain states that are invariant under transla

in l or in σ . This means that the momentum in the directionσ should vanish:Pσ = 0, or, equivalently,
∫ 2π
0

dσ
2π

v∗
m∂σ vm = 0. This should be

viewed as a condition on the solutionsvm(t, σ ). The same condition appears on the string side from a constraint.
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4. Concluding remarks

As reviewed above, during the last year and a half it was realized that there exists a remarkable generalization of
BPS (BMN) limit to non-BPS but ‘locally-BPS’ sector of string/SYM states. This is an important progress in underst
of gauge-string duality at the quantitativelevel. The hope isto find eventually the string/SYM spectrum exactly, at least in
subsector of states. The relation between phase-space action for ‘slow’ variables on the string side and the coherent-s
on the SYM (spin chain) side gives a very explicit picture of how string action ‘emerges’ from the gauge theory (dil
operator). It implies not only the equivalence between string energies and SYM dimensions (directly established to
orders in expansion in effective couplingλ̃ expansion) but also a direct relation between the string profiles and the struct
coherent SYM operators [33,44].

One may try to go further and use the duality to string theory as a tool to uncover the structure of planar SYM
to all orders inλ by imposing the exact agreement with particular string solutions. For example, demanding the con
with the BMN scaling limit (along with the superconformal algebra) determines the structure of the full 3-loop SYM dila
operator in the SU(2) sector [11,12]. One can also use the BMN limit to fix only a part of the dilatation operator but
orders inλ [49]. Generalizing (5), (10) and the 3- and 4-loop expressions in [11,12] one can organize [35,49] the di
operator as an expansion in powers of Qk,l = I − 
σk · 
σl which reflect interactions between spin chain sites,D = ∑

Q +∑
QQ + ∑

QQQ+ · · · . Here the products Q· · ·Q are ‘irreducible’, i.e. each site index appears only once. The Q2-terms
first appear at 3 loops, Q3-terms – at 4 loops, etc. [11,12]. Concentrating on the order Q partD(1) of D one can write (here
L = J ): D(1) = ∑∞

r=0
λr

(4π)r
∑L

l=1Dr (l), Dr (l) = ∑r
k=1 ar,kQl,l+k, or D(1) = ∑L

l=1
∑L−1

k=1 hk(L,λ) Ql,l+k. Demanding
the agreement with the BMN limit one can then determine the coefficientsar,k and thus the functionhk explicitly to all orders
in λ [49]. In particular, for largeL, i.e. whenD acts on ‘long’ operators, one finds

D(1) =
L∑

l=1

∞∑
k=1

fk(λ)Ql,l+k, fk(λ) =
∞∑

r=k

λr

(4π)2r
ak,l , (14)

where the coefficientsfk(λ) can be summed up in terms of the standard Gauss hypergeometric function [49]

fk(λ) =
(

λ

4π2

)k �(k − 1
2)

4
√

π�(k + 1)
2F1

(
k − 1

2
, k + 1

2
;2k + 1;− λ

π2

)
. (15)

The functionfk(λ) smoothly interpolates between the usual perturbative expansion at smallλ andfk(λ) ∼ √
λ at strongλ

(which is the expected behaviour of anomalous dimensions of ‘long’ operators dual to ‘semiclassical’ states). Similar
lating functions are expected to appear in anomalous dimensions of other SYM operators.8

One may hope that imposing additional constraints coming from correspondence with other string solutions may help to
determine the dilatation operator further (see also [16,17]).
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