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Abstract

The warped deformed conifold background of type IIB theory is dual to the cascading SU(M(p + 1)) × SU(Mp) gauge
theory. We show that this background realizes the (super-)Goldstone mechanism where the U(1) baryon number symmetry i
broken by expectation values of baryonic operators. The resulting massless pseudo-scalar and scalar glueballs are identified
the supergravity spectrum. A D-string is then dual to a global string in the gauge theory. Upon compactification, the G
mechanism turns into the Higgs mechanism, and the global strings turn into ANO strings.To cite this article: S.S. Gubser et
al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Variations sur le conifold voilé déformé.La configuration de fond pour la théorie de type IIB donnée par le conifold v
déformé est duale à la cascade de théorie de jauge SU(M(p+1))×SU(Mp). Nous montrons que cette configuration donne
réalisation du mécanisme de (super-)Goldstone où la symètrie baryonique U(1) est brisée par la valeur moyenne dans le v
des opérateurs baryoniques. Les boules de glue pseudo-scalaires et scalaires de masse nulle résultantes sont ide
le spectre de supegravité. Une D-corde est alors duale à une corde globale dans la théorie de jauge. Après compa
le mécanisme de Goldstone devient un mécanisme de Higgs, et une corde globale devient une corde ANO.Pour citer cet
article : S.S. Gubser et al., C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This article, delivered as a talk at Strings ’04 by one of us (I.R.K.), is a condensed version of our paper [1].
One of the themes in recent string theory research concerns extensions of the AdS/CFT correspondence [2–4] to

gauge theories. One such background of type IIB string, the warped deformed conifold, was constructed in [5]. It wa
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(I.R. Klebanov).
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.10.003
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to be dual to 4-dimensionalN = 1 supersymmetric SU(M(p + 1)) × SU(Mp) gauge theory [6] whose flow exhibits an R
cascade [5,7]. In each cascade step the integerp decreases by 1 through the Seiberg duality [8].

In this article we show that the warped deformed conifold of [5] incorporates a supergravity dual of the supersym
Goldstone mechanism, and identify a pseudo-scalar Goldstone boson and its scalar superpartner. An old puzzle g
investigation: what is the gauge theory interpretation of D1-branes in the deformed conifold background [5]? The interp
of the fundamental strings placed in the IR region of the metric is clear: they are dual to confining strings. Like the fund
strings, the D-strings fall to the bottom of the throat,τ = 0, where they remain tensionful; hence, they cannot be dual to ‘t H
loops which must be screened [5]. We propose instead that in the dual gauge theory they are solitonic strings that create a
monodromy of a massless pseudo-scalar Goldstone boson field.1 For this explanation to make sense, the IR gauge th
must differ from the pure glueN = 1 theory in that it contains a massless pseudo-scalar bound state (glueball). The f
this massless mode must couple directly to a D-string means that it corresponds to a certain perturbation of the R
potential, which turns out to mix with the RR 4-form potential. We exhibit the necessary ansatz in Section 3, and inde
massless glueball. This mode should be interpreted asthe Goldstone boson of spontaneously broken global U(1) baryon number
symmetry. Its presence supports the claim made in [5,9] that the cascading gauge theory is on the baryonic branch
certain baryonic operators acquire expectation values. The supersymmetric Goldstone mechanism gives rise also to
scalar mode. In Section 4 the supergravity dual of this mode is identified as a massless glueball coming from a mixt
NS–NS 2-form and a metric deformation. The ansatz for such perturbations was written down some time ago in [11].

Besides being an interesting example ofthe gauge/gravity duality, the warped deformed conifold background offers int
esting possibilities for solving the hierarchy problem along the lines suggested in [12,13]. If the background is embedded into
compact CY space with NS–NS and R–R fluxes, then an exponential hierarchy may be created between the UV com
tion scale and the IR scale at the bottom of the throat [5,14]. Models of this type received an additional boost due to a possibilit
of fixing all moduli proposed in [15], and a subsequent exploration of cosmology in [16]. Recently, a new role was pr
for various(p, q) strings placed in the IR region [17]. Besides being the confining or solitonic strings from the point o
of the gauge theory, they may be realizations of cosmic strings. The exponential warping of the background lowers th
significantly, and makes them plausible cosmic string candidates. In Section 5 we discuss the Higgs mechanism th
upon embedding the warped deformed conifold into a flux compactification, and argue that a D-string placed at the b
the throat is dual to an Abrikosov–Nielsen–Olesen string in thegauge theory coupled to supergravity. We conclude in Sectio

2. Review of the warped deformed conifold

The conifold may be described by the following equation in four complex variables,

4∑
a=1

z2
a = 0. (1)

Since this equation is invariant under an overall real rescaling of the coordinates, this space is a cone and admits the m

ds2
6 = dr2 + r2 ds2

T 1,1, (2)

where

ds2
T 1,1 = 1

9

(
dψ +

2∑
i=1

cosθi dφi

)2

+ 1

6

2∑
i=1

(dθ2
i + sin2 θi dφ2

i ) (3)

is the metric onT 1,1. Hereψ is an angular coordinate which ranges from 0 to 4π , while (θ1, φ1) and (θ2, φ2) parametrize
two S2s in a standard way. Therefore, this form of the metric shows thatT 1,1 is anS1 bundle overS2 × S2. Topologically,
T 1,1 ∼ S2 × S3.

Now placingN D3-branes at the apex of the cone we find the metric

ds2 =
(

1+ L4

r4

)−1/2(−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2
) +

(
1+ L4

r4

)1/2
(dr2 + r2ds2

T 1,1), (4)

whose near-horizon (r → 0) limit is AdS5 × T 1,1. The same logic that leads us to the maximally supersymmetric version o
AdS/CFT correspondence now shows that the type IIB string theory on this space should be dual to the infrared limit of

1 We are grateful to E. Witten for emphasizing this possibility to us.
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theory onN D3-branes placed at the singularity of the conifold. Since Calabi–Yau spaces with these D-branes preserv/4 of
the original supersymmetries, we have anN = 1 superconformal field theory. This field theory was constructed in [19,20
is SU(N) × SU(N) gauge theory coupled to two chiral superfields,Ai , in the(N,�N) representation and two chiral superfield
Bj , in the(�N,N) representation.

The continuous symmetries of the gauge theory are U(1)R × U(1)B × SO(4) where the SO(4) acts on theA’s and theB ’s
as SU(2) × SU(2). The exactly marginal superpotential is fixed uniquely by the symmetries up to overall normalization:

W ∼ εij εkl trAiBkAjBl. (5)

The U(1) baryon number symmetry acts asAk → eiαAk , Bj → e−iαBj . The massless gauge field inAdS5 dual to the baryon
number current originates from the RR 4-form potential [21,22]:

δC4 ∼ ω3 ∧ A. (6)

Also important for our discussion is theZ2 symmetry generated by the interchange ofA1,A2 with B1,B2 accompanied
by charge conjugation, i.e. the interchange of the fundamental and the antifundamental representations, in both SU(N) gauge
groups [19,20]. We will call this interchange symmetry theI symmetry. The corresponding transformation in the IIB str
theory onAdS5 ×T 1,1 is the interchange of(θ1, φ1) with (θ2, φ2) (i.e., of the twoS2’s) accompanied by the−I of the SL(2,Z)

S-duality symmetry [19,20]. The action of the−I of the SL(2,Z) reverses the sign of the NS–NS and R–R 2-form potent
B2 andC2.

The addition ofM fractional 3-branes (wrapped D5-branes) at the singular point of the conifold changes the gaug
to SU(N + M) × SU(N) [6]. TheM units of magnetic 3-form flux cause the conifold to make a ‘geometric transition’ to
deformed conifold

4∑
a=1

z2
a = ε2, (7)

in which the singularity of the conifold is removed through the blowing-up of theS3 of T 1,1. Therefore, the dual of the cascadi
SU(M(p +1))× SU(Mp) gauge theory is the warped deformed conifold [5]. Below we collect some necessary formulae
this background (for reviews see [23]).

The ten-dimensional metric is

ds2
10 = h(τ)−1/2(−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

) + h(τ)1/2 ds2
6, (8)

where

ds2
6 = ε4/3K(τ)

2

[
1

3K3

(
dτ2 + (g5)2

) + cosh2
(

τ

2

)(
(g3)2 + (g4)2

) + sinh2
(

τ

2

)(
(g1)2 + (g2)2

)]
(9)

is the usual Calabi–Yau metric on the deformed conifold. The one forms are given in terms of angular coordinates as

g1 = e1 − e3
√

2
, g2 = e2 − e4

√
2

, g3 = e1 + e3
√

2
, g4 = e2 + e4

√
2

, g5 = e5, (10)

where

e1 ≡ −sinθ1 dφ1, e2 ≡ dθ1, e3 ≡ cosψ sinθ2 dφ2 − sinψ dθ2,
(11)

e4 ≡ sinψ sinθ2 dφ2 + cosψ dθ2, e5 ≡ dψ + cosθ1 dφ1 + cosθ2 dφ2.

Note that

K(τ) = (sinh(2τ) − 2τ)1/3

21/3 sinhτ
. (12)

The warp factor is

h(τ) = (gsMα′)222/3ε−8/3I (τ), (13)

where

I (τ) ≡
∞∫

dx
x cothx − 1

sinh2 x

(
sinh(2x) − 2x

)1/3
. (14)
τ
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Sinceh(τ) decreases monotonically from a finite value atτ = 0, the tension of the fundamental string is minimized atτ = 0,
where it is found to be 1/(2πα′√h(0)). This means that this background is dual to a confining gauge theory.

The NS–NS two form field is

B2 = gsMα′
2

[
f (τ)g1 ∧ g2 + k(τ)g3 ∧ g4], (15)

while the RR three form field strength is

F3 = Mα′
2

{
g5 ∧ g3 ∧ g4 + d

[
F(τ)(g1 ∧ g3 + g2 ∧ g4)

]}
. (16)

The auxiliary functions in these forms are

F(τ) = sinhτ − τ

2sinhτ
, f (τ) = τ cothτ − 1

2sinhτ
(coshτ − 1), k(τ) = τ cothτ − 1

2sinhτ
(coshτ + 1). (17)

In the warped deformed conifold the SO(4) and theI global symmetries are preserved, but the U(1)R symmetry is broken
in the UV by the chiral anomaly down toZ2M [24]. Further spontaneous breaking of this discrete symmetry toZ2, which acts
aszi → −zi , does not lead to appearance of a Goldstone mode. The U(1)B symmetry is not anomalous, and its spontane
breaking does produce a Goldstone mode, which we exhibit in Section 3.

3. The Goldstone mode

To begin, consider a D1-brane extended in two of the four dimensions inR3,1. Because the D1-brane carries electric cha
under the R–R three-form field strengthF3, it is natural to think that a pseudo-scalara in four dimensions, defined so th
∗4da = δF3,2 experiences monodromy as one loops around the D1-brane world-volume.

The perturbation ansatz we therefore adopt is

δF3 = ∗4da + f2(τ)da ∧ dg5 + f ′
2 da ∧ dτ ∧ g5,

(18)
δF5 = (1+ ∗)δF3 ∧ B2 =

(
∗4 da − ε4/3

6K2(τ)
h(τ)da ∧ dτ ∧ g5

)
∧ B2,

wheref ′
2 = df2/dτ , h(τ) is given by (13), andK(τ) by (12). The variations of all other fields, including the metric and

dilaton, vanish. The last two terms inδF3 sum to the exact form−d(f2 da ∧ g5). As shown in [1], all linearized SUGRA
equations are satisfied ifa(x0, x1, x2, x3) is a harmonic function, i.e. d∗4 da = 0, andf2(τ) satisfies

− d

dτ
[K4 sinh2 τf ′

2] + 8

9K2
f2 = (gsMα′)2

3ε4/3
(τ cothτ − 1)

(
cothτ − τ

sinh2 τ

)
. (19)

The normalizable solution of (19) that is regular both for small and for largeτ is

f2(τ) = − 2c

K2 sinh2 τ

τ∫
0

dx h(x)sinh2 x, (20)

wherec ∼ ε4/3. We find thatf2 ∼ τ for smallτ , andf2 ∼ τ e−2τ/3 for largeτ .
The zero-mass glueball we are finding is due to the spontaneously broken global U(1) baryon number symmetry [9]. Th

form of theδF5 in (18) makes the connection between our zero-mode and U(1)B evident. Asymptotically, at largeτ , there is a
component∼ ω3 ∧da ∧dτ in δF5. Thus from (6), we haveA ∼ da. For the 4-d effective Lagrangian, there should be a coup
between the baryon number currentJµ anda:

1

fa

∫
d4x Jµ∂µa = − 1

fa

∫
d4x a(x)(∂µJµ), (21)

where the pseudo-scalara enters as the parameter of the baryon number transformation. It is important that this transfo
does not leave the vacuum invariant!

As discussed in [5,9] the field theory is on the baryonic branch: ‘the last step’ of the cascade takes place thro
ing expectation values to baryonic operators in the SU(2M) × SU(M) gauge theory coupled to bifundamental fieldsAi,Bj ,

2 The 4-dimensional Hodge dual∗4 is calculated with the Minkowski metric, vol4 = dx0 ∧ dx1 ∧ dx2 ∧ dx3.
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i, j = 1,2. In addition to mesonic operators(Nij )αβ ∼ (AiBj )αβ , the gauge theory has baryonic operators invariant unde
SU(2M) × SU(M) gauge symmetry:

B ∼ εα1α2···α2M (A1)
α1
1 (A1)

α2
2 · · · (A1)

αM

M (A2)
αM+1
1 (A2)

αM+2
2 · · · (A2)

α2M
M ,

(22)�B ∼ εα1α2···α2M (B1)1α1
(B1)

2
α2

· · · (B1)MαM
(B2)

1
αM+1

(B2)2αM+2
· · · (B2)

M
α2M

.

The baryonic operators are invariant under the SU(2) × SU(2) global symmetry rotatingAi,Bj . These operators contribute a
additional term to the usual mesonic superpotential:

W = λ(Nij )αβ(Nk)
β
αεikεj + X

(
det

[
(Nij )αβ

] −B�B − Λ4M
2M

)
, (23)

whereX can be understood as a Lagrange multiplier.
The supersymmetry-preserving vacua include the baryonic branch:

X = 0; N = 0; B�B = −Λ4M
2M, (24)

where the SO(4) global symmetry rotatingAi,Bj is unbroken. Since the supergravity background of [5] also has this symm
it is natural to identify the dual of this background with the baryonic branch of the cascading theory. The expectatio
of the baryonic operators spontaneously break the U(1) baryon number symmetryAk → eiαAk , Bj → e−iαBj . The deformed

conifold as described in [5] corresponds to a vacuum where|B| = |�B| = Λ2M
2M

, which is invariant under the exchange of t
As with theBs accompanied by charge conjugation in both gauge groups. As noted in [9], the baryonic branch has
dimension 1, and it can be parametrized byξ where

B = iξΛ2M
2M, �B = i

ξ
Λ2M

2M. (25)

The pseudo-scalar Goldstone mode must correspond to changingξ by a phase, since this is precisely what a U(1)B symmetry
transformation does. As usual, the gradient of the pseudo-scalar Goldstone modefa∂µa is created from the vacuum by th
action of the axial baryon number current,Jµ (we expect that the scale of the dimensionful ‘decay constant’fa is determined
by the baryon expectation values).

Thus, the breaking of the U(1) baryon number symmetry necessitates the presence of a massless pseudo-scalar
which we have found. By supersymmetry, this field falls into a masslessN = 1 chiral multiplet. Hence, there will also be
massless scalar mode and corresponding Weyl fermion. The scalar must correspond to changingξ by a positive real factor.

4. The scalar zero-mode

The presence of the pseudo-scalar zero mode found in Section 3, and theN = 1 supersymmetry, require the existence o
scalar zero-mode. In this section we argue that this zero-mode comes from a metric perturbation that mixes with th
2-form potential.

The warped deformed conifold of [5] preserves theZ2 interchange symmetry which we called theI symmetry in Section 2
see (6). However, the pseudo-scalar mode we found breaks this symmetry: from the form of the perturbations (18) w
δF3 is even under the interchange of(θ1, φ1) with (θ2, φ2), while F3 is odd;δF5 is odd whileF5 is even. Similarly, the scala
mode must also break theI symmetry because in the field theory it breaks the symmetry between expectation values|B|
and of|�B|. We expect that turning on the zero-momentum scalar modifies the geometry because the scalar changes th
value of |B| and |�B| while the pseudo-scalar affects only the phase. The necessary perturbation that preserves the S(4) but
breaks theI symmetry is a mixture of the NS–NS 2-form and the metric:

δB2 = χ(τ)dg5, δG13 = δG24 = m(τ), (26)

where, for example,δG13 = m(τ) means to add 2m(τ)g(1g3) to ds2
10. To see that these components of the metric break tI

symmetry, we note that

(e1)2 + (e2)2 − (e3)2 − (e4)2 = g1g3 + g3g1 + g2g4 + g4g2. (27)

We find it convenient to definem(τ) = h1/2K sinh(τ)z(τ).
In [1] it was shown that all the linearized SUGRA equations are satisfied provided that

((K sinh(τ))2z′)′
(K sinh(τ))2

=
(

2

sinh(τ)2
+ 8

9

1

K6 sinh(τ)2
− 4

3

cosh(τ)

K3 sinh(τ)2

)
z (28)
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χ ′ = 1

2
gsMz(τ)

sinh(2τ) − 2τ

sinh2 τ
. (29)

The solution of (28) for the zero-mode is remarkably simple:

z(τ) = s
(τ coth(τ) − 1)

[sinh(2τ) − 2τ ]1/3
, (30)

with s a constant. Like the pseudo-scalar perturbation, the largeτ asymptotic is againz ∼ τ e−2τ/3. We note that the metri
perturbation also has the simple formδG13 ∼ h1/2[τ coth(τ) − 1]. Note that the perturbed metric ds̃6

2 differs from the metric
of the deformed conifold, Eq. (9), by

∼ (τ cothτ − 1)(g1g3 + g3g1 + g2g4 + g4g2), (31)

which grows as lnr in the asymptotic radial variabler .
The existence of the scalar zero-mode makes it likely that there is a one-parameter family of supersymmetric solutio

break theI symmetry but preserve the SO(4) (an ansatz with these properties was found in [11], and its linearization a
with (26)). We will call these conjectured backgroundsresolved warped deformed conifolds. We add the wordresolved because
both the resolution of the conifold, which is a Kaehler deformation, and these resolved warped deformed conifolds breI
symmetry. As we explained in Section 3, in the dual gauge theory turning on theI breaking corresponds to the transformat
B → (1 + s)B, �B → (1 + s)−1 �B on the baryonic branch. Therefore,s is dual to theI breaking parameter of the resolve
warped deformed conifold.

One might ask whether the resolved warped deformed conifolds are still of the formh−1/2 dx2‖ + h1/2 ds̃2
6 where d̃s2

6 is

Ricci flat. At linear order in our perturbation, our conifold metric ds̃2
6 is indeed Ricci flat: the first order corrections vanish

(28) is satisfied. We also showed [1] that the complex 3-form field strengthG3 = F3 − i
gs

H3 remains imaginary self-dual a
linear order, i.e.∗6G3 = iG3. It will be interesting to see if these properties continue to hold for the exact solution.

5. Compactification and Higgs mechanism

As we argued above, the non-compact warped deformed conifold exhibits a supergravity dual of the Goldstone me
It was crucial for our arguments that the U(1)B symmetry is not gauged in the field theory, and the appearance of the Gold
boson in the supergravity dual confirms that the symmetry is global.

If the warped deformed conifold is embedded into a flux compactification of type IIB string on a 6-dimensional CY ma
then we expect the global U(1)B symmetry to become gauged, because the square of the gauge coupling becomes finit
compact case we may writeδC4 ∼ ω3 ∧ A, whereω3 is harmonic in the full compact case andA is the 4-d gauge field. If we
ignore subtleties with the self-duality of the 5-form field strength, then the kinetic terms for it is

1

2g2
s

∫
d10x

√−gF2
5 . (32)

SubstitutingF5 = F2 ∧ ω3 and reducing to 4 dimensions, we find the U(1) kinetic term

1

2g2

∫
d4xF2

2 , (33)

where
1

g2
∼ 1

g2
s

τm, (34)

where we assumed that the effect of compactification is to introduce a cut-off atτm � 1.
The finiteness of the gauge coupling in the compact case means that the Goldstone mechanism should turn int

mechanism. The Goldstone bosona enters as a gauge parameter ofA and gets absorbed by the U(1) gauge field to make a
massive vector field. As usual in the supersymmetric Higgs mechanism, the scalar acquires the same mass which
from the D-term potential. InN = 1 notation, gauge invariance means we have to introduce factors of e±gV into the D-terms
for B and �B:3

B∗ egVB + �B∗ e−gV �B. (35)

3 B and �B have charge of orderM , a charge which we have for simplicity neglected to include in the coupling toV .
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Expanding these D-terms to second order ing, we find

g2(|B|2 + |�B|2)
V 2. (36)

As a result, we find anN = 1 massive vector supermultiplet containing a massive vector, a scalar (the Higgs boson), a
fermion superpartners.

In the preceding, we ignored the linear term ing:

g
(|B|2 − |�B|2 + ζ

)
V, (37)

where we have included a Fayet–Iliopoulos parameterζ . Depending on details of the compactification, it may be thatζ is
nonzero. Then the potential for the scalar has its minimum for|ξ | �= 1, and the baryon VEVs in (25) are unequal in magnitu
In other words, the Fayet–Iliopoulos parameter breaks theI symmetry. Thus, further study of the one-parameter family of
supersymmetric backgrounds dual to the baryonic branch is of interest to the understanding of flux compactifications.

While in the non-compact case D-strings are global strings, in the compact case they should be interpreted as A
Nielsen–Olesen vortices of an Abelian–Higgs model, where the charged chiral superfields breaking the gauge symme
baryon operatorsB and �B.4 Since there is a finite numberK of NS–NS flux units through a cycle dual to the 3-sphere [14],
D-string charge takes values inZK . Indeed,K D-strings can break on a wrapped D3-brane [17]. Correspondingly, we d
expect the ANO vortex duals to be BPS saturated.

6. Discussion

Our work sheds new light on the physics of the cascading SU(M(p + 1)) × SU(Mp) gauge theory, whose supergrav
dual is the warped deformed conifold [5]. In the infrared the theory is not in the same universality class as the p
N = 1 supersymmetric SU(M) theory: the cascading theory contains massless glueballs, as well as solitonic strings du
D-strings placed atτ = 0 in the supergravity background.

As suggested in [5,9] and reviewed in Section 3 above, the infrared field theory is better thought of as SU(2M) × SU(M)

on the baryonic branch, i.e. with baryon operators (22) having expectation values. Since the global baryon number s
U(1)B , is broken by these expectation values, the spectrum must contain a Goldstone bosons which we find explicitly
construct at linear order a Lorentz-invariant deformation of the background which we argue is a zero-momentum sta
scalar superpartner of the Goldstone mode. Our calculations confirm the validity of the baryonic branch interpretatio
gauge theory. This also resolves a puzzle about the dual of the D-strings atτ = 0: they are the solitonic strings that couple
these massless glueballs. We further argue that, upon embedding this theory in a warped compactification, the glob(1)B
symmetry becomes gauged; then the gauge symmetry is broken by the baryon expectation values through a super
version of the Higgs mechanism. Thus, in a flux compactification, we expect the D-string to be dual to an Abrikosov–N
Olesen vortex.

In [5] it was argued that there is a limit,gsM → 0,5 where the physics of the cascading gauge theory should approac
of the pure glueN = 1 supersymmetric SU(M) gauge theory. How can this statement be consistent with the presence
Goldstone bosons? We believe that it can. Returning to the SU(2M) × SU(M) gauge theory discussed in Section 4, we exp
that in the limitgsM → 0 the scaleΛ2M of the SU(2M), i.e. that of the baryon condensates, is much higher than the scalΛM

of the SU(M). Hence, the decay constantfa should be much greater than the confinement scaleΛM . Since the Goldstone boso
interactions at the confinement scale are suppressed by powers ofΛM/fa , they appear to decouple from the massive glueb
containing the physics of the pure glue supersymmetric SU(M) gauge theory. Obviously, this heuristic argument needs t
subjected to various checks.

Our work opens new directions for future research. Turning on finite scalar perturbations is expected to give rise
class of Lorentz invariant supersymmetric backgrounds,the resolved warped deformed conifolds, which preserve the SO(4)

global symmetry but break the discreteI symmetry of the warped deformed conifold. The ansatz for such background
proposed in [11]. We have argued that these conjectured backgrounds are dual to the cascading gauge theory on th
branch. It would be desirable to find them explicitly, and to confirm their supersymmetry.

A more explicit construction of the solitonic string in the gauge theory is desirable. It is also interesting to expl
consequences of our results for cosmological modeling.

4 Representation of D-strings by ANO vortices in low-energy supergravity was recently advocated in a different context [25] (see al
work, [26]).

5 No string theoretic description of this limit is yet available, because it is the opposite of the limit of largegsM where the supergravity
description is valid.
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