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Abstract

Some general properties of higher spin gauge theories are summarized, with the emphasize on the nonlinear theories in any
dimension.To citethisarticle: M.A. Vasiliev, C. R. Physique 5 (2004).
0 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Théorie de jauge de grands spins dans toutes les dimensio¥es propriétés générales des théories de jauge de grands
spins sont présentées, en insistant particulierement sur les théories non-linéaires en dimensionsRiwerses. cet ar-
ticle: M.A. Vasiliev, C. R. Physique 5 (2004).
0 2004 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

First of all, | would like to thank the organizers for the invitation to talk on higher spin gauge theory at Strings 2004.
Although a relationship of the higher spin (HS) gauge theory to superstring theory is not yet completely clear, the impressive
convergency that took place during recent years indicates that HS theories and Superstring might be different faces of the same
fundamental theory to be found. (For an interesting new argument in the same direction see [1] and the article of M. Bianchi in
this issue.)

1.1. Symmetric massless free fields

Simplest free HS gauge fields are so called totally symmetric fields. They can be described bytatatly symmetric
tensorspy,, ..x, (x) subject to the double-tracelessness cond'tpi’ﬁn,kk,,smns (x)=0[2](m,n,...=0,...,d—1). The Abelian
HS gauge symmetries

3¢ny...ny (X) = a{nlgnz...ns}(x)

with ranks — 1 symmetric traceless gauge paramet@is ., _; (x) (& rnz...n,_; (x) = 0) leave invariant the quadratic action
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o1 ' s(s—1)
S = 5(_]_)s /ddx ian(pmlmmsanwml...ms _ 5 3n§0rrml...ms,zanwkkml'"ms’z
+5(5 = 10ne rmy.m,_» Bk(p”kml"'ms’z — 5009y, my_y Op L1
s(s—1D(s—2)
— fanwrrnmlmms_sakwttkml...ms_3 ) 1)

This action describes a spinmassless field [2] and generalizes the spin 1 Maxwell action and spin 2 (linearized) Einstein
action to any integer spin. The key question is what is a fundamental unifying symmetry principle underlying HS gauge fields.
Even at the free field level, the existence of elegant metric-like [3] and frame-like [4,5] ‘geometric formulations’ indicates that
there must be some deep reason for HS theories to exist.

1.2. Higher spin problem
The problem is to find a nonlinear HS gauge theory such that it has:

— Correct free field limit;
— Unbroken HS gauge symmetries;
— Non-Abelian global HS symmetry of a vacuum solution.

The first condition demands the theory to be free of ghosts, thatli® equivalent to the Fronsdal theory for the case of totally
symmetric fields. The third condition avoids the trivial possibility of Abelian interactions built of Abelian gauge invariant HS
field strengths like nonlinear terms built of higher powers of thie $pAbelian field strength inetd of Yang—Mills interactions.

The HS problem is of interest on its own right. An additional stringy motivation is, in the first place, that it is tempting to
interpret massive HS modes in Supergjrés resulting from breaking of HS gaugersyetries. In that case, superstring should
exhibit higher symmetries in the high-energy limit as was argued long ago by Gross [6]. A more recent argument came from the
AdS/CFT side after it was realized [7] that HS symiries should be unbrokein the Sundborg—\itten limit A = g2N — 0,
lsztrAAd3—> oo just because the boundary conformal theory becomes free. A dual string theory in the highly/Ad®spdce—
time is therefore going to be a HS theory.

1.3. Difficulties

Although the formulation of the HS problem may look rathekitide, the conditions on the $linteractions is so hard to
satisfy that many believed it admits no solution at all. One difficulty is due t&'thmatrix argument a la Coleman—Mandula [8]
that, if S-matrix has too many symmetries carrying nontrivial representations of the Lorentz symmetry as HS symmetries do,
thenS = I, i.e. there is no interactions.

Another one is the HS-gravity interaction problem as was originally pointed out by Aragone and Deser in [9]. The point is
that covariantization of derivativel, — D, = 3, — I',, S¢nm... = Dnem... changes the situation drastically because they do
not commute[Dy, Dy ] = Rym - . ., if the Riemann tensoR,,,, pq iS nonzero. As a result, the variation of the covariantized
HS action under covariantized HS gauge theories is not any longer zero

55OV — / R..(c..Dg.)#£0 2 @

Most important is that the Weyl tensor part of the Riemann tensor contributes to this variatios @y which contribution
seems to be hard to compensate by any modification of the action and/or field transforrhations.

1.4. Resolution

Despite the difficulties with HS interactions, in the important works [10,11] it was shown that some consistent (i.e., gauge
invariant) interactions of HS gauge fields with matter fields and with themselves do exist at least at the cubic level

1
S=52+53 4. 5= ) (DPR)(DI)(D p)ertatrzd=3, ®)

p.q.r

1 Recall that, for spin &, analogous terms can be compensated by the modificatithe transformation of the metric tensor under local
SUSY transformation because only Ricci tensor contributes in this case, that opens a way towards supergravity.
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wheret is a parameter of dimension of length. These authors disedvhat interactions of HS fields contain higher space—time
derivatives: the higher interacting spins are, the more (but finite) number of derivatives appear in their interactions.

Another important observation was [12] that the situation with HS interactions and, in particular, with HS-gravitational
interactions, improves once the problem is reconsidered itAh@Sbackground. The dimensionful parametehen identifies
with the radius of A)dSspacef = A~1/2 = Rags The key difference between flat afd)dSbackground is that, in the latter
case, background covariant derivatives do not comriibtg D,,,] ~ A ~ O(1). This has an important consequence that the
terms of different orders in derivatives in the action (3) do talk to each other. As a result, there exists [12] such a unique (modulo
field redefinitions) combination of higher derivative interaction terms that a contribution from their gauge variation cancels the
problematic terms (2) of the flat space analysis. Since the coupling constants of the interaction terms contain positive powers
of the (A)dSradius, they blow up in the flat limit in agreement with the flat space no-go resultg\)it space, the no-go
arguments do not work (in particular, Sematrix). HS theories suggest deep analogy betweeAti®scale and string length
scale? ~ +/o/, although the precise identification is far from being clear at the moment. Note that the ¢alglSbackground
in HS theories was realized years before the discovery oAt®CFT correspondence [13].

2. HSfields as gauge connections

It is well known that gauge fields of supergravity result from gauging the SUSY algebra:

od—1,2) o(N)
TAB oF tPa A,B,...=0,....,d, p.q....=1,...,N
wnAB w, b ApP4 n=0,....d—1 « is spinor index

In particular,s = 2 gravitational field is described in supergravity by the frame #&gld/hich along with the Lorentz connection
wgb can be interpreted [14] as components of the gaugerﬁél?i of the AdS; algebrao(d — 1, 2)

gnm—>eZ—>{e§§,a)§§b}—>a)g\B H
Analogously, a totally symmetric fielg,, .. », in the Fronsdal formulation admits an equivalent description in terms of the
Ay..Ag_1,B1...By_1
gauge 1-formw,, [5]

aj...ag_ aj...as_ aj...ag_1,by...b_ Ay...Ag_1,B1..By_1
Wnl...ns_>enl i (7 R e e '

: (4)

which takes values in the irreducible representation ofAt&; algebrao(d — 1, 2) depicted by the (traceless) rectangular
two-row Young tableau

s—1

wilALnA:—lyAs}BZnB:—l -0

w;:\LnA:—sCC’ Bi..By_1 _ 0
od—-1,2)
Let anAdSvectorV 4 define the Lorentz subalgetwéd — 1, 1) C o(d — 1, 2) as its stability subalgebra. The simplest choice

isVg = 8% whered denotes théd + 1)th Lorentz invariant direction of aAdSvector. The HS dynamical frame-like field is
then identified with the components of the HS connection with a maximal possible numbdgpfector components along
the extra directior/4

enalmas_l = le'.'aﬁls BBy VBl te VBs—l' (5)
Analogously to the spin 2 metric case, Fronsdal field is the totally symmetric part of the frame,figld n, = efny,n,...n,}-
Generalized Lorentz connections identify with those components of the connection that carry more Lorentz indices

wnal...as_l,bl...b, — lemasfl’b1-~-err+1~-~Bs—1 VBr+1 . VBS . (6)

Upon resolving appropriate torsion-like constraints [5], the generalized Lorentz connections are expressed through derivatives
of the frame-like fieldw, 41-4s-1 b1-bi ~ (\/iX ) (e), so that every additional Lorentz index brings one derivative along
with one power of? = LA In this formalism, the higher derivatives of HS interactions, as well as negative powers of the

cosmological constant, result from the dependence of the nonlinear terms in the HS actions on the higher generalized Lorentz
connections.
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3. Higher spin algebrahu(1|2: [d — 1, 2])

The structure of HS gauge connections suggests that they result from gauging a HS algebra that codtd#)satlgebra
o(d — 1,2) as a subalgebra and decomposes under adjoint action of the latter into a sum of representations described by
traceless two-row Young tableaux. In other words, generaf@is 4, g,..5, Of a HS algebra should satisfy the conditions
T{Ay...An, Aps1)B2...B, = O andTCCAg...A,,,Bl...B,l = 0. Such an algebra was originally found by Eastwood [17] as conformal
HS algebra of a scalar field th— 1 dimensions. For our purpose it is most coneenito use its oscillataealization suggested
in [18].

Thus, we introduce a canonical pairMSvectorsYiA,

VA ¥ Pl =en??, (7)

wherenap = npa is the AdS; invariant metric andt;; = —¢j;, i, j = 1, 2 is thesp(2) invariant form. Here we use the star
product notation for the oscillator afra defined by the relations (7) fibs precise definition see Eq. (25) f@rindependent
functions). The bilinear combinations of oscillatofs! 8 andy;;,

1 . 1
T4E = —1BA= SR YLl == S0 Y ®)

form, respectively, thex(d — 1, 2) generators, which rotatddS; vector indicesA, B, and sp(2) generators, which rotate

symplectic indices, j. They commute to each othér;;, TAB], =0, thus being Howe dual. Let us note that #p2) plays

here a role analogous to that in the description of dynamical models in the conformal framework (two-time physics) [15,16].
Now it is easy to define the simplest HS algeht#1|2 : [d — 1, 2]) by virtue of a sort of Hamiltonian reduction. First one

considers the Lie algebra of functions of oscillators with the Lie bragkéY), ¢(Y)]«. Then one considers its subalgelsta

spanned byp(2) invariants

[f (), 1;51x=0 9)

and next its quotiens// where the ideal is spanned by the elements proportional tosp@) generators, i.e{,f € I f(Y) =
t % f1ij = frij %t ~0}. The algebras /I we callhu(1|2: [d — 1, 2]) (upon imposing appropriate reality conditions [18]).
The gauge fields dfiu(1|2: [d — 1, 2]) are
— A An B B
oY) =Y " Onay.. Ay By B, (Y] Lo Y] Yy Yy (10)
n=0

Itis easy to see that the condition (9) (which can be written in the covariantfofm= dr;; + [, t;; 1« = 0 taking into account
dr;; = 0) imposes the Young properties

Om{A1...An,Ay11)Bo...B, =0

(including the property that the r.h.s. of (10) contains equal numbers of osciliélfomd YzA). According to (8), the factor-
ization over the terms proportional tg is equivalent to factorization of traces of the gauge field components in (10) that gives
rise precisely to the set of gauge fields associated with different spins as explained in Section 2.

The non-Abelian HS field strength is

R=dw(Y|x) + oY |x) A sw(Y|x), (11)

where terms on the r.h.s., which take values in the ideare factored out. The infinite-dimensional HS algebra contains

the maximal finite-dimensional subalgelr@/ — 1, 2) @ (1) spanned by bilinears in oscillators and constants, respectively.
Different spins correspond to homogeneous polynomid|gY |x) = w26=D (¥ |x). The gauge fields af(d — 1,2) ® u(1)

carry spin 2 and spin 1 respectively. That/ — 1, 2) @ «(1) is a maximal finite-dimensional subalgebrahef1|2: [d — 1, 2])

is a consequence of the fact that the commutator of degeeed degreeg polynomials of oscillators gives a degrget g — 2
polynomial. For example, if spin 3 assatéd with degree 4 polynomials in oscittes appears, polynomials of all higher
degrees appear in the closure of its generators. Thus, beyond the barrier of spin 2, the systems of HS fields are necessarily
infinite. Let us note that there exists a generalization of the nonlinear HS gauge theory to the case with HS gauge connection
carrying matrix indiceso — wq” (Y|x), p,q =1, ...,n, so that the spin 1 Yang—-Mills algebra is promoted t@) (HS models

with the Yang—Mills gauge algebrasn) andusp(n) also exist [18]).
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4. Lower spin examples

To illustrate the idea of the approach th#lows us to formulate nonlinear HS dynamiesus start with lower spin examples.
The nonlinears = 2 equations are equivalent to zero-torsion condittsh= 0 together with the Einstein equation in the
form

R =¢. A egCcic b, 12)

wheree is the frame 1-form and#¢, ¥4 has algebraic properties of the Weyl tensor, i.e. it is traceless and symmetrization over
three indices gives zeEq. (12) tells us that“<, 4% is indeed the Weyl tensor and, because it is traceless, that the Ricci tensor
is zero. Bianchi identitie then imply at the linearized level that non-zero components of arderivatives of the Weyl tensor

k+2
LTI

Iy + - Oy Cayap byb, fOrm Lorentz tensor<’e, . ¢, ,.d1d, described by the Young tableaux l. Einstein
equations imply that alC,, .4, ,, 515, are traceless.

In terms of the quantitie€’.,. .., d4,d,, CONsequences of the linearizee- 2 equations in flat space can be written in the
form of covariant constancy conditions

dcal...al,blbz = e(c)(lcal...alc,blbz + 2Ca1...a1{b1,b2}c)s (13)
whereeg is the flat Minkowski framezg =dx?.
Analogously,s = 1 Maxwell equations can be reformulated as
F:eg/\e(d)CCsds (14)

dcal...al,b = 36((1 + l)Cal...alc,b + Cal...alb,c) (15)

with the O-formsC,, ., described by the traceless Young tableguix
s = 0 Klein—Gordon dynamics is reformulated in the form

dcal...ak = 66(/( + Z)Cal...akc (16)

in terms of symmetric traceless 0-forr@g, .4, , which parametrize all on-mass-shell nontrivial combination of derivatives of

k
the scalar field” and are described by the Youngtabledud [ [ [ [ [ |.

This formulation extends naturaIJIry kto any spidescribed by ‘Weyl 0-formsC
S

of the traceless Young tablealx . The meaning of the set of O-forn@%,, 4, »,..., IS that they form a
s
basis in the space of gauge invariant on-mass-shell nontrivial derivatives of a massless field under consideration. As a result,

the space o€, . 4,.,.b1..5, (x) at any givenx is analogous (in fact, dual by a nonunitary Bogolyubov transform) to the space
‘H of spins single-particle states. Thus, Weyl O-forms are sections of the fiber bundle over space—time with the fiber space dual
of the space of single-particle quantum states in the system.

a1...as4x.by...bs With the symmetry properties

5. Central on-mass-shell theorem

The next step is to observe that free massless field equatigA3dS; space can be concisely formulated in terms of the star
product algebra. To this end one describes the background gravitational field as flat conngetio@ — 1, 2), RA B (wg) =0
with w{)‘ B 2o, andw(/?l"'A‘*LBl"'B‘*l =0 fors > 2. In the linearized approximation one set€’|x) = wg(Y|x) + w1 (Y |x)
wherew1 (Y |x) describes dynamical fluctuations. Then the generalization of the free lower spin equations (12)—(16) to the free
equations for massless fields of all spins (plus constraints on auxiliary fields) is [5,18]

2 For the future convenience we use symmetric basis @ith 4 = cce bd — cac db_The relationship with the standard antisymmetric
Weyl tensorﬁ[“c], [bd] is C“b, cd _ %(5[@]’ [bd] + 5[bc]’ [ad]).
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Ri(Y|x) = %eg A egﬁslj C(Y|x) . 17)

Do(C)=0, 4;*C=Cxt;j,  D(;)=0, (18)
whereR is the linearized HS field strength (11) aﬁd;(C) is the covariant derivative in the twisted adjoint representation,

R1 =dw + wg * w1 + w1 * wp, Do(C) =dC + wg * C — C &,

fy=ry), YrA=v- %VAVB Y2 (19)

1

6. Nonlinear construction
6.1. General idea

The form of Egs. (17) and (18) suggests the idea [19] to search nonlinear HS equations in the ‘unfolded’ form of generalized
flatness conditions

do? = F® (w), d=dx"—, (20)

wherew? (x) is a set of differential forms (including 0-forms) and the funct#®fi (w) contains only wedge products of” (x)
and is such that the consistency condition

@ —

is true for anyw? (x). (Once this is the case, the functit? (w) defines a free differential algebra [20].)
The unfolded form (20) of the field equations has several nice properties:

It is manifestly invariant under gauge transformations

SF?
S’
Invariant under diffeomorphisms;
Interactions: a nonlinear deformation B (»);

— Degrees of freedom are in the 0-form fields which form an infinite-dimensional module dual to the space of single-particle
states;

Universality: any dynamical system canteformulated in the unfolded form.

5% =de® — &% dege? (x) = degw® (x) — 1; (22)

Originally it was shown by direct inspection that a nonlinear deformation ofithe4 unfolded free massless field equa-
tions (18) exists in the lowest orders [19]. To go beyond lowest orders some more sophisticated approach was needed. The
useful idea was [22] to find an appropriate extensioof the HS algebra such that a substitution

w—>W:w+wC+wC2+-~- (23)

into the g’ zero curvature equationd + W A W = 0 reconstructs nonlinear HS equations. The key issue is of course to find
restrictions onW that reconstruct (23) in all orders. The guiding principle is [21,18] to presgu® at the nonlinear level.

Before going into details of the construction let us mention that the resulting interactions are unique up to field redefinitions.
The only dimensionless coupling constant is the YM consgént |A|@=2/2¢2 which, however, is artificial in the classical

pure gauge HS theory because it can be rescaleg awt as in the classicplire Yang—Mills theory.

6.2. Nonlinear HS equations

In [18] it was shown that the appropriate extensjor> ¢’ is achieved by the doubling of oscillatng4 — (Zl.A, YiA) SO

that the HS fields extend to(Y |x) — W(Z, Y|x), C(Y|x) — B(Z, Y|x). In addition we ntroduce the§ connection alon@iA
that together witV form a noncommutative connection

W=d+W+S,  S(ZYx)=dz>s). (24)
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The star product ig’ is
(f*g)(Z,Y)= / dSATf(Z+S,Y +8)g(Z —T,Y +T)exp 25, T/ (25)

One can see that this is the oscillatégebra with the nopero basis relationgr/, YJB]* =—[z4, Zf]* =¢;;nB. Itis not,

however, the Moyal star product, being the normal ordered star product with respeet ¥aZ + Y normal ordering because

the left star multiplication byZ — Y and right star multiplication by + Y are equivalent to the usual pointwise multiplication.
An important property of this star product is that it admits the Klein opergttrat generates the automorphism (19)

2 . ~
IC:expWVAZA‘VBYBi, Ksf=fxK,  KsxK=1 (26)
The nonlinear HS field equations can be concisely formulated in the form [18]
1 ; : ~
WaW =2 (dZ) dzA + 447 d dz; B« K), WxB=BxW, (27)

whereW(dz, Z,Y) =W(Z,Z,Y) and &; = \/% vpdz5. This system is manifestly gauge invariant under the gauge trans-
formations

SW=[e,W]x, O6B=ec+B—Bx§ (28)

with an arbitrary gauge parametes ¢(Z, Y |x). One of the most important properties of the system (28) is [18] that it admits
sp(2) such that its generatotg; form a nonlinear deformation of trep(2) algebra (8) and single out the physical sector of HS
fields by thesp(2) invariance conditionDt;; = 0 (followed by factorization of the terms proportional4g). The nonlinearly
realizedsp(2) can be interpreted as a symmetry of a two-dimensional fuzzy hyperboloid in the honcommutative st‘,;éce of
andZ4. A radius of the fuzzy hyperboloid depends BZ, Y |x) which is the generating function for the Weyl 0-forms.

To analyse the HS field equations perturbatively one sets

W=Wo+Wy, S=dzZ,+S1, B=B, (29)

whereWo = 2w{i 8 (x) Y}, ¥;  with w$ B (x) describing backgrounAds; gravitational field. It is not hard to see that central
on-mass-shell theorem (18) is reproduced in the lowest order [18].

Let us note that the form of the noncommutative connecfian (29) implies that, because of the first termSnthe HS
symmetry (28) is spontaneously broken down to the HS symmetry Hvithdependent parametessY |x) (the Z-dependent
components ir(Z, Y|x) are used to gauge fix the noncommutat«eonnectionS). Because of th&-dependent term in (28),
the leftover HS symmetries with the HS gauge paramet@f$r) acquire B-dependent nonlinear corrections. As a result, HS
gauge symmetries in the nonlinear HS theare different from the Yang—Mills gauging of the global HS symmetry of a free
theory one starts with.

7. Singletons in any dimension

The simplest HS algebfau(1|2 : [d — 1, 2]) admits the fermionic generalizatidnu(1|(1,2) : [d — 1, 2])
sp2) > ospl. 2, YA @teh., (9t 0B =-2"F. (30)

The Fock-type modules dfu(1|2: [M,2]) andhu(1|(1,2) : [M, 2]) describe massless scalg; and spinorF,, in M di-
mensions [23] (closely related analysis Mf-dimensional field equations in terms of conformal algebra and sj@) and
osp(1, 2) was given in [15,16]). This gives realization of the HS algebras as conformal HS algebras acting on the scalar and
spinor conformal fields (i.e., singletons) Mi dimensions.

The following generalization of theddFlato—Fronsdal theorem [24] takes place [23]:

o0 N
Sd*1®5d—1=2®| [ I [T TTT] m=0 bosonsimds (31)
s=0
(note that related statements were discussed in [25]),
00 s—1/2
Fg_1®Sq_1= Y oL I T[T TTT] m=0 fermionsinads, (32)

s=1/2
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p+1
[ [T T[]

Fg1®Fi1=7) &q|] m=0 bosons imdS,
Pa

@®m >0 antisymmetric tensors (33)

These results show precise matching between spectra of gauge fields in HS theories and appropriate UIRs of HS algebras,
indicating the existence of HS gauge theories with fermions and mixed symmetry fields [23]. Moreover, HS superalgebras exist
in anyd [23]. There is no contradiction here with the absence of the usual supersymmetries in higher dimensions because HS
superalgebras contain usual finite-dimensional subsuperalgebras only for some lower dimensibas3like5.

8. Conclusions

The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear
HS theory differ from the Yang—Mills gauging of the global HSrsyetry of a free theory one starts with by HS field strength
dependent nonlinear corrections resultingrirthe partial gauge fixing of spontaneously broken HS symmetries in the extended
noncommutative space.

The HS geometry is that of the fuzzy hyperboloid in the ausglidiber) noncommutative spacks radius depends on the
Weyl 0-forms which take values in the infinite-dimensional module dual to the space of single-particle states in the system.
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