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Abstract

We show that the supersymmetry transformations for type Il string theories on six-manifolds can be written as differential
conditions on a pair of pure spinors, the exponentiated Kéahler fdfmaed the holomorphic forns2. The equations are
explicitly symmetric under exchange of the two pure spinors arfibice of even or odd-rank RR field. This is mirror symmetry
for manifolds with torsion. Moreover, RR fluxes affect only one of the two equatidhss elosed under the action of the twisted
exterior derivative in IIA theory, and similarlg is closed in 1IB. This means that supersymmetric SU(3)-structure manifolds
are always complex in IIB while they are twisted symplectic in IIA. Modulo a different action ofpttiield, these are all
generalized Calabi—Yau manifolds, as defined by Hitchircite thisarticle: M. Grafia et al., C. R. Physique 5 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Fonds supersymetriques a partir de variétés de Calabi—Yau généralisée®n montre que les transformations de supersy-
métrie pour les théories des cordes de type Il peuvent étre traduites dans des équations différentielles pour une paire de spineurs
purs, 'exponentiel de la forme de Kahler eet la forme holomorphe2. Ces équations sont symétriques sous I'’échange des
deux spineurs purs et des formes de RR de rang pair ou impair. Cette propriété est la symétrie miroir pour les variétés avec
torsion. On voit aussi que les fluxes de RR entrent seulement dans une des deux équitiessfeemé sous I'action de la
dérivée extérieure «twisted » dans la corde de type llA, et de la méme mahiese fermé en type 1IB. Cela implique que
les variétés supersymétriques de structure SU(3) sont toujours complexes en type IIB ou bien symplectiques «twisted » en IIA.
Ces variétés sont donc des variétés des Calabi—Yau gégémtislon la définition de Hitchin, mais avec une action du champ
B différente.Pour citer cet article: M. Grafia et al., C. R. Physique 5 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Compactifications with fluxes have received much attention recently due to a number of interesting features. In many ways
these can be seen as extensions of the more conventional compactifications on Ricci-flat manifolds. On the other hand, many
aspects of the latter, most notably in theeca Calabi—Yau manifolds, still have to @inheir generalized counterparts. Mirror
symmetry has been one of the most prominent and useful features of Calabi—Yau compactifications, and the question of its
extension to compactifications with fluxes is both of conceptual and of practical interest.

The issue of extending mirror symmetry to compactifications with fluxes has been studied recently in [1-5]. A first question
is, of course, within which class of manifolds this symmetry should be defined. A natural proposal comes from the formalism
of G-structures, recently used in many contexts of compactifications with fluxes. As shown in [3,4], mirror symmetry can be
defined on manifolds of SU(3) structure, thus generalizing the usual Calabi—Yau case. One of the points which makes this
symmetry non-trivial is that, as expected, geometry and NS flux mix in the transformation. On the other hand, RR fluxes are
mapped by mirror symmetry into RR fluxes and their transformation is well-understood. However, for many reasons it would
be better to have a formalism that would incorporate geometrical data and fluxes in a natural way. As a step forward in that
direction, we propose to use pure spinors of Clifford6as a formalism to describe SU(3)-structure compactifications.

As far as we are concerned in this introduction, Clifford@bspinors are simply formal sums of forms, in analogy with
usual spinors, which are often realized as formal sumg 0d) forms. A spinor is called pure if it is annihilated by half of the
gamma matrices. A pure spinor defines an S3}3tructure on the bundIE + 7* on the manifold. If the spinor is also closed,
the manifold is called by Hitchin [6] a generalized Calabi—Yau.

For a SU(3) structure off, there are two pure spinorg; andg, which are orthogonal and of unit norm. An SU(3) structure
is defined by a two-forny and a three-forn®2 obeying/ A2 =0and 2 A 2 = (2])3/3!. Then, the two pure spinors are e
and 2. We will show that supersymmetry equations imply differential equations for the pure spinors, which are, schematically

e /1d(ef191) = H e g1,

1
e~ 2d(ef2¢p) = H e g3 + (F, ). @

The operatoiH e is a certain action of the three-forf, involving contractions and wedges but different fréfm. So, both in

lIA and 1IB there is a ‘preferred’ pure spinor (of the same parityras namely & in IIA and £2 in 1IB) which does not receive

any back reaction from the RR fluxes, i.e. which is ‘twisted’ closed. Then supersymmetry implies that 6-dimensional manifolds
are all ‘twisted’ generalized Calabi-Yau [6]. The twisting refers to the presence @ tligld. In the mathematical literature

(and in some physical applications [7]) this twisting is actually always appearing in the(@btnH A). It is interesting to see

that, in general, the inclusion of RR fluxes requires a different form of twisting than the one usually assumed. Understanding
the origin of this twisting from first principles remains an important open problem.

2. SU(3) structure and torsion versus fluxes

We start by briefly introducing the notions of SU(3)-structure and intrinsic torsion with the help of which we will describe
the non-Ricci-flat geometries under consideration. For a more extensive review, see for example [3] and references therein.
A manifold with SU(3)-structure has all the group-theoretical features of a Calabi—Yau, namely invariant two- and three forms,
J and 2, respectively. On a manifold of SU(3) holonomy, not onlyand 2 are well defined (nowhere vanishing, SU(3)
invariant), but they are also closed’ & 0 = ds2. If they are not closed, Hand d2 give a good measure of how far the
manifold is from having SU(3) holonomy. Decomposing @nd d?2 in the different SU3) representations, we can write

dJ = =3 Im(W12) + Wa A J + W3,

2 w @
d2 =W1Jc+WoAnJ + W5 A S2.

The Ws are thg3® 3@ 1) ® (3@ 3) components of the intrinsic torsiof; is a complex zero-form in& 1, W is a complex
primitive two-form, so it lies in 8 8, W3 is a real primitive(2, 1) @ (1, 2) form and it lies in 6B 6, Wy is a real one-form in
3@ 3, and finallyWs is a complex(1, 0)-form (notice that in (2) th&0, 1) part drops out), so its degrees of freedom are again
3@ 3. TheseW; allow to classify the differential type of any SU(3) structure.

An SU(3) structure can be defined also by a spipowhich is nowhere vanishing, SU(3) invariant, but not covariantly
constant, unless the manifold has SU(3) holonomy. In terms of thasd 2 above are defined as bilinears:

N Ymnyn = iJmn,

n @
=10 Ymnp (L+ )1 = 2mnp-
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Table 1
Decomposition of torsion and fluxes into SU(3) representations

1e1 393 6®6 838
Torsion 1(Wy) 2 (Wy, Ws) 1(W3) 1 (Wo)
Hs3 1 1 1 0
A: Fy, 2 (Fp, Fo, Fy) 2 (Fo, Fy) 0 1(Fo, Fy)
I1B: Fo 41 1(F3) 3 (F1, F3, Fy) 1(F3) 0

Torsion is induced by flux, so in any solution to the equations of motion any nonvanishing torsion has to be compensated by
a nonvanishing flux in the same representation. We can gain a lot of insight just by decomposing the fluxes into the different
SU(3) representations, and searching for any missing atdeT. shows the number of times each representation appears for
torsion, NS and RR fluxes.

Just by looking at Table 1, we realize that in IIB there is no flux capable of compensating the torsiowgldssus, we
can conclude that in any IIB solutiofi/>, which is an obstruction for getting complex geometry, has to vanish. In llA there is
no RR flux capable of compensatifig so, if this last torsion is not zero, it must be compensated by NS flux. This means that
in 11A there should be a relatioWs ~ H® (the 6 denotes the representatiowyy appears in the derivative of, so it is an
obstruction to have symplectic geometry. Another torsion cl&gs appears in both.dand d2, and represents an obstruction
to have either complex or symplectic geometries. If addition#3lty= 0, which is true in any IIA and 1IB supersymmetric
solution with SU(3) structuré,then supersymmetric 6-manifolds with SU(3) structure are always complex in 1B while they
are ‘twisted symplectic’ in 1A (twisting refers to H-flux in the relatiovi; ~ dJ ~ HS, we will expand on this later).

Since llA is related to symplectic geometries while IIB is associated to complex ones, one immediately wonders if there is
a mathematical construction that contains, or even more, extends, both. That mathematical construction is generalized complex
geometry. It has been introduced by Hitchin [6] (see [9] for details and further developments), and recently used in string
theory related context by [10-13]. It is clear that this formalism must be useful for mirror symmetry: although for the physical
string mirror symmetry is an exchange of Calabi—Yau'’s, for the topological string it can be formulated as sending symplectic
manifolds into complex ones, and vice versa.

3. Generalized complex geometry

Usual complex geometry deals with the tangent bundle of a mariffoldhose sections are vectaxs and separately, with
the cotangent bundl&*, whose sections are 1-forngs In generalized complex geometry one deals with the direct sum of
the tangent and cotangent bundlegp T* rather than the tangent (or cotangent) bundle itself, whose sections are the sum of a
vector field plus a one-fornX + ¢. The standard machinery of complex geometry can be generalized to this bundle.

To start with, let us consider the almost complex structure. If ordinary almost complex struttareoundle maps from
T to itself that square te-1; (d is the real dimension of the manifold), generalized almost complex structfir@® maps
of T @ T* to itself that square te-I;. As for an almost complex structurg;, must also satisfy thedmmiticity condition
J'TJ =T, with the respect to the natural metric 6rd T*, 7 = ((1) %) Such generalized almost complex structures have the

form
J P
7=(7 %) @

whereJ :TM — TM,P:T*M — TM,L:TM — T*M andK :T*M — T*M.
The condition7’ZJ =7 leads tok = —J!, P = —P! andL = —L’, so the matrix (4) can be expressed:

7=(1 ). ©)

with P and L antisymmetric matrices. The conditiqfi? = —I»,; imposes further constrains fof, P and L, in particular
J2 4+ PL = -1 . From this, it is easy to see that usual complex structures are naturally embeddgd they correspond to
the choice

7= 5 ) ©

1 This statement cannot be concluded just by looking at represmmasince both in 1A and 1B there are enough scalars in the flux to
compensatéV, . It is derived by looking at all supersymmetry equations, as done in [8].
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with J,, " an almost complex structure (i.62 = —I;). Another example of generalized almost complex structure can be built
using a non degenerate two-foem

a=(27%7). Q

Given an almost complex structure one can build holomorphic and antiholomorphic pI’OngQE%(ld +iJ). Corre-

spondingly, projectors can be build out of a generalized almost complex struﬁ@re,%(lzd +iJ). There is an integrability
condition for generalized almost complexustures, analogous to thetegrability conditio for usual almost complex struc-
tures. For the usual complex structuretegrability, namely the vanishing of thdjBhhuis tensor, can be written as the condition
mx[n+X,7+Y] =0, i.e. the Lie bracket of two holomorphic vectors should again be holomorphic. For generalized almost com-
plex structures, integrabilityandition reads xactly the same, witlr and X replaced bylT and X + ¢, and the Lie bracket
replaced by certain bracket dhé T*, called Courant brackétThis bracket does not satisfy Jacobi identity in general, but it
does on the i-eigenspaces @f In case these new conditions are fulfilled, we can drop the ‘almost’ and speak of generalized
complex structures.

For the two examples of generalized almost complex structure given alipwad 7>, integrability @ndition turns into
a condition on the building block$ andw. For 71, integrability of the generalized almost complex structure turns into the
condition of J being integrable as an almost complex structur@ jihus making it a complex structure. Fgp, which was
built from a two-formw, the condition becomes.d= 0, thus making into a symplectic form.

These two examples are not exhaustive, and the most geneexbdjeed complex structure interpolates between complex
and symplectic manifolds. A generalized complex manifold is locally equivalent to the pr@ﬂmKRd*%, ), wherew =
A2kt A deZ+2 4.4 ded=1 A dx? is the standard symplectic structure and d/2 is called rank, and can be constant or
vary over the manifold.

3.1. Pure spinorsin generalized complex geometry

There is an algebraic correspondence between generalized almost complex structures and pure spinors of ®liffiord(6
string theory, the picture of generalized almost complex structures emerges naturally from the worldsheet point of view [12],
while that of pure spinors arises from the space-time side. Since it this last approach that we deal with, let us first review the
formalism of Clifford(6 6) spinors, and then show how to use pure spinors in the context of generalized complex geometry.

Spinors on? transform under Clifford(6), whose algebra(ig”, "} = 2g"". There is a representation of this algebra in
terms of forms. Using holomorphic and anitholomorphic indices, we camtakedz’ A, y’g’ij.3 The (3 0)-form £2 can be
used as a Clifford vacuum to construct a basis of spin@rss a pure spinor of Clifford(6), which means that it is annihilated
by half of the gamma matrices/{£2 = 0). Acting with the rest of the gamma matricgs, '/ andy’/, we can construct a
basis of ‘spinors’ made out ofy( 0)-forms. So Clifford(6) spinors are equivalent @ Q)-forms.

A similar story can be done with Clifford(6). To start with, there are twice the number of generators as in Clifford(6), i.e.
twelve. These are given by matrice’8, p, obeying

{)Lm’)\n}zo’ {)\mypn}zfs:lny {om, pn}=0.

We have chosen two different symbols,and p, instead of the more commonly used' and y,,, to emphasize that these
matrices are independent, they cannot be obtained from each other by raising and lowering indices with the metric. The repre-
sentation of this algebra in terms of forms which is usually taken, and to which we will stick,4sdx™ A, andp,, =1,,. 2 is
still a good vacuum of Clifford(66), as it is annihilated by’ and p;, which are half of the gamma matrices, thus making it a
pure spinor. Acting with the other half! andp; we get forms of all possible degrees. So Cliffordgpspinors are equivalent
to (p, ¢)-forms.
On a space with SU(3) structure @0 there two invariant forms, namelg andJ. £2 is a pure spinors, but is not. What
is a pure spinor instead i$e=1+iJ — %J AT — lGJ A J A J. Itis annihilated by, +1J,,,2", as itis easy to check using
Jr JP = —8F. Thus on a space of SU(3) structure there are always two pure spidaad é/ It is shown in [4] that the
action of mirror symmetry for manifolds with SU(3) structure that Zrefibrations over a 3-dimensional base is

d/ & 2. 8

Furthermore, [4] conjectured that this is the action of mirror symmetry for any manifold wigB)Sitructure. By this proposal,
mirror symmetry is the exchange of two pure spinors.

2 The Courant bracket is defined as follow&: + ¢, ¥ + nle =X, Y1+ Lxn— Lyt — %d(zxr] —ty{).
8 i APT* = APIT* L dvit Ao A i = pslitdyiz A ..o A dai?],
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There is a one-to-one correspondence between a generalized almost complex stfuahde pure spinop. The six-
dimensional space that annihilates the pure spinor should be equal 4d #igenspace of the generalized almost complex
structure that it is mapped to. Integii#ty condition for the geeralized complex structure mesponds on the pure spinor side
to the condition

Jisintegrable < 3 vectorv and 1-form¢ such that ¢ = (vo + ¢ A)e.

A generalized Calabi-Yau, as defined by Hitchin [6], is a manifold on which a closed pure spinor exists.

There is also a possibility of adding a three-foffrto the story. Using a three-form, the Courant bracket can be modified,
and with it the integrability ondition. Not surprisingly, tis corresponds also to a modification of the condition on the pure
spinor, which now becomes

(d+ HA)p = (vL+ ). 9)
If we decompose in forms, } " ¢, the condition means thaig,y + H A ¢ —2) = v@i42) + ¢ A @) Tor everyk.

3.2. Supersymmetry equations for pure spinors

In this section we will use the supersymmetry equationye tllA and type 1B supergravity to derive equations on the
two pure spinors. The equations we derive do not encode all the information coming from the supersymmetry conditions. They
are rather the counterpart ofettinternal gravitino, in that they encode derivatives/oénd §2, which come from covariant
derivatives of the spinor in the originatternal gravitino equation. They captures timformation about the intrinsic torsion
of the manifold; but in general from supersymmetry there are more conditions arising, equaling components of fluxes (and
derivatives of the dilaton and warping) among eatiter. These conditions are explicitly given in [8].

To get equations for the pure spinors one starts with the internal gravitino equation which, in the democratic formulation of
[14] can be expressed:

8vYm = Dpe + %H,,,Pe + 1—16e¢ Xn:hn T Pre, (10)

where Fp,, = dCo,_1 — H A Cy,_3 are the modified RR field strengths with non standard Bianchi identities, that we will
call from now on simply RR field strengths;=0, ..., 5 for lIA andn = 1/2, ...,9/2 for 1B and Hy; = 3 Hyy p I'VF and

P =Ty, Py = ol for lIA, while P = —o3, P, = o for n + 1/2 even andP,, = io'2 for n + 1/2 odd for IIB. The two
Majorana—Weyl supersymmetry parameters of type Il supergravity are arranged in the deglgat €5).
The ‘total’ RR field involves both the field strengths and their duals, and a self-duality relation is still to be imposed

Foy = (=DM w10 Frg_5,. (11)
In order to preserve 4d Poincaré invariance, RR fluxes should be of the form
Fp, = fzn +\oly /\fzn,4. (12)

Here F»,, stands for purely internal fluxes. The self-dualityfef,, Eq. (11) becomesy,_4 = (— 1) wg Fio_5,, and allows

to write the RR part of (10) in terms of the internal fluxes only. From now on we will work only with internal fluxes, and drop

the hats inF.

The ten-dimensional Majorana—\Weyl spineis 2, which have opposite clality in 1A and the same chirality in 1B, can

be decomposed

e1=§+®ni+§7®n£,
2 2 (13)
Q=+ nZ +{-®ng,

in llA, where ¢ andyn’ are chiral spinors in 4 and 6 dimensions, respectively. The Majorana condition impligg.aj$e=¢_,
(n')* = n'_. For lIB, the two spinors can be decomposed

=0 @0+ ®n. (14)

On a manifold of SU(3) structure there is only one nowhere vanishing invariant spirm,;, andn, should be related tg,
which also means that ande, are related, as should be the caseX6« 1 supersymmetry. We write the relation as

ny=any, i =bny. (15)

YIX4LY g =X+ Y +nlc +ixiy H.



984 M. Grafia et al. / C. R. Physique 5 (2004) 979-986

In supersymmetry equations, we will use the combinations
a=a+ib, B=a—ib. (16)

Coming back to the pure spinors, the strategy to get equations for them is to use the fact that we can map a form (or a formal
sum of them) to an element of the usual Clifford algebra, Clifford(6):

k j 1 w0 i
C= Zk‘c() deii A AdE s ¢EZECU.V’ ik, 17)

i1...0x i1...0i Yo

An object in Clifford(6) can also be seen as a bispinor, since it has two free spinor indices. So we have realized Obifford(6
spinors as bispinors, which are more useful in string theory. Another useful technical fact is that one can eraljizealso as
combinations of the more familigr’s acting on the left and on the right of a bispinor. For exampteC® < 1 (g ® +

¢ ™™y when the plus (minus) sign corresponds: teven (odd).
A crucial fact is that B and$ can be re-expressed in terms of tensor products &fsing Fierz rearrangement, one can
show
6
1 1
ne@n = Z k,nim gy, (18)
k 0

Using the expression faf and §2 in terms ofy, Eq. (3), it is possible to express the pure spinors as tensor products of the
standard spinor defining the SU(3) structure

1 .
ﬂi@ﬂlzé :FZJ,

Ny ®n = —5-% (19)

i—
n—®ni=—§$,

where the extra factor of/2 with respect to (19) comes from the normalization chosen for the sph@@, = % Then, the
exterior derivative ¢e='/) can be re-expressed in the bispinor picture as the anticommutator

{ym’ Dp(n+ ® 771)}

The covariant derivative here is meant to be a bispinor covariant derivative, which corresponds to the ordinary covariant deriva-
tive of forms under the Clifford map, and which anyway reduces to exterior derivative when we fully antisymmetrize, as usual.
To compute this object, one can use Leibniz rule for the covariant derivative of the bispinor, reducifig’it 0,, (n+) ® n+}

plus its complex conjugate. Using the internal gravitino equation (10) for the covariant derivative of the spinor, gives

HA:  — [a(ZA — ¢ +logw) + %H]m ® ni - (3,,,0: + %Hm) Nt ® "L/m

IB: - |:a(2A — ¢ +logw) — %H]mr ® ni — <3mot — %Hm — 4;TG¢FBVm)77+ ® niym

wherea andg are defined in (16)4 is the warp factor, i.e. the metric has the form
= &4 (0 e dx”) 4 ds?

and Fg = aFy — BF3+ aF5 is a sum of [IB RR fluxes. Notice that in lIA&" has disappeared. This is because it would have
multiplied y,n— ® nT y™. This expression is zero becauge ® 77+ = Q andy,,y"P4y™ = 0 in six dimensions. This
technical circumstance is what allows us to makelisappear in one of the pure spinor equations for both Il1A and IIB. It is
now only required to go from the bispinor picture back to the form picture, inverting the Clifford map (17). The equations we
obtain are the following. For type IIA we have

1 Rewp) .

—f fdly— = _"S*P)
e /de/é’) APTERYT e, (20)

_ 182 +a? ¢ 1 1 iy 1 .
8 —_Z e — — = I _Z — . F*
e 8dEesR) = 4 2P HeQ 162aﬂ<F ( 28 +1+|vol> ( 4e' +1 |vol) F), (21)
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and in type 1IB
e /defd’)) = %%H od/ — i%ﬁ(F- (—%e‘” +1+ ivoI) — (=26 £ 1+ivol) - F)
(22)
2 2
e 8 detR) = %ﬁzzﬁ“ He. (23)

In both cases = 24 — ¢ + log(||? + |8]%) andg = 2A — ¢ + log(eB), and F = (|a|? — |B|2) Fy + (@B — @B)F_, where
F4+ is the Hermitian piece of the RR total formi{ = Fo+ F4 in llIA, F1+ = Fy + F5 in |IB) and F_ is the antihermitian piece
(F- = Fo+ FginllAand F_ = F5 in lIB). A dot - indicates the Clifford product between forfrand vol is the volume form.
The operatoiH e is the same for all equations and is defined by

1
Hosznp<dxm dx"™ P — élmlntp). (24)

Although the RR piece is not very nice, it has a similar form in both cases too. Most importantly, the action of the NS sector
is always the same.

Given the mathematical discussion, it is natural to wonder if the opekbéare found has a realization in terms of a twisting
of the Courant bracket. This remains as an open problem. Note however that the combinatibe dbes not square to zero,
unlike d+ HA.

With this caveat (or technical clarification) in mind, we will call any actionmfflux a twisting. The main outcome of
Egs. (20), (21) for IIA and (22), (23) for IIB is that in each case there is one pure spinor equation that contains an exterior
derivative andH -twist. Thus, having a twisted closed pure spinor, or in other words twisted generalized Calabi-Yau, is a
necessary condition for having avf = 1 vacuum. All the backgrounds with SU(3) structure constructed so far satisfy this
condition. '

The pure spinor that is twisted close in each case has the same parity as the RR-flux: even fé) HAdedd for 1IB (2).
This respects the mirror symmetry exchange (8).

The condition & being twisted closed in IIA means that in 1A supersymmetric manifolds are twisted symplectic. In 1IB,
on the contraryg2 is twisted closed. Decomposing (1) order by order, one fget® = 0 (so H does not contribute td/1),
and d2 is (3,1) (H does not — and cannot — contributeit®). So supersymmetric manifolds with SU(3) structure in IIB are
always complex.

4, Discussion

To summarize, we obtained that supersymmetry implies that the 6-dimensional compactification manifolds of type Il with
SU(3) structure are always twisted generalized Calabi—Yau's. This means that they have one twisted closed puré’spinor, e
for IIA and £2 for 11B, which has the same parity as the RR-flux. Twisting refers to the action of the 3#fgrdy; =d+ He
(see (24)), which works differently from the way considered by [}, d + HA. Understanding the supergravity twisting
from first principles remains an open problem.

There are quite a few other open problems related to generalized Calabi—Yau ‘compactifications’. One is the issue about
global tadpoles: what kind of compact manifolds are suitable, i.e. evade no-go theorems? In the case type 11B on warped-Calabi—
Yau’s, which are a particular case of generalized Calabi—Yau, O3 planes give the appropriate negative tension and RR-charge
source to cancel tadpoles. For other kind of generalized Calabi—Yau'’s, which are supersymmetric given a set of fluxes the
orientifold planes needed to cancel global tadpoles break supersymmetry (for example, in 1IB solutions corresponding to bound
states of D3- and D5-branes, there is no known combination of O3- and O5-planes that preserves supersymmetry).

Another key open question is the deformation problem for twisted operators (while the discusHiornwisting started as
early as in [7] and is still far from being complete, as mentioned the very origiieis yet to be understood). It seems very
likely that the generalized complex geometry provides the right framework for these problems, and the understanding of the
moduli spaces of the generalized Calabi—Yau’s, and consequently the string spectra in flux compactifications will hopefully be
achieved soon.

5 F. G is obtained by first building the bispingi¢ and then using the map (17) to get back the corresponding form.
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