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Abstract

The dilatation operator measures scaling dimensions of local operator in a conformal field theory. Algebraic methods of
constructing the dilatation operator in four-dimensiaofalk= 4 gauge theory are reviewed. These led to the discovery of novel
integrable spin chain models in the planar limit. Making use of Bethe ansétze a superficial discrepancy in the AdS/CFT cor-
respondence was found, we discuss this issue and give a possible resditiin this article: N. Beisert, C. R. Physique 5
(2004).
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Résumé

Intégrabilitédelathéoriedejauge N = 4 aux ordres supérieursen boucles. Lopérateur de dilatation mesure les dimen-
sions d’'échelles des opérateurs locaux des théories conformes des champs. Nous passons en revue les méthodes algébriques c
construction de I'opérateur de dilatation pour la théorie de jadge 4 en quatre dimensions. Ceci nous a conduit a découvrir,
dans la limite planaire, de nouveaux modeéles intégrables deeshdke spin. En utilant I'ansatze de Bethe une incompati-
bilité avec la correspondae AdS/CFT fut découvert@ous discutons ce pbléme et une résolution possibRour citer cet
article: N. Beisert, C. R. Physique 5 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction
1.1. Large spin limits of AASCFT

The AdS/CFT correspondence predicts the agreement of spectra of engrgieslB string theory onAdSs x S° and
scaling dimension®, in N = 4 gauge theory. Unfortunately direct tests of this conjecture are prevented by the fact that it is
a strong/weak duality. In the last two years, however, there baen two proposals how thisgimlem might be ecumvented.
For these, one focuses on strings with a large gpim S°. In gauge theory these states correspond to long local operators. The
first proposal is the celebrated BMN limit by Berenstein, Maldacena and Nastase corresponding to strings on plane waves [1].
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The second, proposed by Frolov angeVtlin, is a semiclassical limit of stringebry [2]. In these two proposals an effective
coupling constant

A S

A== o g=2

72 871
emerges. This may be assumed to be small, no mattetsélf is small or large. So we might expand in the effective coupling
in both theories. On the one hand, in string theory one finds that one can expdrahithl/J which effectively counts sigma-
model loops. On the other hand, in gauge theory one finds thatltvep contribution is suppressed by at leaétpdwers of
1/J. Thus we can reorganize the series in powers’oBo naively the string theory expansionjihis equivalent to the loop
expansion in gauge theory and we can go ahead and compare.

1.2. Three-loop discrepancies

Consider a BMN state with two excitations

J .
2rinp _ An2
On~ Y exp == Tr2Ppz' Pe~al ol 0;0),  D-Js~2/14 -
p=0

In gauge theory we have calculated its dimension up to three loops and first orddr, inel in near BMN limit [3]

b J_2+An2 12\t 1.0 +A3n6 11y,
U2 J A\ J6 \8  2s '

In string theory on near plane-waves Callan, Lee, McLoughlin, Schwarz, Swanson and Wu have computed the energy to this
accuracy and found a very similar expression [4]

2 1 0 1 0
E—J=2+n2[1-%) w24 =+ 2 W38z =
+ n( J) n 4+J +A"n 8+J +

However, these two results are not quite identical. The three-loap,cbrrection has a different coefficient. This was only

the first sign of a disagreement, it can be observed for three excitation BMN operators as well [5]. Even more interestingly,
Serban and Staudacher discovered a way to compute the three-loop dimensions for states dual to semiclassical spinning strings
[6]. Again they found a mismatch starting only at three-loops, here it is not merely a disagreement of coefficients, but rather a
disagreement on a functional level. So we see that there is a genuine problem here.

1.3. Overview

In the following, | would like to focus on how to obtain these results in gauge theory. Here, integrability plays a major role,
especially at higher-loops. | will thus explain this feature and describe how one can make use of it. Finally, | would like to
reconsider the discrepancy and comment on the impact on the AdAS/CFT correspondence. Throughout the talk, | will consider
scaling dimensions of local operatorstifN) A/ = 4 conformal gauge theory.

1
<O(X) O()’)) ~ m .

Here | will restrict to the planar limit.

2. Dilatation operator
2.1. dngletrace operators and spin chains

Let me briefly review the duality between single-trace opegsatmd spin chains without going into details. Let me first
concentrate on two complex scalarg and¢o. These are also known &£, ¢) or (£, X). To construct local operators one
takes a trace of a product of these fields

O =Tro19192019191022.

We now identify¢4 with spin up andp, with spin down. The state can be written as a spin chain state

1O) =1ttt
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Fig. 3. Dynkin diagrams and Dynkin labels for subsectors.

The number of spin sites or equivalently the number of fields will be called the Iéngthhe state. Note that there is operator
mixing, i.e. one has to deal with linear combinations of these pure states

Note also that the trace or the spin chain are to be interpreted as a closed string in the AdS/CFT correspondence (see Fig. 1).
2.2. Full N'=4 SYM and subsectors

This is certainly not the full story because one can put any of the fields at the spin sites, patgustp, (see Fig. 2)
0= TYWAWBWCWDWEWFWGWH.

When we restrict to these two we get thg2) subsector. It is calledu(2) because the two fields/s € {¢1, ¢} transform

in the fundamental representation «f(2). Another interesting subsector, which will be used later, consists of three scalars
and two fermionsWy € {¢1,2,3, ¥1,2}. They transform in the fundamental representatiosug®|3), so in fact this subsector

is supersymmetric. For the ful/ = 4 gauge theory we may in addition use field strengths and covariant derivatijes,

{Dkq), Dk v, Dk]-‘}. Note that the derivatives do not constitute independent spin sites, they are always associated to the scalars,
fermions or field strengths. As we can put arbitrarily many covariant derivatives at each site, we have an infinite-dimensional
or non-compact representation of the symmetry group, which id\fhe 4 superconformal groupsu(2, 2|4). This might be
somewhat scary at first sight, but it will turn out not to be such a big difference (see Fig. 3). There are many more interesting
subsectors, a classification can be found in [7].

2.3. Dilatation generator

For the comparison with string theory, we would like to compute scaling dimensions. They can be conveniently obtained as
the eigenvalues of the dilatation operator, we simply have to solve the eigenvalue problem

D(e)0=Dp(g)0.

The dilatation operator can be computed in perturbation theogy~in/x, where we know how to handle gauge theory. There
is a classical piec®g, a one-loop piec® and higher-loop piece®s 4, ..

D(g) =Do+ %02+ D3+ g*Da+ - .
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Fig. 4. Action of the dilatation operator.
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Fig. 5. One-loop contributions to the dilatation operator.
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In the planar limit, the contributions to the dilatation operator act locally and homogeneously along the spin chain. They take a
few adjacent fields and transform them into some other fields (see Fig. 4)

L
D = Z Dk,p~
p=1

2.4. One-loop

The one-loop correction to the dilatation operator takes two fields into two fields. Here, few types of Feynman diagrams
contribute and the dilatation operator is determined by their logarithmic pieces (see Fig. 5). First of allsig@2)reubsector
we get after integration simply ‘identity minus permutation’, i.e. do not modify the two involved fields minus interchange the
two fields [8]

Doz =1- Pay-

This is exactly isomorphic to the so-called Heisenberg X)Xspin chain Hamiltonian. The generalization to the supersym-
metric subsector is straightforward. Simply replace the permutation by a graded permutation to account for the presence of
fermions [9]

D12 =1-SP1y).

For the full A/ = 4 theory it is a bit more involved. The action of the dilatation operator on two fields is given by the harmonic
series up to their total spin [10]

S
1
Do =2h(J12), his)=Y e
k=1

The total spin is a superconformal invariant of two fields in analogy with the total angular momentum of two spins of the
rotation group.

2.5. Higher-loops

The one-loop contribution involves four fields, two incoming and two outgoing ones. By inspecting Feynman diagrams it is
a straightforward to show that the orggr contribution has no more than+ 2 legs. So at third order in we have five legs and
so on (see Fig. 6). An exciting feature of higher loops is that fr@wnumber of spin sites can fluctuate and a novel kind of spin
chain emerges [9]. Note also that at higher loops one has to take into account that the order generators of the superconformal
algebra are corrected (see Fig. 7).
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Fig. 6. Higher-loop ontributions to the dilatation generator.
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Fig. 7. Corrections to the (super)momenta and (super)boosts.

2.6. Algebraic construction

In principle we could now go to higher-loops and compute the contributions to the dilatation operator. A direct calculation
however becomes very hard very soon. The alternative that | propose is to try to reconstruct the dilatation operator from some
of its known properties.

First of all one needs to consider all possible independent structures, which are mainly restricted by the number of fields
that contribute. For higher-loop contributions we might easily have hundreds of structures. Then one assumes the most generic
form by taking a linear combination of the structures with undetermined coefficients. Finally, one demands the closure of the
symmetry algebra, e.g.,

1 1
[D(9). Q)] = +§D(g), [D(9). &(9)] = —55().

This means that the algebra relations must be satisfied exactly or, at least, in perturbation theory which is what we are interested
in. This gives tight constraints and usually only a few coefficients remain undetermined.

To fix the remaining ones, we can make use of further constraints. First of all, we might use BMN scaling behavior, i.e. that
the dimension admits an expansion in powers’ofThen we can make use of known scaling dimensions, for example the one
of the Konishi operator at one loop. Finally, we might usedhsumption of inte@bility. | will come to this point below.

2.7. Algebraic construction: results

Using these proposed methods, | have managed to compute the full one-loop dilatation opgvatedd@YM. This allows
to compute any one-loop scaling dimension purely algebraically without having to deal with integrals or divergencies. What
is remarkable about this is that the superconformal algebra completely fixes the dilatation operator up to one overall constant,
which is the coupling constagt[7].

To proceed to higher-loops it is convenient to restrict to a subsector to reduce the complexity of the calculations. For example
take the supersymmetria(2|3) subsector. There, | was able to obtain a unique result by assuming symmetry and BMN scaling
[9]. We can now evaluate the dimension of the Konishi operator up to three loops confirming an earlier conjecture in [3]

3 32 N 203 N
472 1674 25676

The two-loop result was already known and agrees with ourpedation. Our three-loop coefficient has just recently been
confirmed by a direction computation within QCD which involved of the order of 100000 integrals to be computed [11] and
also some educated guessing of how to extend the QCD resiftt04 gauge theory [12]. As an aside, let me note that the
dilatation operator exactly agrees with the BMN matrix model [13]. In this context, the BMN matrix model is a theory quite
similar to A" =4 SYM and apparently it might even agree with it in this subsector. Finally, let me also note that this dilatation
operator yields the near BMN result from the beginning which does not agree with string theory.

When we restrict even further, we find that we can obtain a unique result up to at least five loops, if we use the assumption
of integrability [14].
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3. Integrability
3.1. One-loop integrability

Now let us consider integrability. All above computations could in principle be generalized\tadn-planar corrections.
For integrability, however, we have to consider the strict planar limit. Integrability now means that next to the dilatation operator
there exist charge@y 3 4 of a similar form. These commute with the symmetry algebra and among themselves

[307 Qr] = [Qr; Qs] =0.

The second charge is given precisely by the dilatation operator, the third one by a particular combination and so on (see Fig. 8)

i
D=9, Q3123= 5[92,1zs D2 23l

These charges commute, which requiggsto be of a very spacial form, i.e. integrable.

Minahan and Zarembo found that the planar one-loop dilatation operator v (Be subsector is indeed integrable [8].
We have then generalized this result to the Afl= 4 theory. There we get a super spin chain witl2, 2|4) symmetry [15].
Let me also note that integridity has been éund several years ago in some subsectors of IN(g@CD (see, e.g., [16] for a
review).

3.2. Test for integrability

To prove integrability is not very easy, but there is a quick and reliable test. It involves a parity opendtimh inverts the
order of fields within the trace or equivalently which flips the spin chain (see Fig. 9)

p
Tr$1910201010102¢2 <—> Trdo201019129191.
It turns out that the even integrable charges have even parity while the odd ones have odd parity
PQrp t=(-1"0:

The commuting of the charges now leads to a paired spectrum. Paired means that for almost every state there is another state
with opposite parity and exactly degenerate dimension

Di=D_.

Let me note that this is so only in the planar limif,AL corrections destroy these degeneracies, so integrability is a genuinely
planar effect. Pairing of states appears to be quite a reliable test for integrability [17].

3.3. Higher-loop integrability
Up to this point we have discussed integrability only at the one-loop level. Unfortunately, the structure of the higher-loop

corrections seems to prevent to employ the usual R-matrix formalism or to prove a Yang—Baxter equation. However, we can rely
on our earlier definition of integrability involving the higher charges. Higher-loop integrability means that there exist interacting

Fig. 8. The charge®», and Q3.

Fig. 9. Parity operation.
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chargesQ,(g), i.e. charges which depend on the coupling constant, which commute with the interacting symmetry algebra and
among themselves [3]

[3(2). Q- ()] =[2r(8). Qs(8)] =0.
Again, the dilatation operator is related to the second charge via

D(g) = Do+ 82Q2(g).

In practice it is easy construct the interacting charges. We can however make use of the test from above. It requires that the
higher-loop corrections to the scaling dimensions do not break the degeneracy of pairs

D4(g)=D—(g).

Here we cannot consider the(6) subsector for which integrability was origilly found because it is not closed at higher-
loops due to mixing with fermions. Instead we can considersii@|3) sector, there | found that the three-loop dilatation
operator is integrable by means of these pairs [9]. This is very interesting, because here the length of the spin chain is allowed to
fluctuate. This might seem to vitte the prerequisites for irgeability, but apparently it workout. We can also make good use of
the integrability. For instancee found that the BMN limit togetr integrability deterimes (at least) the five-loop contribution
to the dilatation operator uniquely [14]. What is remarkable is that we find the quantitative BMN square-root formula

D—J=Y \/1+¥nZ
k

just by assuming the qualitative BMN limit.
3.4. Long-range Bethe ansatz

Integrability offers a very powerful tool to compute planar scaling dimensions, the so-called algebraic Bethe ansatz. Serban
and Staudacher have found out that t#a2) subsector is isomorphic to the Inozemtsev spin chain up to three loops [6].
Fortunately, the Bethe equations are known for this model and allow to compute three-loop scaling dimensions. We have then
figured out how to modify the equations to account for presumably all-loop effects in an asymptotical sense [14].

Our proposal is that this set of algebraic equations for the Bethe sigadescribes planar anomalous dimensions of states
in thesu(2) up to very high loop orders.

i\L K .
x(ug — %) U —uj —i u u 2g2
—==]|——— xwW=5+51-—
x(u+5)" jEIluk_uj+l 2 2y v

with
K .
i 1 1

0, = ( ____ ___ ) D=L+g%0>.
' I;.r_l (=570 w(u+ )

Asymptotically means that the loop ordeéris only limited by the length. of the spin chain. This appears to be no restriction
because we shall consider very long spin chains to make contact with strings. When we set the coupling constant to zero, the
function x becomes the identical function. We then recover the usual one-loop Bethe equations for the Heisenbgrg XXX
model. So far the equations are merely a conjecture, but we have shown agreement with the five-loop model for all states of
length up to 8. It is therefore pretty sure that the Bethe ansatz coincides with our spin-chain model.

4. Discrepancies
4.1. Spinning strings at higher-loops

To make contact with spinning strings one considers the thermodynamic limit of long spin chains with a large number of
excitations. Here one gets an effective coupling g/L in analogy to the BMN effective coupling’. The Bethe roots now
condense on cuts in the complex plane with a density functipn The Bethe equation becomes an integral equation

1 gz ~/ ~/ 2 gz l

St2mng(1- 25 ) = yldx o

i "x< 2x~2> PN Fter 2
c

o
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Fig. 10. Order of limits problem.

and the charges, in particular the dimension, are given by
1 drp(x) 1
-1 52 =r
C

_ 8
Kazakov, Marshakov, Minahan and Zarembo have derived Baghations for the classical string theory [18]. One can write
them as

2);2
1 =2
z +27‘rn;c<l— %) - ][df’p()z’)<
C

where remarkably the expressions for the charges are identical to the expressions in gauge theory [14]. The equations are in fact
nearly the same, they only differ by the little prime at the fasthis makes the agreement at two-loops and the disagreement
at three-loops manifest. The difference between the two equations is protected by three pqg/@e(nsvofpowers are in the
equations, one is in the definition &f in terms of Q2).

The string Bethe equations are valid for the classical theory only. It would be great if they could be generalized to the
guantum model. It appears that a first step in this direction was made in [19]. Their equations not only reprodjéenties 1
BMN limit, but also a genericy/% behavior for large..

Oy , D=L+g%0.

x"'r

g2

: )
=2~/ - -2 |’
XX 1_ 2}?/5&/

2

x—x

=+

4.2. Order of limits

Now let me try to explain the apparent disagreement at three loops (see Fig. 10). Assume we have an exact, non-perturbative
scaling dimension. We could write it as a functibnof lambda and/ or as a functiort of A’ andJ, both forms are equivalent.
As an example let us take

J

PO D=Gra7

This function is chosen on purpose, it is proportional {g which will become important below. The function is equivalent to

/ c -/

upon identification of.” with A/JZ. In practice we would not be able to compute this function, but we can hope that one day
this might be possible, perhaps with a non-perturbative Bethe ansatz.

In gauge theory we can do perturbation theory for stalh our example we would find that the first few loop contributions
vanish. In string theory we can only access the classical regime. In order for this to makersensépe large or equivalently
the spinJ must be large. In our example we find a constant limiting function which is simply 1.

We certainly cannot compare these two results, but BMN and FT proposed to consider both limits at the same time and
then compare. In gauge theory consider large gpand in string theory consider small. When we do this in our example
we find that obviously allD, are zero whileEg equals 1, although we started off with the same function. How can this be?
Well, this is a classical order of limits problem, there is actually no reason why the two should agree! We see that we cannot
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regular wrapping

Fig. 11. Regular and wrapping interactions.

in fact compare in perturbation theory. Therefore the spinning strings and near BMN proposals do not have to work and indeed
we find a disagreement, but only at higher-loop orders (the fact that the strict BMN proposal works is related to the matching

of free magnon energies [14]). This is unfarhte. Nevertheless, we see that intbdityt has helpé in obtaining very precise

results in both theories. We may hope that if we make full use of it, we could finally solve either theory and thus see whether

scaling dimensions truly agree with string energies. After all, the AAS/CFT correspondence might be valid only approximately

and truly break down at three loops. Certainly, we currently cannot say at the moment.

4.3. Wrapping interactions

Let me just propose a possible and more explicit explanation for the discrepancy. So far we have focussed on planar inter-
actions of regular type which merely attach to the state (see Fig. 11). However, at very high loop orders there is another type of
planar diagram which completely wraps the state. They start to contribiitéoaps wherel is the length of the state. Naively
they would not contribute for very long states, but as we have seen in the example, this is not necessarily true. These contribu-
tions may account for the discrepancy. Note that the asymptotic Bethe ansatz does not incorporate wrappings, it is valid only to
the order where they start to contribute. We hope to obtain equations to take care of the wrappings some day. Unfortunately, it
seems that the algebraic methods explained at the beginning of the talk are not effective for wrappings, so we cannot say much
at the moment.

5. Conclusions

In the above, | have presented methods to conveniently obtain higher-loop scaling dimensions of local operators in gauge
theory. | have explained higher-loop integrability and tried to convince the readenNtrayt SYM has this feature. | have
then proposed a set of Bethe equations that allow to comgateipanomalous dimensions to all-loops in an asymptotic
sense. The most important open problem here is to find a trulypeaiwbative extension of these equations, if this should be
possible at all. Using these methods we were able to detect discrepancies between string theory and gauge theory starting at
third order inA. | have argued that these might be due to an order of limits issue and we cannot in fact avoid the strong/weak
duality by the near BMN and Frolov—Tseytlin proposals. An ol question is now if the non-planar extension to the BMN
proposal suffers from the same problems. So far it has only been confirmed at one-loop and even there are many questions left
unanswered.

There are many other important things to be done, let me name a few. First of all one could try to generalize the higher-
loop results to larger subsectors or even the full theory. So far we have merely observed integrability by constructing explicitly
the dilatation generator. Can we somehow prove it from field theory arguments? If so, we could maybe use it to go to even
higher loops. Along the same lines it would be important tovslntegrability for e quantum string gima model. For the
classical one it was shown explicitly in [20]. Finally there is an issue that intrigues me. On the one hand, | have used conformal
symmetry to construct the dilatation operator at one-loop and found it to be integrable. On the other hand, one could demand
integrability and find exactly the same result which is then conformally symmetric. So in some sense, conformal symmetry and
integrability go hand in had here, even through this not a two-dimensionabtiiebut a four-dimensional one. | would really
like to understand this point better.
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