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Abstract

Several different approaches of various complexities have been used in glacier and ice sheet modelling studies. Amongs
them, owing to its simplicity, the Shallow Ice Approximation appears to be the most widely adopted method. This ap
essentially used for ice sheets, owes its success to the shallow aspect of the modelled ice mass embodied in an aspζ .
When considering smaller ice bodies like alpine-type glaciers, the question arises as to whether the SIA is still valid, given that
the method is all the more accurate asζ is small. In order to test the domain of applicability of the method, results of a SIA finit
difference model are compared to those of a finite element model in which the flow equations are fully considered. From a
of two-dimensional flow tests, it is shown that the accuracy of the method is much more deteriorated with increasing
slopes than it is with increasing accumulation rates, even if higher accumulations lead to thicker glaciers with a largeζ . This
leads to the conclusion that when slopes become pronounced, it is a bedrock-related aspect ratio that becomes o
such that the bedrock slope should be the most important parameter to consider for assessing the validity of the SIA
A 3-dimensional simulation shows that longitudinal shear stresses explain a large part of the misfit between SIA and fu
approaches.To cite this article: E. Le Meur et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modélisation de l’écoulement des glaciers : comparaison entre l’approximation de la couche mince et les équations
Stokes complètes.De nombreuses approches, plus ou moins complexes, sont envisageables pour modéliser l’écoule
glaciers et des calottes polaires. Parmi ces méthodes, l’approximation de la couche mince (Shallow Ice Approximat
semble être la plus utilisée, notamment pour sa grande simplicité. La SIA, essentiellement utilisée pour modéliser l’écoulemen
des calottes polaires, repose sur le faible rapport d’aspectζ caractéristique de ces objets glaciaires. Pour des objets plus p
comme les glaciers Alpins, la question de l’applicabilité de la SIA se pose puisque sa validé diminue lorsqueζ augmente. Avec
comme objectif de définir le domaine de validité de cette méthode, les résultats de la SIA sont comparés à ceux o
résolvant complètement les équations de Stokes à l’aide d’un code aux éléments finis. A partir de tests bidimensio
montre que la solution donnée par la SIA est plus détériorée lorsque la pente du socle augmente que lorsque l’acc
augmente, même si une augmentation de l’accumulation conduit à une augmentation deζ . Par conséquent, lorsque la pente
socle devient importante, c’est elle qui doit être considérée, et non plus le rapport d’aspect, indiquant que la pente e

E-mail addresses:lemeur@lgge.obs.ujf-grenoble.fr(E. Le Meur), gagliar@lgge.obs.ujf-grenoble.fr (O. Gagliardini),
thomas.zwinger@csc.fi (Th. Zwinger), juha.ruokolainen@csc.fi (J. Ruokolainen).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.10.001
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plus sévère des critères de validité de la SIA pour les applications glaciaires. Des simulations tridimensionnelles mon
la non prise en compte des contraintes de cisaillement longitudinal dans la SIA contribue significativement à la différence ave
la solution complète de Stokes.Pour citer cet article : E. Le Meur et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Mots-clés :Modélisation de l’écoulement des glaciers ; Approximation de la couche mince de glace ; Solution de Stokes

1. Introduction

Over the last few decades, glaciers and ice sheets have been a subject of growing interest with ensuing numerous
studies implying many different types of approaches. Amongst the first models were those for large ice sheets, probabl
of one characteristics in their geometry allowing for the so-called Shallow Ice Approximation (hereafter referred to as
[1]). The success of this approach comes from the possibility it offers to considerably reduce the complexity of th
equations and boundary conditions. Owing to the shallow aspect ratio (ratio of vertical tohorizontal characteristic dimensions)
in both the ice body and the velocity field for a large ice sheet, the SIA makes it possible to neglect some of the stre
horizontal gradients in the Stokes equations and similar gradients of velocity terms in the strain-velocity relations.
a method has been abundantly used in ice sheet models, the question arises as to whether it is also applicable w
glaciers and under which conditions.

The SIA is based on a scale analysis of the model equations so as to be able to express them under the form o
series of an aspect ratioζ which expresses the shallowness of the ice body. The different levels of approximation thus
on the level of truncation in the powers ofζ . For instance, the widely used zeroth-order model corresponds to series in
all powers ofζ higher than 0 have been discarded. Such a development in powers ofζ only makes sense if the aspect ra
is small compared to 1. This sets the limits of the method for ice geometries for which the ratio of characteristic thic
characteristic length may become too large for the power series to have any meaning. Traditional mountain glaciers c
develop typical thicknesses of the same order as their width (at least locally, for instance with terminal tongues ch
into a deep and narrow valley). Some mountain glaciers, however, exhibit intermediate geometries, like cirque-type
for instance, with an overall aspect ratio still allowing for a correct expansion series. This was demonstrated by Le M
Vincent [2] with the Glacier de Saint Sorlin (French Alps) whose geometrical characteristics led to anζ around 5× 10−2.
Although it was shown that large-scaledynamics (snout position, global volume) were correctly reproduced, it appeared t
the SIA was unable to model small-scale dynamics as expressed by surface velocities.

Similarly to [3], this study aims at specifying conditions required for a glacier in terms of aspect ratio and also bedroc
in order for the SIA to apply. To this end, results from a Finite Difference model based on the SIA have been compared
of the full-Stokes (FS) equation obtained by a Finite Element (FE) Model [4] used as a reference. The reason comes from
ability of the FE model to solve the FS equation thereby accounting for contributions from all the deviatoric stress tensor term
to the flow pattern. Here, the novel aspect comes from the fact that we have performed 3D tests and 2D tests with larg
slope, therefore leading to more stringent conclusions aboutthe usability of the SIA compared to those of [3].

After the basic principles and equations of an ice flow model, the methodology of the SIA is presented with the resulting
simplified set of equations it leads to. The Finite Element model is then also described. Several simulations, with
glacial conditions spanning a whole range of accumulation patterns and bedrock slopes, are then compared. Interpretatio
these results allows us to list the main factors that contribute to degrading the SIA accuracy, thereby helping in indic
domain of applicability of the method.

2. Ice flow modelling

Modelling of glaciers and ice sheets has a large range of applications. For instance, ice-sheet flow models have be
sively used for dating ice cores or for simulating the role of large ice masses on the climate system. As for mountain g
is now admitted that they represent good indicators of climate variability (IPCC [5]),since variations in their climatic environ
ment lead to corresponding changes in their geometry and dynamics. Whatever the objectives, numerical flow mode
to be the only way of capturing the complexity of the glaciers’ (or ice sheets’) response to changes in their environ
response that involves numerous processes and interactions specific to glaciers dynamics. As depicted in Fig. 1, a
model consists of the expression of basic physical principles such as conservation laws (mass, momentum, energy).
rheology for the ice also has to be set up, as well as some initial conditions (initial ice and bedrock topographies). Bounda
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Fig. 1. Structure of an ice flow model. The highly non-linear glacier response to the climate forcing involves time lags and express
complexity of the problem which can only be resolved with an ice flow model. In case of a cold glacier, a temperature forcing can dir
on the ice flow by softening the ice.

conditions for the resulting equations are prescribed under various forms at the limitof the domain. For the ice/atmospher
interface, a mass balance and/or energy exchange function as well as the stress values are prescribed. However, in t
case of a temperate glacier, as in the present study (glacier at the melting pointthroughout), no energy flux needs to be tak
into consideration. As for the ice/bedrock interface, the sliding velocity as well as a possible basal melting (mass exch
prescribed. Again, for the sake of simplicity, no basal melting is considered in the present study with bottom velocitie
zero. It should be noted that the prescribed mass balance which is either directly measured in the field or reconstru
meteorological data (e.g., [6]) is systematically controlled by the local climate. Solving of the ensuing system of eq
yields either the glacier geometrical characteristics (thickness, extent, . . . ) through time, or some specific fields at a given tim
like velocity or stress throughout the domain.

3. Ice flow equations

In an ice flow model, the different surfaces are usually expressed within a right-handed(O,x, y, z) Cartesian coordinat
system as depicted in Fig. 2. The surface and bedrock Cartesian representations are defined asz = S(x, y, t) andz = B(x,y),
respectively. In what follows, the equations governing the flow of an isothermal glacier are presented. The ice is cons
a non-linear viscous incompressible material. A more detailed derivation of the governing equations, can for instance
in [7].

Fig. 2. Glacier surfaces expressed in a Cartesian coordinate system. Unless stated otherwise, ice thickness as used in the presen
vertical thickness along thez direction.
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Table 1
Numerical values of the parameters adopted for the simulations

g = 9.81 m s−2 gravity constant
ρ = 890 kg m−3 ice density for temperate glaciers
A = 41 MPa−3 a−1 Glen’s law parameter

The mass conservation equation, written here for the ice considered as incompressible, can be expressed:

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0 (1)

with (vx, vy, vz) denoting the respectivex, y, z components of the velocity vectorv. Due to ice incompressibility, the stre
tensor must be split into a deviatoric part and an isotropic pressure,

τij = τ ′
ij + pδij , (2)

whereδij is the Kroneker symbol. Thus, the constitutive relation for the ice links deviatoric stresses to strain rates in
law form (e.g., [8]):

ε̇ij = A(T )τ2∗ τ ′
ij , (3)

whereτ ′
ij

is the deviatoric stress tensor,A(T ) is a temperature-dependent deformation rate factor (hereafter reducedA

because of an isothermal ice body) andτ∗ is the second invariant of the deviatoric stress tensor defined as:

τ2∗ = 1

2
τ ′
ij τ ′

ij . (4)

The strain-rate componentsε̇ij in (3) are linked to the velocity terms by:

ε̇ij = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
. (5)

Solving for the stress terms requires expression of the force balance in the 3 directions of space leading to th
equations:

∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0,

∂τxy

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z
= 0, (6)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
= ρg,

whereg is the gravitational acceleration andρ the glacier ice density (see Table 1).
In temperate glaciers, basal sliding also contributes to the ice motion. However, for simplicity in the present study, n

at the bedrock is considered (v(x, y,B) = 0, whereB = B(x,y) is the bedrock surface). As for the free surface bound
condition, the following kinematic equation applies [7]:

∂S

∂t
+ vx

∂S

∂x
+ vy

∂S

∂y
− vz = a for all z = S(x, y, t), (7)

wherez = S(x, y, t) is the Cartesian representation of the free surface anda the accumulation-ablation function, considered
a vertical flux. (Note that in [7], the accumulation-ablation function is supposed to be a flux normal to the free surfac
explain the difference between Eq. (7) and (2.33) in [7]. From a glaciological point of view, the accumulation-ablation f
has to be defined as a vertical flux.)

Reordering of all these equations finally leads to a complex system that can be reduced to 5 partial differential e
(Stokes, incompressibility and free surface equations) in 5 independent unknowns (the 3 velocity components, the isotropi
pressure and the free surface elevation). In the following, assumptions and numerical methods used to solve these eq
presented for the SIA formulation as well as for the FS formulation using the FEM.
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4. SIA formulation

In the following, vector components aligned with the vertical direction, are subscripted with the letterz, whereas component
perpendicular to this direction are indicated with the symbol⊥.

Vertical integration of (1) from the ice bottom (z = B) to the upper free surface (z = S) assuming the kinematic bounda
condition (7) leads to a transport equation (see, e.g., [7]):

∂H

∂t
= a − ∇⊥ .q⊥, (8)

expressing the ice thickness(H = S − B) rate of change as a compromise between the surface mass exchange due to t
balance terma and the horizontal divergence of the flux. This horizontal fluxq⊥ is obtained by vertical integration of th
horizontal partv⊥ = (vx, vy) of the velocity vector over the ice thickness:

q⊥ =
S∫

B

v⊥ dz. (9)

In Eq. (8), the operator∇⊥ stands for the gradient evaluated in the horizontal directions, i.e.∇⊥ = (∂./∂x, ∂./∂y).
In the SIA formulation, the principle still consists of solving for the stresses (6) from which the different velocity term

then deduced (Eqs. (3)–(5)) to finally lead to the expressions of the horizontal fluxes (9). The particularity of the approac
from a scale analysis by which the orders of magnitude of the various variables are assessed (mainly from the pecu
the ice body and its environment) and serve as a basis for establishing a hierarchy of the different terms in all the in
equations (field equations, boundary and initial conditions). Only a brief account of the SIA methodology as well as the m
resulting equations are presented here. A more rigourous derivation as well as all the intermediate equations can be found in [9

4.1. Non-dimensionalization

The first step aims at expressing each variable as the product of a typical value and a dimensionless quantity. For instanc
for the 3 space variables non-dimensionalization can be expressed like:

(x, y) = [L](x̃, ỹ); z = [H ]z̃ (10)

where[L] and[H ] are typical horizontal and vertical dimensions for the ice body (typically of the order of 106 m and 103 m
respectively for an ice sheet like Antarctica for instance). The ‘tilted’ variables are thus dimensionless and most impor
the order of unity. Of particular importance is the aspect ratioζ = [H ]/[L] which expresses the shallowness of the ice shee
glacier and which will serve as the main scaling parameter for the problem. It will be seen that the smallness ofζ compared to
1 is a prerequisite for the SIA to apply since the methodology is based on a perturbation expansion under the form of
powers ofζ . Scaling of the velocity terms follows from that of the spatial variables:

(vx, vy) = [VL](ṽx , ṽy ); vz = [VH ]ṽz (11)

whereVL andVH are typical horizontal and vertical velocities. It should be noted thatthese respective typical velocities a
chosen such that the ratio[VH ]/[VL] equals the aspect ratioζ . In other words,[VH ] is only set after the respective values f
[L], [H ] and[VL] have been chosen. This is made possible because the problem exhibits a similar shallowness in the
field with a ratio of typical vertical to horizontal velocities of the same order as the aspect ratioζ . Note that in some places
near the ice divide or near the bedrock ifthe slope is large, the proportionality between coordinates and velocities is no long
verified. Other important scalings involve the different terms of the deviatoric stress tensor and already reveal a hie
their respective importance. These scalings are the result of a previous analysis [10,1] where justification for the f
non-dimensionalizations can be found:

(τ ′
xz, τ

′
yz,p) = ζρg[H ](τ̃ ′

xz, τ̃
′
xz, p̃),

(τ ′
xx, τ ′

yy, τ ′
zz, τ

′
xy) = ζ2ρg[H ](τ̃ ′

xx, τ̃ ′
yy , τ̃ ′

zz, τ̃
′
xy). (12)

4.2. Scaled equations

Proper substitution of these new expressions into the main field equations (Eqs. (1)–(6)) yields the corresponding scale
equations. It can be easily shown that the incompressibility equation keeps a similar dimensionless form whereas t
equations now becomes:
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ζ2∂τ̃ ′
xx

∂x̃
+ ∂p̃

∂x̃
+ ζ2∂τ̃ ′

xy

∂ỹ
+ ∂τ̃ ′

xz

∂z̃
= 0,

ζ2∂τ̃ ′
xy

∂x̃
+ ζ2 ∂τ̃ ′

yy

∂ỹ
+ ∂p̃

∂ỹ
+ ∂τ̃ ′

yz

∂z̃
= 0, (13)

ζ2∂τ̃ ′
xz

∂x̃
+ ζ2 ∂τ̃ ′

yz

∂ỹ
+ ζ2∂τ̃ ′

zz

∂z̃
+ ∂p̃

∂z̃
= 1.

From (4) and (12), assuming thatτ∗ = ζρg[H ]τ̃∗, it can be shown that the non-dimensionalizated expression forτ∗ is:

τ̃∗ =
√

τ̃ ′2
xz + τ̃ ′2

yz + 1

2
ζ2

(
τ̃ ′2
xx + τ̃ ′2

yy + τ̃ ′2
zz + 2τ̃ ′2

xz

)
. (14)

For the two required strain rates, assuming thatε̇xz = [VL]/[H ] ˜̇εxz and ε̇yz = [VL]/[H ] ˜̇εyz, their respective non
dimensionalizated expressions can be expressed:

˜̇εxz = 1

2

(
∂ṽx

∂z̃
+ ζ2 ∂ṽz

∂x̃

)
; ˜̇εyz = 1

2

(
∂ṽy

∂z̃
+ ζ2 ∂ṽz

∂ỹ

)
. (15)

4.3. Perturbation expansion

The perturbation expansion consists of expanding all field variables under the form of a power series of a small per
quantity, which in the present case is the aspect ratioζ . For any scalarG, it gives:

G =
∞∑

p=0

G(p)ζ
p (16)

in which the differentG(p) are the terms of thepth power ofζ . It is clear that the smaller the perturbation quantity, the m
accurate the expansion. Then, in the scaled equations (Eqs. (13)–(15)) all variables are replaced by their correspond
series leading to new equations in various powers ofζ . Since these equations are valid for any (assumed small)ζ , similar powers
of ζ separately verify each equation such that terms of the same power ofζ can be equated. This leads to as many system
equations as there are orders of the problem to be included.

4.4. SIA zeroth-order ice flow equations

The zeroth order system of equations is thus obtained by equating all termsG(0) of the zeroth power ofζ in the expanded
equations, which for the Stokes equations gives:

∂τ̃ ′
xz(0)

∂z̃
+ ∂p̃(0)

x̃
= 0,

∂τ̃ ′
yz(0)

∂z̃
+ ∂p̃(0)

ỹ
= 0, (17)

∂p̃(0)

∂z̃
− 1 = 0

and forτ̃∗ and the required strain-rate expressions:

τ̃2∗(0) = τ̃ ′2
xz(0) + τ̃ ′2

yz(0); ˜̇εxz(0) = 1

2

∂ṽx̃(0)

∂z̃
; ˜̇εyz(0) = 1

2

∂ṽỹ(0)

∂z̃
(18)

where the subscript(0) refers to the zeroth order term for each variable. It can be noticed that these equations exactly cor
to the scaled Eqs. (13)–(15) in which all terms of powers ofζ would have been discarded (terms inζ2 in the present case
However, this is not the general rule and if it works for the zeroth order, it is due to the fact that this order only co
constant terms. A misunderstanding sometimes emerged according to which different order-solutions would just be o
by equating terms of similar powers ofζ in the scaled equations. In fact, when properly solving for first-order terms (as des
above) one rapidly finds that it is not so, essentially because of cross products appearing with variables raised to som
(like, for instance, the expression forτ∗, where the terms of the zeroth-order solution appear in the higher order developm
Moreover, integration of equations of order higher than 0 requires a careful application of boundary conditions onto surface
which are no more zeroth-order quantities, which leads to solutions already complex for the first order (implying nu
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products of zeroth- and first-order terms). In particular, from a full and rigourous derivation, Baral et al. [9] show that c
to a general misbelief, the first order solution is not simply zero. However, the complexity of higher orders derivations is
the scope of this paper but their full expressions can be found in the above references. We will here restrict to the zer
SIA problem as used in the forthcoming experiments.

Solution of Eqs. (17) and (18) after the variables have been made dimensionalized again by performing the inverse
as in (10) and after dropping the subscript(0) leads to:

p(z) = ρg(z − S); τ z⊥ = (τxz, τyz) = ρg(z − S)∇⊥S, (19)

with ∇⊥S = (∂S/∂x, ∂S/∂y) and, after accounting for expressions forτ∗ and the strain rates:

∂v⊥
∂z

= −2A(ρg)3(S − z)3|∇⊥S|2∇⊥S, (20)

where|∇⊥S|2 = (∂S/∂x)2 + (∂S/∂y)2. Integration fromz = B (bedrock height) toz finally allows us to express the horizont
velocity vectorv⊥ as a function of altitudez within the glacier, and surface gradient∇⊥S. Of particular importance (se
Section 6.2) is the fact that the surface velocityv⊥(S) is proportional to the ice thickness at the fourth power according to:

v⊥(S) = A(ρg)3

2
|∇⊥S|2H4∇⊥S. (21)

Now making use of Eq. (9) and the general expression forv⊥(z), the horizontal flux finally becomes:

q⊥ = −2A(ρg)3

5
|∇⊥S|2H5∇⊥S, (22)

which once reinserted into the transport Eq. (8), yields the main SIA zeroth-order equation of the model as:

∂H

∂t
= a + 2A(ρg)3

5

(
∂

∂x

[
D

∂S

∂x

]
+ ∂

∂y

[
D

∂S

∂y

])
with D = H5|∇S|2. (23)

The above equation is then treated numerically with a semi implicit scheme (alternating-direction-implicit, see for i
[11]) after being discretized according to a finite-difference method onto a staggered regular 50× 50 m grid. A more complete
description of the numerical treatment as well as the complete derivation of the zeroth-order equations can be fou
where the SIA development is fully described.

5. Full-Stokes formulation

The numerical solution of the FS equations is obtained using the Finite Element Method based code Elmer [4].
a multi-physics code developed at CSC, the Finnish supercomputing center in cooperation with the Helsinki University o
Technology.

For the present application, both the free surface equation (7) and the Stokes equations (6) can be coupled and s
iterative way using an implicit scheme during the increment time step.

5.1. The free surface

Contrary to the SIA formulation, in the FEM the equations are solved in the full space and therefore the velocities o
on the free surface are a result of the Stokes solution (see below). The non-integrated Eq. (7) of the free surface is th
For brevity, Eq. (7) is rewritten in a more condensed form as

∂S

∂t
+ v⊥ · ∇⊥S = vz + a. (24)

The discrete variational form of (24) is obtained by spatial integration using the test functionΦ:

∂Si

∂t

∫
V

ΨiΦ dV + Si

∫
V

v⊥ · ∇⊥ΨiΦ dV =
∫
V

(vz + az)Φ dV. (25)

The solution variableS has been discretized using the weight functionΨi :

S(x, y, t) = Ψi(x, y)Si (t), (26)
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whereSi stands for the discrete value ofS at theith node of the discretized domain. Due to the hyperbolic nature of Eq.
the Galerkin method (i.e.,Ψi ≡ Φ) is not applicable. Stabilization effectively is obtained by either applying the Residual
Bubble method [12] or the Stabilized Method [13,14].

The mesh nodes have to be re-distributed with respect to the moving boundary at the free surface. If the changes in
are moderate, re-distribution can be obtained by solving a linear elasticity equation for the mesh

∇τ = 0, τ = 2µε + λ∇ · d · I , (27)

whered stands for the nodal displacement andI is the unit tensor. The first and the second invariant of the strain tenso
given by∇ · d andε, respectively. The Lamé parametersµ andλ can be chosen arbitrarily to influence the re-distribution
the nodes. The displacements at the free surface are given inform of a Dirichlet boundary condition. The displacements at
bedrock are by definition zero since no isostasy is accounted for.

5.2. Stokes equation

The dynamics of the glacier is described by the Stokes problem for an incompressible fluid, corresponding to the so
Eqs. (6) and (1). These two sets of equations can bere-written in a more condensed form for brevity

∇ · v = 0,

−∇ · τ ′ + ∇p = ρg.
(28)

In (28) the deviatoric stress tensorτ ′ is expressed in terms of the strain-rate tensorε̇ by the inversion of the power law (3). Th
discrete variational form of (28) is obtained by integration using the vector-like test functionΦ and the weight functionΨi ,

vi

∫
V

∇Ψi · Φ dV = 0,

−
∫
V

(piΨi − τ ′) · ∇Φ dV = −
∮

∂V

(piΨi − τ ′) · n · Φ dA + ρ

∫
V

gΦ dV.

(29)

In the relation given above, the left-hand side term in the momentum equation given in (28) has been integrated by p
part is re-formulated applying Green’s theorem, transforming it from an integral over the domain,V into one over the close
boundary of the domain∂V , for which von Neumann or Newton type of boundary conditions are possible to be set (e.
vanishing surface stress deviator components). The numerical solution of (29) in combination with (3) is obtained b
using the Stabilized Method [13,14] or the Residual Free Bubbles Method [12].

The non-Newtonian stress-strain relation introduces non-linearities into the system. Linearization of those terms implies
application of an iteration scheme. Thus, the power law given in (3) is inverted and re-formulated in terms of a quasi-Ne
fluid with a strain-rate dependent viscosity. The variables used for evaluation of the velocity dependent viscosity for the(n+1)th
step are taken from the previous iteration step of the algorithm. Convergence is checked upon the global change o
variables

1

N

N∑
i=1

∣∣Un+1
i − Un

i

∣∣ < δ � 1, (30)

whereU i stands for the solution vector at theith (out of totalN ) node.

6. Applications

For both the proposed 2D and 3D applications, the numerical values adopted are given in Table 1. Density corres
that of typical deep bubbly ice after the close off has sealed air bubbles but before their disappearance into clathrates u
pressure [15] and the Glen’s law parameter follows from several studies on glacier modelling (see for instance [16,2])

6.1. 2D applications

In order to assess the role of the bedrock slope and the accumulation distribution, we present results in the particular cas
a 2D (x–z) plane-strain flow. Thex-dependent geometry of the bedrock is given by:

B(x) = 4300− αx, (31)
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Fig. 3. Geometry of the glacier as given by the SIA formulation for the five bedrock slopes fromα = 0.1 to α = 0.5 by steps of 0.1 and for an
accumulation parametera0 = 5.0 m w.e. a−1 whose corresponding spatial distribution is also shown (upper part).

Fig. 4. Geometry of the glacier given by the SIA formulation for the four maximal accumulationa0 = 0.1, a0 = 0.5, a0 = 2.0 and
a0 = 5.0 m w.e. a−1 and for a bedrock slopeα = 0.4. For a better reading, the ice thickness has been enlarged 5 times. The largera0
value, the thicker the ice.

whereas the accumulation-ablation function (m w.e. a−1), also time-constant, can be written:

a(x) =
{

a0[1− (300− x)/100] if x � 300,
a0((2200− x)/1900) if x > 300.

(32)

The different bedrock slopes as well as the accumulation function fora0 = 5 m w.e. a−1 are shown in Fig. 3. Tests have be
carried out for slopes ranging fromα = 0.1 to α = 0.5 by steps of 0.1, and for maximum values of the accumulation-ablat
ratea0 = 0.1,0.5,2.0, and 5.0 m w.e. a−1 (see Figs. 3 and 4).

From a numerical point of view, both models have a horizontal node interval of 25 m. The mesh for the FE sim
is composed of four nodes quadrilateral elements. The mesh refinement in the vertical direction is a function of the
elevation since the same number (20) of elements in the vertical direction is used for all the tests. To get a faster con
the FE simulations are started using the SIA surface elevation as an initial condition.

The influence of the two parameters, namely the maximal accumulationa0 and the bedrock slopeα are shown in Figs. 3
and 4 for the SIA simulation. As expected, the larger the accumulation, the higher the ice thickness. Conversely, the
bedrock slope, the thinner the glacier as a consequence of a faster flow.

All the results of the comparison are summarized in Fig. 5. As shown in Fig. 5(a), the simulations cover a range o
nesses betweenHSIA = 38.3 m to HSIA = 193.7 m, which correspond to maximum accumulation and bedrock slop
(a0 = 0.1 m w.e. a−1, α = 0.5) and (a0 = 5.0 m w.e. a−1, α = 0.1) respectively. The various glacier spans (projected a
thex-axis) that are all close toLx = 4000 m mainly result from the adopted accumulation-ablation distribution because
mass conservation principle. Hence, the different tests cover a range of aspect ratiosζ = max(H(x))/Lx between 0.0097 and
0.049 (note that these aspect ratios, when calculated from ice thickness and glacier length orthogonal and parallel to th
ramp respectively, give values from 1% (α = 0.1) to 20% (α = 0.5) smaller, which are then in the range 0.0078 to 0.048).
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Fig. 5. Evolution as a function of the bedrock slope of: (a) the maximum ice thickness for the SIAHSIA; (b) the maximum value of the SIA ic
thickness to the FS ice thickness ratioHSIA/HFS; (c) the maximum value of the ratio of the SIA velocityUSIA to the FS velocity calculated
assuming the SIA free surfaceU

HSIA
FS ; and (d) the maximum value of the ratio of the SIA velocityUSIA to the FS velocity calculated using th

FEM free surfaceU
HFS
FS . These quantities are plotted for different values of the maximal accumulationa0 = 0.1 (doted line),a0 = 0.5 (dashed

line), a0 = 2.0 (mixed line) anda0 = 5.0 m w.e. a−1 (continuous line). Note that for figures (c) and(d), the vertical axes do not have the sa
scale.

From our results, one can see that the parameter responsible for a significant discrepancy between SIA and F
is not the accumulation but the slopeof the bedrock. Althoughmultiplying the accumulation by a factor 50 (from 0.1 to
5.0 m w.e. a−1) globally doubles the SIA ice thicknessHSIA as shown in Fig. 5(a), the accumulation influence on the r
between the SIA and FS surface nevertheless remains very small (very close curves on Fig. 5(b)). Therefore these test
accumulation is not the crucial parameter which restricts theSIA application domain for glacier modelling. On the other ha
this ratioHSIA/HFS significantly varies from 0.99 to 0.84 when the bedrock slope goes fromα = 0.1 to α = 0.5 (Fig. 5(a)),
so that the influence of the bedrock slope appears to be very pronounced. In terms of velocity Fig. 5(d) shows that th
velocity ratio max(USIA/U

HFS
FS ) significantly varies from 1.09 to 1.32 when the bedrock spans its range of variation whe

changing the accumulation parameter leads to no noticeable change (five close curves on the figure). Note that, alth
significant, the max(USIA/U

HSIA
FS ) velocity ratio leads to very similar conclusions.

6.2. 3D application

For a classical glacier geometry, its width is generally larger than its length, so that the effects of shear stress in the h
plane should be not negligible. In order to access these effects, a 3D simulation is needed. The geometry of the 3D a
is presented on Fig. 6 where the 3D-view of the glacier as modelled by the SIA model is depicted as well as the prescribed m
balance pattern. The potential domain of expansion for the glacier isLx = 4300 m timesLy = 3900 m, thex-direction being
the principal ice flow direction. The Cartesian bedrock equation can be expressed:

B(x,y) = 1000

(
1+ 2(4300− x)

4300
− cos

2πy

3900

)
(33)

so as to feature an inclined sine-shaped symmetrical valley with a central axis descending from 2000 m to 0 m (see Fig
only part of the domain is represented). The accumulation-ablation function has a spherical form given by:

a(x, y) = a0
|R2

a − R2|
R2

a − R2
×

√
|R2

a − R2|
Ra

(34)

wherea0 = 1.0 m w.e. a−1 andR2 = (1750−x)2 +y2 is the square of the distance between the maximal accumulation an
considered point, andRa = 600 m is the radius of the positive accumulation area (see figure). For both models, the grid sp
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Fig. 6. 3D view of the modelled steady state glacier according to the SIA method. Also represented is the corresponding constant mass balan
pattern (red curves for the accumulation zone and green curves for the abblation zone) along with the glacier outline in black.

in the horizontal plane is 50 m. For the FE simulation, the mesh is composed a given number of layers composed by ei
hexahedron elements. The symmetry (y = 0) of the model is taken into account by only meshing half the space. More
since the glacier extend does not cover the whole bedrock surface, a smaller domain is adopted for the FE simulation.
number of element layers in thex, y and vertical directions are 66, 15 and 20, respectively, so that the total number of ele
is 19 800.

As shown on Fig. 7, the FS surface elevation is higher than the SIA one with a maximum difference of about 24
lateral extent of the glacier is larger for the FS simulation than for the SIA one, and it is the reverse for the longitudina
As a result, the total volume of the glacier is 97× 106 m3 for the FS solution and 68× 106 m3 for the SIA one. This difference
of volume can be explain by the extent difference of the two surfaces. Contrary to the 2D flow solution, the 3D exten
surface is not controlled only by the accumulation distribution. This difference on surface elevations can be partly e
from the difference on velocities for the two models. In the SIA, because of neglecting several stress gradients (and e
those responsible for the lateral drag along the sides of the valley) the calculated velocities are overestimated (they depen
only upon the surface slope and ice thickness, see Eq. (22)). As a consequence, in order to maintain the volume fl
controlled by the mass balance distribution, the SIA cross-sectional area has to be smaller than that obtained for the F
(Fig. 7) which as a consequence, reduces the upper surface elevation.

Using the converged SIA surface elevation as an input, the corresponding velocity field can be calculated diagnostic
the FS solver of the FE code. In this case, SIA velocities are found to be 5 times larger than those given by the FS equat
However, these velocities computed on a surface that was not iteratively computed by the ELMER code in interaction
Stokes equations are meaningless. In fact, this factor of 5 reduces to 1.9 when using more relevant velocities now obtain
when the free surface calculation is coupledto the Stokes solver in the FE simulation.Considering that surface velocities a

Fig. 7. SIA (thin line) and FS (bold) modelled surface elevations alongthe center flow line (left) and along a transverse cross sectio
x = 2400 m (right).
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approximately proportional to the ice thickness at the fourth power (see Eq. (22)), it is interesting to notice that the FE
ratio 2.63 = 5/1.9 between SIA and FE surfaces is similar to that of the FE to SIA surface elevation at the fourth
(105/81)4 = 2.8. In other words, when coupling the free surface and the Stokes equations, the higher surface elevati
FS solution reduces the difference on the velocities between FS and SIAmethods, so that the ratio actually turns to be 1.9.

A rough calculation allows us to estimate the order of magnitude of the surface value for the longitudinal shear stτxy .
By considering that the velocityvx along the flow grows linearly from 0 at the side to a maximum value of 66 m a−1 at
the center line atx = 2400 where the half width of the glacier is 250 m, the shear strain rateε̇xy can be approximated b
1/2 × 66/250≈ 0.132a−1. The corresponding longitudinal shear stressτ ′

xy therefore can be written(ε̇xy/A)1/3
≈ 0.15 MPa

which is of the same order as the maximum value of the basal shear stressτ ′
yz ≈ 0.34 MPa. It then becomes clear that neglect

this shear term in front of the supposedly predominant basal shear stress significantly contributes to the excess in velo
SIA formulation.

7. Discussion

The task of assessing the conditions under which an approximation procedure is valid when a more exact solution
may appear meaningless unless problems associated to the use of the latter arise, such as the necessary comput
Indeed, when computing the free-surface and the associated velocity field, the SIA finite difference model required less th
1 min CPU time whereas the FS FEM model, departing from theSIA surface, still needed about 2 hours. The ratio beco
even bigger with the 3D simulation when the coupled free surface and Stokes equations had to be iteratively solved
4 days whilst the SIA model only required 2 min. It is therefore clear that for most glacier modelling studies, appro
approaches are still of much interest and the question of their domain of applicability remains, especially for time-de
transient simulations where the glacier geometrical changes are studied over a long period.

As can be seen from the zeroth-order Eqs. (17), the main consequence of the SIA is to neglect horizontal stress
Amongst them is the lateral shearing in horizontal planes (τ ′

xy ) whose role can be important for valley glaciers undergoing str
shearing along the side walls of the valley (as partly demonstrated by the small estimation in Section 6.2 whereτxy appears
to be of the same order as for the basal shear stress). The 3D simulation shows that by not accounting for this latera
SIA flow is not held back, leading to a faster flowing glacier extending farther and with a smaller average cross sectio
compared to its FS counterpart. The resulting difference in the upper free surface is of the order of 15 to 20% on the av
whereas a factor of about 2 is observed between the relevant surface velocities. This result is nevertheless expectable when
becomes clear that for a glacier, large-scale changes are mostly controlled by the mass balance pattern and not so m
details of the dynamics (e.g., [2,3]). In other words, at any place along the flow, the smaller the cross section area, t
the flow velocities in order to maintain the ice flux essentially controlled by the mass balance distribution upstream. In
of the two cross sections of Fig. 7 shows that there is a factor of about 1.5 in the cross-sectional surface areas computed
both models, which then partly explains the observed high velocity ratio of 1.9. However, these results cannot be conside
as entirely satisfactory because of a noticeable difference between the two modelled glaciers, a similar result as tha
which their smallest glacier (close to our with a length of 1.6 km and an average slope of 0.48) also shows a similar discrepan
when modelled with the SIA and compared to its FS equivalent.

By carrying out 2D simulations, the lateral drag effect does not play anymore and it becomes possible to conce
others aspects like the accumulation distribution and the bedrock slope. First, for a given slope, increasing the accu
values leads to higher aspect ratios but surprisingly does not significantly deteriorate the SIA performance. Convers
given accumulation, increasing the slopes rapidly make the SIA results deviate from those of the FS model. Because
on a perturbation expansion (Eq. (16)) the SIA is all the more accurate as the aspect ratioζ is small which therefore mean
that a topography-related aspect ratio takes over the ‘classical’ one when the slope increases. This point was already
in [10] where the SIA equations were expanded in power series of a slope aspect ratio and led to a similar theory. T
the main point as clearly suggested by Fig. 5 is that the slope is the most stringent criterion for the applicability of the SIA, and
that for slopes smaller than 0.2, the SIA results can still be considered as acceptable especially when accumulation rema
with as small as possible the ‘classical’ aspect ratio.

The discrepancy in our 3D model as well as that for the smallest glacier in [3] can also certainly be explained
bedrock slopes (0.46 and 0.48 respectively). However, the main difference with the 2D simulation is the restricted wid
the glacier (as can be seen in Fig. 7) in comparison to its length which certainly leads to a high aspect ratio and
reduces the accuracy of the SIA method. Nevertheless, the fact that for similar bed slopes, the modelled SIA to FS velo
(max(USIA/U

HFS
FS ) as in Fig. 5(d)) goes from 1.3 in the 2D case to about 1.9 in the 3D case tends to indicate that the late

drag accounts for a significant part of the total error.
It is worth pointing that all these simulations considered very simple basal conditions with bedrock flat geomet

irregularities) and no sliding. On the otherhand, it was shown that bedrock bumps, by locally transmitting longitudinal stresses
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over distances of the order of several times the ice thickness [17] can locally change the flow pattern which seriously un
the validity of the SIA. This is expressed by the fact that in such a case, the relevant aspect ratio becomes a topograp
oneζN = [H ]/λN , with λN the smallest bedrock undulation that can be resolved with the model discretization, and wh
rapidly become larger than the ‘classical’ oneζ (see [9]). Moreover, Hindmarsh [18,19] showed the necessity for a high
traction for the SIA to apply, a statement confirmed by Gudmundsson [20] according to whom longitudinal stresses
important when basal traction is small like when basal sliding occurs. Thus, by neglecting basal sliding, conditions a
favourable for the SIA although such an assumption along with that of a flat bedrock is not very realistic for most alp
temperate glaciers.

8. Conclusion

Exclusively considering the aspect ratio as defined the usual way (ratio of typical thickness to characteristic lengt
ice body) can be misleading in assessing the validity of the SIA. In 2-dimensional simulations, increasing the asp
with higher accumulation rates does not deteriorate the accuracy of the method as long as the bedrock slope rema
Conversely, increasing the bedrock slope with an aspect ratio kept small rapidly make the SIA results diverge from
Stokes ones. A new aspect ratio related to the slope as in [9] is then more appropriate in assessing the SIA domain of a
Therefore, it seems that unless the modelled 2D glacier has a maximum thickness of the same order as its span, bedrock sl
up to 0.2 should still allow for a good SIA representation. Unfortunately, apart from ice sheets, mountain glaciers that can be
represented by such 2D approaches are rare (plateau glaciers, large ice fields) and most alpine-type glaciers exhibit a stro
dimensional aspect. The main consequence is the role of the resulting lateral effects via the longitudinal shear stresses. Howev
these shear gradients effects are all the more pronounced as the geometrical aspect ratio increases with a reduced g
and or a larger thickness. It confirms that 3D modelling attempts still require small enough an aspect ratio as was alre
stated in [2] and that valley glaciers experiencing large lateraldrag are problematic with the SIA. The slope effect could no
properly assessed because of computational requirements, but it is clear that the SIA will perform worse if the glaciers
Therefore, steep hanging glaciers as well as tongue glaciers in deep and narrow valleysare not appropriate for an SIA modellin
and should require methods solving the full Stokes equations, should the computational costs be affordable. Convers
large glaciers possibly not too thick and with relatively free edges do exist (cirque glaciers, piedmont glaciers) and qu
of them are resting on gentle slopes of less than 0.2 (see for instance [21]). For such glaciers, provided the effects of b
properties (sliding, bedrock roughness) are not too pronounced, an SIA approach can be envisaged.
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